2 節 コンクリートの種類及び品質
6.2.1 コンクリートの種類
(a) 平22年版「標仕」までは、使用骨材によってコンクリートの種類分けを行っていたが、近年、スラグ骨材等を含め密度の異なる各種の骨材が開発・使用され、特に細骨材は混合して使用される場合もあることから、平成25年版「標仕」では、気乾単位容積質量でコンクリートの種類を分類し、おおむね気乾単位容和質量が 2.1〜2.5 t/m3 の普通コンクリートと、より気乾単位容積質量の小さい軽量コンクリートの 2種類とされた。
(b) 寒中コンクリート、暑中コンクリート、マスコンクリート、無筋コンクリート及び流動化コンクリートは、使用材料、施工時期・施工方法・施工場所等の施工条件、要求性能等によって 10節までとは異なる品質管理が必要なため「特別仕様のコンクリート」として 11節から 15節に別記されている。
(c) 平成16年 6月に工業標準化法が改正され、平成 17年 10月 1日からJISマーク表示制度は、国による認定制度から登録認証機関による製品認証制度となった。これによって、JIS A 5308(レディーミクストコンクリ ート)もこれまでの「工場認定」 から「製品認証」へと変更された。
「標仕」でも平成22年版の改定以降、I 類コンクリートは.JIS Q1001(適合性評価一日本工業規格への適合性の認証一 一般認証指針)及び JIS Q1011 (適合性評価一日本工業規格への適合性の認証一分野別認証指針(レディーミクストコンクリート))に基づき、JIS A 5308への適合を認証されたコンクリー ト II 類コンクリートは I 類以外のJIS A 5308に適合したコンクリートとされている。
「標仕」では、従来より、建築工事には特別な場合を除き、 JIS A 5308 に適合するレディーミクストコンクリートで対応できると考えられている。そのうえで、適合を認証された I 類コンクリートを使用することを原則としているが、山間部、離島等で運搬可能時間の距離内にJISマーク表示認証を取得した製品(以下、この章では「JISマーク表示認証製品」という。)を製造する工場(以下、この章では 「 JISマーク表示認証工場 」 という 。) がない場合でも.II 類コンクリートであれば、基礎、主要構造部等建築基準法第37条に規定する部分に適用できると考えてよい。
なお、建築基準法第 37条の指定建築材料が適合すべき規格及び品質に関する技術的基準を定めた平成12年建設省告示第1446号の一部が平成28年6月13日に改正(国土交通省告示第814号)され、建築物の基礎や主要構造部等に使用するコンクリートが適合すべき日本工業規格は、JIS A5308(回収骨材を使用するものを除く)に改められた。
よって、従来、国土交通大臣の認定で必要であったエコセメントや再生骨材H を使用したコンクリートについても、平成28年版「標仕」からは、一部の材料の組合せや用途を除いて特記せずに使用できることとなった。但し、回収骨材を使用したコンクリートを使用する場合には従来通り国土交通大臣の認定を取得した上で、「標仕」6.2.1(d)に基づいて特記しなければならない。参考に、上記国土交通省告示第814号と同時に国土交通省住宅局建築指導課長から発出された、技術的助言 国住指第770号 平成28年 6月13日「建築物の基礎、主要構造部等に使用する建築材料並びにこれらの建築材料が適合すべき日本工業規格又は日本農林規格及び品質に関する技術的基準を定める件の改正について」の抜粋を下記に示す。
(国住指第770号 平成28年 6月13日)
建築基準法第37条の規定に基づく標記基準については、平成28年6月23日付け国土交通省告示第814号として別添のとおり公布されたので通知する。
中略
記
2. 改正概要
レディーミクストコンクリートに関する JIS A 5308が2014年に改正されたことを踏まえ、指定建築材料であるコンクリートが適合すべき日本工業規格として、JIS A5308(レディーミクストコンクリート)- 2014を定めることとする。ただし、当該 JISのうち、「回収骨材を使用するもの」については、建築材料として使用する場合における管理方法等の知見が得られたいないため、使用できないこととする。
