ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2021年08月 >>
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        
最新記事
最新コメント

2021年08月31日

仁科 芳雄
【1890年生まれ-8/31原稿改定】

「仁科芳雄」の原稿を投稿します。原稿文字数は854文字です。画像はデンマークを使っています。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。【以下原稿です】


【1890年12月6日生まれ ~ 1951年1月10日没】



仁科芳雄は稀代の「人たらし」だったと言われています。仁科さんは人に惚れ込む性格でした。仁科さんが人に入れあげる性格で、その人の良い所を見つけて、それを伸ばす。そんな仁科さんの元に人が集まる。そんな風にして沢山の人々が仁科さんの下に集まり、その人達を育てあげていった凄さが仁科さんにはあるんです。


仁科さん本人はオランダ・コペンハーゲンのニールス・ボーアのもとで育ち、その自由闊達なコペンハーゲンの学風を日本に持ち込み、多くの学者を育てました。1928年にオスカル・クラインとコンプトン散乱の有効断面積を議論しています。また帰国後にはハイゼンベルクディラックを日本に招待して日本の中での物理学への理解を深め啓蒙活動を続けています。更には、師であるボーアを日本に呼び寄せています。


研究内容として仁科さんはサイクロンの建設を進めて、


様々な成果をあげてます。そのサイクロンを大型化する


際には仁科さんは大変苦労しています。先行する


カリフォルニア大学のローレンスとは


日米関係の悪化に伴い関係が悪く


なっていったのです。実際、


サイクロトロン関係の情報交換は


軍事的な側面を持つので出来なります。


そして終戦と共に、


苦心して作り上げたサイクロンは


GHQにより東京湾に破棄されてしまいます。


戦後には仁科さんは理化学研究所の所長を務め、科研製薬の前身で社長を務めましたが、肝臓ガンを患い61歳で亡なってしまいます。放射線被ばくの影響もあったであろうと言われていて、残念です。多くの人材育成に捧げた人生だったと感じています。






以上、間違い・ご意見は
次のアドレスまでお願いします。
適時、返信・改定を致します。


nowkouji226@gmail.com


2020/12/13_初版投稿
2021/08/31_改定投稿


テキストポンへの査定申込はコチラ


(旧)舞台別のご紹介
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】



H・レンツ【1804年生まれ-8/24原稿改定】

「レンツ」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話、文章に主語が無く文脈から判断させたりしていたりしました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は2882文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】【1804年2月12日生まれ ~ 1865年2月10日没】



冒険家レンツ


ハインリヒ・レンツはドイツ系ロシア人物理学者で


ロシアで生まれてます。若き日に


オットー・フォン・コツェブー


が中心となった第3回の世界一周調査隊のメンバー


として海洋環境の物理的側面を調査しています。


レンツは色々な国の港に立ち寄り海水成分を調べたり


したのでしょう。私ならそこで釣りをして生物学の


研究をしている仲間に協力したいと思います。


先ずは水深を調べて、色々な生餌を使います。


 

レンツの法則の意義


さて、レンツの業績として有名なのは


レンツの法則ですね。その内容は変動磁場


との関連で、誘導起電力が発生しますが


その方向が初めの磁場発生を妨げる


方向に発生する。というものです。


実例としてコイルに磁石を近づけると


コイルに電流が発生して、それ故に


コイルが磁石化して磁石とコイルが


反発します。感覚的に分かり辛いのは


磁石から出る磁力線が空間を


伝わる様子です。現代の理解では


真空中でも伝わる電磁波ですが


レンツがもたらした様な知見があって


初めて分かると思います。それだから


実験を繰り返し、定式化した事は


とても素晴らしいと思います。


このレンツの法則は現代では電磁


ブレーキに応用されたりしています。


 

レンツの時代はマクスウェルと近く、


この時代は電磁気学が完成していく


時代だと捉える事が出来るでしょう。


現代人が使いこなす言葉、電磁波・


原子・電子・光電圧・・・


そういった知見のない中で磁力と電力


を関連させてエレクトロニクスへと


繋がっていく理論大系を作っていった


のです。まさにパラダイムシフトの


連続でした。目に見えない法則を使い


今やリニアモーターカーが動き回るのです。


 

またレンツは、ジュールの法則を独立して


導いていました。この業績も特筆すべきです。


電気と熱の世界をつなげたのです。







以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/09/27_初稿投稿
2021/08/24_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
ドイツ関連のご紹介
電磁気関係


【このサイトはAmazonアソシエイトに参加しています】


教科書買取専門店による教科書買取サービス【テキストポン】


* 【2021/9月時点での対応英訳】



Lentz and the world


Heinrich Lenz is a German-Russian physicist born in Russia. At a young age, he is a member of the 3rd Round the World Survey, led by Otto von Kozebu, investigating the physical aspects of the marine environment.