2014年の JIS A 5308 のレディーミクストコンクリートの種類を表6.2.1 に示す。
表6.2.1 JIS A 5308 : (2019改正)によるレディーミクストコンクリートの種類
(注)荷卸し地点での値であり、50cm及び60cmがスランプフローの値である。
(d)「標仕」では、建築基準法第 37条第二号による国土交通大臣認定のコンクリートは,設計担当者が特記することとしているので、特記された場合には、認定条件等を十分に確認して使用することになる。
6.2.2 コンクリートの強度
(a)「標仕」ではコンクリートの設計基準強度は、36N/mm2 以下(軽量コンクリートでは 27N/mm2 以下)としている。
なお 従来、軽量コンクリートの設計基準強度は 27N/mm2 未満であったが、(一社)日本建築学会「JASS5 鉄筋コンクリート工事」の軽量コンクリート2種の規定に合わせ、平成 25年版「標仕」では 27 N/mm2以下に変更された。
高強度化が流れではあるが、4〜5階建て、数千m2 程度のRC造建築物では高強度コンクリートを使用することはほとんどない。
(b) 使用するコンクリートの強度とは、使用するコンクリートが本来保有していると考えられるポテンシャルの圧縮強度のことであり、荷卸し地点でコンクリート試料を採取し、標準養生した供試体の材齢 28日の圧縮強度で表される。 ポテンシャルの圧縮強度は、構造体コンクリートの強度が設計基禅強度を満足するように、設計基準強度に構造体コンクリートの強度と標準養生した供試体強度との差を考慮した値(構造体強度補正値(S):6.3.2(1)(A)を参照)を加えた調合管理強度以上でなければならない。
(c) 構造体コンクリートとは、型枠内に打ち込まれて養生され、硬化して構造体あるいは部材を形成しているコンクリートのことである。構造体コンクリートの強度は、初期に十分な湿潤養生が施されれば、材齢28日以降も長期にわたって強度が増進し、材齢 91日においても強度増進は続き、停止することはない。 しかし、コンクリート工事においては適切な材齢を定め、その材齢において設計基準強度を満足するように定める必要がある。建築基準法施行令第74条第1項第二号に基づき、昭和56年建設省告示第1102号の第1第二号では、コンクリートの強度は、コンクリートから切り取ったコア供試体について強度試験を行った場合に、材齢91日において設計基誰強度以上であることと定めている。「標仕」が定める構造体コンクリートの強度の基準となる材齢91日は、この告示の規定を適用したものである。
一方、実際のコンクリート工事において構造体コンクリートの強度をコア供試体で試験することは、構造体に損傷を与え、かつ、修復が必要となるため困難である。このため、一般には工事現場で使用するコンクリートから試料を採取し、構造体コンクリートと同じような強度発現をすると考えられる方法で養生した供試体の圧縮強度から構造体コンクリートの強度を推定し、品質管理を行っている。上記告示第1102号の第1第一号では、コンクリートの強度は、現場水中養生を行った供試体について強度試験を行った場合に、材齢 28日において設計基準がよく強度以上であることと定めている。「標仕」においても、この告示の規定に基づき構造体コンクリートの強度推定の管理材齢の一つとして28日を規定している。
なお、平成19年版「標仕」では、調合管理強度に相当する値は、材齢 28日を基準に、設計基準強度(Fc)、構造体コンクリートと供試体強度との差(△ F = 3 N/mm2 )、気温によるコンクリート強度の補正値( T ) を考慮して(Fc 十 △F+T )としていたが、平成22年版「標仕 」では、調合管理強度は、材齢 91日を基準に、△ FとTに代わり構造体強度補正値(S:「標仕」表6.3.2 を参照)を取り入れ( Fc+S )に改められている。
構造体コンクリートの強度とは、構造体あるいは部材そのものの強度ではなく、構造体あるいは部材の中に直径と高さの比が 1:2 の円柱を考え、仮にその円柱を圧縮試験したとするときに得られる強度であり、一般には構造体あるいは部材から切り取ったコア供試体の圧縮強度がそれに近いと考えられている。しかし、実際のコンクリート工事において、構造体コンクリートの強度をコア供試体で試験するのは困難である。このため、工事現場で採取した供試体を、構造体コンクリートと同じような強度発現をすると考えられる方法で養生した供試体の圧縮強度で表すこととした。
構造体コンクリートの強度に関する調査・研究によって、現場水中養生した供試体の圧縮強度は、材齢28日のコア供試体の圧縮強度より大きく、材齢91日のコア供試体の圧縮強度と同等かやや小さいことが分かってきた。また、現場封かん養生した供試体の圧縮強度は、現場水中養生した供試体の圧縮強度よりやや低いことも分かってきた。このため、「標仕」では現場水中義生した供試体あるいは現場封かん養生した供試体の圧縮強度を基に構造体コンクリートの強度を推定することとした。
(d)使用するコンクリートの強度及び構造体コンクリート強度の推定値の判定は、9節の6.9.4 及び 6.9.5 によって行う。6.2.2(b)でも記したように、使用するコンクリートとは.工事に用いるために工事現場に搬入したコンクリートのことであり、その強度は、コンクリートが本来保有していると考えられるポテンシャルの圧縮強度のことである。したがって、使用するコンクリートの強度は、荷卸し地点で採取して標準養生した供試体の材齢28日の圧縮強度で表すこととし、その値は調合管理強度以上でなければならず、かつ、JIS A5308(レディーミクストコンクリート)の呼び強度の強度値を満足しなければならない。
6.2.3 気乾単位容積質量
(a) コンクリートの気乾単位容積質量は、使用する骨材の密度や調合によって異なり、構造計算で固定荷重を算定するときに、鉄筋コンクリートの質量を求めるために用いる値である。平成25年版「標仕」から、従来の使用骨材の種類による区分から、新たにコンクリートの気乾単位容積質量による区分に変更され、そのための標準的な判断基準として、JASS 5 の規定値を参考に数値が示された。
(b) 軽量コンクリートの気乾単位容積質量は、別途「標仕 」10節で1種、2種の種類ごとに標準的な値の範囲が示されている。
6.2.4 ワーカビリティー及びスランプ
ワーカビリティーとスランプの関連等について次に示す。
(1) ワーカビリティーは、打込み場所並びに打込み方法及び締固め方法に応じて、型枠内並びに鉄筋及び鉄骨周囲に密実に打ち込むことができ、かつ、 粗骨材の分離が少ないものとする。また、スランプの所要値は、特記がなければ、基礎、基礎梁、土間スラブでは15cm又は 18cm、その他の部材では 18cmとする。
(2) ワーカビリティーは、運搬、打込み、締固め及び仕上げのフレッシュコンクリートの移動・変形を伴う作業の容易さとそれらの作業によってもコンクリートの均一性が失われないような総合的な性質であり、フレッシュコンクリートの流動性の程度を表すスランプとは別の概念である。
(3) 作業の容易さからいえば、スランプが大きく流動性が高いほうがワーカビリティーが良いといえるが、スランプが過大になると粗骨材が分離しやすくなるとともにブリーディング量が大きくなり、コンクリートの均一性が失われる。そこで、単位セメント量や細骨材率を大きくするとフレッシュコンクリートの粘性が大きくなり、粗骨材の分離は生じにくくなる。
(4) スランプを大きくし、かつ、単位セメント量や細骨材率を大きくすれば、見かけ上はワーカビリティー の良いコンクリートが得られる。 しかし 単位水量や単位セメント量が過大になると乾燥収縮率が大きくなってひび割れが生じやすくなるとともにセメントペーストやモルタル分の多いコンクリートとなって、打上りコンクリートの表面の品質が悪くなる。
(5) このため、作業の容易さだけでワーカビリティーを評価するのではなく、ブリーディングや骨材の分離ができるだけ少なくなるようにするという条件も考慮しなければならない。