Lenz may have stopped by ports in various countries to investigate seawater components. I would like to cooperate with my colleagues who are fishing there and studying biology. First, check the water depth and use various live foods.



Meaning of Lentz's low


By the way, Lenz's law is famous for Lenz's achievements. The content is related to the fluctuating magnetic field, and the induced electromotive force is generated, but the direction is the direction that hinders the initial magnetic field generation. That is.


As an example, when a magnet is brought close to the coil, an electric current is generated in the coil, and therefore the coil becomes magnetized and the magnet and the coil repel each other. What is difficult to understand sensuously is how the magnetic field lines emitted from the magnet travel through the space. In modern understanding, electromagnetic waves are transmitted even in a vacuum, but I think that they can only be understood with the knowledge that Lenz brought. That's why I think it's wonderful to repeat the experiment and formulate it. This Lenz's law is applied to electromagnetic brakes in modern times.


The era of Lenz is close to Maxwell, and this era can be regarded as the era when electromagnetics is being completed. Words used by modern people, electromagnetic waves, atoms, electrons, photovoltages ... Without such knowledge, we created a theoretical system that connects magnetic force and electric power to electronics. It was just a series of paradigm shifts. Maglevs are now moving around using invisible laws.


Lenz also independently led to Joule's law. This achievement is also noteworthy. It connected the world of electricity and heat.


2021年08月30日

エドウィン・ハッブル【1889年生まれ-8/30原稿改定】

「ハッブル」の原稿を投稿します。原稿文字数は715文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。
作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1889年11月20日 ~ 1953年9月28日】



ハッブルは近代の天文学者で、


膨張宇宙論を特徴づける


ハッブルの法則等が有名です。


そんな大天文学者ですが、


高校時代は陸上でイリノイ州の


記録を更新したりしていました。


そんな少年時代は後の人生と


全く違いますね。そして、


大学時代はボクシングでならし、


とあるプロモーターから


世界チャンピオンとの一戦を


持ちかけられた程の強さでした。


これまた意外ですね。


ハッブルの業績で大きいのは
赤方偏移の発見でしょう。
1929年にセファイド変光星の観測


から明るさと変光周期の関係を


観測していく事で


赤方偏移の考え方を導きました。


赤方偏移とはドップラー効果を考慮した考えで


観測可能な大部分の銀河の光が


波長の短い方向


(赤い色の方向)へ偏している現象です。


遠ざかっていく救急車の音が鈍く


なっていく様子を思い出してください。 


ハッブルが考える宇宙論では、
無論、直接の実験は出来ません。
使える理論も検証の為に理論が
必要となる学問体系でした。
反面ハッブル提唱の赤方偏移は
宇宙理論に明快な方向性を与え、
次の考えに繋がっていくのです。
赤方偏移の考えから
膨張宇宙論の考えが裏付けられ、ひいてはビックバーン理論へとつながっていったのです。


また、我々が暮らす銀河と別の銀河を見つけた業績も特筆するべきです。



 




以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/11/08_初稿投稿
2021/08/30_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係へ
力学関係
電磁気関係


【このサイトはAmazonアソシエイトに参加しています】

C・A・ドップラー
【1803年生まれ-8/30原稿改定】

「ドップラー」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話、文章に主語が無く文脈から判断させたりしていたりしました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は2539文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1803年11月29日生まれ - 1853年3月17日没】




 ドップラーの示した事実

その名をはクリスティアン・アンドレアス・ドップラー;