(6) スランプは、打込み時のフレッシュコンクリートに要求される直要な品質項目の一つであるが、ここでいう所要スランプとは、荷卸し地点でのスランプである。所要スランプ18cmというのは、許容差を含めて考えればよく、その値は JIS A 5308(レディーミクストコンクリート)の規定によれば ± 2.5cmである 。
JIS A5308 2019年改正により
普通コンクリートにおけるスランプフローは
45±7.5cm,
50±7.5cm,
55±7.5cm,
60±10cm
の4種類となっている。
6.2.5 構造体コンクリートの仕上り
(a) コンクリート部材の位置及び断面寸法の許容差
(1) コンクリート部材の位置及び断面寸法は,所定の許容差の範囲内になければならないが、これは次の理由による。
(@) 構造体としての耐力及び耐久性の確保
(A) 仕上げ二次部材又は設備等の納まり上の要求
(B) 美観上の要求
(2)部材の位置及び断面寸法の測定は,一般的には次のように行う。
特記された部材又はサンプリングした部材について、基準墨からスケール等を用いて測定する。 測定部分は両端及び中央の 3箇所程度行う。
柱・梁等は直接測定できることが多く問題は少ないが、床・壁等の断面寸法は、両側から測定して計算で求めると測定誤差がきく大なることがある 。 そこで、開口部等を利用して直接測定する。
むやみに測定項目や測定数を増やすことは、測定費用や時間を要し本来の目的から逸脱することになる。コンクリート部材の位置及び断面寸法は、型枠の変形等がなければ、型枠により決まるものであり、補修も困難であることから、コンクリート打込み前の型枠の設計・掛出し・組立等を確実に行うことが必要である。 コンクリート打込み後は型枠の変形が生じたと見られる部分等について、確認のために測定する。
(3) (1)及び(2)に基づいて各部材の位置及び断面寸法を測定し、その結果、位置及び断面寸法の精度が「標仕」表6.2.3 の許容値を満足しない場合は、「標仕」6.9.6 に従って監督職員に報告するとともに適切な処置等を講じなければならない。
(b) コンクリート表面の仕上り状態
(1) せき板に接するコンクリートの仕上り状態は特記によるが、コンクリートの打放し仕上げの場合は、「標仕」表6.2.4 の種別に応じた「表面の仕上り程度」を目安とする。コンクリートの仕上り状態を良好にするには、不陸を少なくするために変形量の少ない型枠設計を行い、コンクリート打込みの際は、目違い等が生じないようにコンクリートの締固めを行うことが重要である 。
(2) コンクリートの仕上りの平たんさは、せき板に接する面は型枠の変形等により、せき板に接しない床上面等は左官の均し精度により決まる。
平たんさの測定方法には、JASS5 で定められた JASS 5 T-604 (コンクリートの仕上がりの平たんさの試験方法)があるが、試験用器具が特殊で取扱い方法も難しいため、一般的には下げ振り、トランシット、レベル、水糸、スケール等を使用してコンクリート面の最大、最小を測定する方法等で行われている。
「標仕」表6.2.5 の平たんさの標準値は,仕上げの種類だけでなく、建物の規模や仕上り面に要求される見ばえ等によっても異なるので、適切な値を品質計画で提案させ、検討するとよい。
なお、25年版「標仕」では、表6.2.5 の対象となる柱、梁、壁の種類に「接着剤による陶磁器質タイル張り」が追加され、これに伴い従来のタイル工法は「セメントモルタルによる陶磁器質タイル張り」と名称が変更された。床についてもフリーアクセスフロアが追加された。 フリーアクセスフロアには,支柱調整式(下地床の不陸に伴う高さを調整する機能を有するも)のと置敷式(高さを調整する機能がなく、高さは下地床の精度に従うもの)の2 種類があり、支柱調整式は ±10〜15mm 程度の調整代があるため、従来からの「二重床」に含め、置敷式は新たに「フリーアクセスフロア(置敷式)」として追加された。
-
no image
-
no image
-
no image
-
no image
-
no image
-
no image
-
no image
-
no image
-
no image
-
no image
-
no image