Christian Andreas Doppler。ドップラーはオーストリアの

物理学者にして数学者にして天文学者です。

移動体の発する音を考えた時に観測者と音源との間の

相対的な周波数の関係を詳しく調べました。いわゆる

「ドップラー効果」の形で定式化して後世に残しています。

絶対音感を持った音楽家が移動体からの音を聞いて

観測した地点で音程が変わるという事実を示しています。

当時としては極めて説得力のある説明方法だったのです。

舞台は音楽の国オーストリア、研究対象は音の定量化です。

今日では音で聞こえる周波数の話から、考え方を拡張して

電磁波のドップラー効果や超音波のドップラー効果

も含めてドップラー効果は応用されています。




ドップラー効果の特徴

ドップラーの素晴らしい所は”問題のとらえ方”で、

相対的な位置関係の変化から一見,違うものと思える

「音速;C」と「移動体の速度;V」の間の関係をとらえ

@「動かない物体の発する周波数;F1」から

A「移動する物体の発する周波数;F2」へと

変化する割合である「F2/F1」を

数式で分かり易く示したことです。

今日では高校生レベルで説明・理解出来る関係を

数百年前に作り上げて説明しています。

そして、

今では色々な側面から解釈・利用されています。




ドップラーは現在のチェコ工科大で教職を務めた後に

ウィーン大学物理学研究所で研究機関の長を務めます。

そんな中で遺伝学のメンデルの研究を指導もしています。

少し意外な繋がりですね。








以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2021/07/03_初版投稿
2021/08/23_改定投稿

舞台別のご紹介へ
時代別(順)のご紹介
電磁気関係へ
オーストリア関連のご紹介へ

詳しくはコチラへ→【テキストポン】

【このサイトはAmazonアソシエイトに参加しています】

【2021年8月時点での対応英訳】

Job of Doppler

Its name is Christian Andreas Doppler. Doppler is an Austrian physicist, mathematician and astronomer.

Doppler investigated the relative frequency relationship between the observer and the sound source when considering the sound emitted by a moving object. It is formulated in the form of the so-called "Doppler effect" and left for posterity.

It shows the fact that the pitch changes at the point where a musician with perfect pitch hears and observes the sound from a moving object. It was a very compelling explanation for the time. The stage is Austria, the country of music, and the subject of research is sound quantification.

Way of thinking by Doppler

Today, the Doppler effect is applied by expanding the way of thinking from the frequency that can be heard by sound, including the Doppler effect of electromagnetic waves and the Doppler effect of ultrasonic waves.

The great thing about Doppler is "how to grasp the problem", which captures the relationship between "sound velocity; C" and "moving object velocity; V", which seems to be different at first glance from the change in relative positional relationship, and "does not move". "F2 / F1", which is the rate of change from "frequency emitted by an object; F1" to "frequency emitted by a moving object; F2", is shown in an easy-to-understand manner.

In today,Doppler created and explained relationships that can be explained and understood at the high school level hundreds of years ago. And now it is interpreted and used from various aspects.

Doppler will be the head of the research institute at the Institute of Physics, University of Vienna, after teaching at the current Czech Technical University. In the meantime, he also teaches Mendel's research in genetics. It's a little surprising connection.

フランス関係の人々【パスカル・キューリ夫妻・等-8/30原稿改定】

フランス関係のご紹介原稿を改定します。ブログ自体の改定に伴う作業で記事内容に大きな変更はありません。ご覧下さい。【以下原稿です】

↑Credit;Pixabay↑



始めに


フランス関係の人々を纏めました。


フランス共和国。その人口は、おおよそ6千3百万人弱。


日本の半分に満たないですね。反して国土は広く


食物自給率も高いです。その話を知った時は意外でした。


そして以下の登場人物はフランス人ですが、


この中で多くの人を今迄、


私はフランス関連の人として意識していませんでた。


整理してみると蒼々たるメンバーですね。


パスカルもクーロンもラプラスも居ます。


そんな歴史を持った国です。


そしてキューリ夫妻もピカールも居ます。


フランスの歴史を感じさせます。


そしてフランスの誇りを感じさせます。


年代順にご覧下さい。



時代順のご紹介


ブレーズ・パスカル_1623年6月19日 ~ 1662年8月19日


ロバート・ボイル_1627年1月25日 ~ 1691年12月31日【フランス人教師に師事】


ダニエル・ベルヌーイ_1700年2月8日 ~ 1782年3月17日

ジョゼフ=ルイ・ラグランジュ
_1736年1月25日 ~ 1813年4月10日

シャルル・ド・クーロン
_1736年6月14日 ~ 1806年8月23日


ジャック・C・シャルル_1746年11月12日 - 1823年4月7日


ピエール・ラプラス_1749年3月23日~1827年3月5日


アンドレ=マリ・アンペール_1775年1月20日 - 1836年6月10日


ルイ・コーシー_1789年8月21日 ~ 1857年5月23日


N・L・S・カルノー_1796年6月1日 ~ 1832年8月24日


レオン・フーコー_1819年9月18日 ~ 1868年2月11日


A・H・ルイ・フィゾー_1819年9月23日 ~ 1896年9月18日


アンリ・ポアンカレ_1854年4月29日 ~ 1912年7月17日


ピエール・キューリ_1859年5月15日 ~ 1906年4月19日


マリ・キュリー_1867年11月7日 ~ 1934年7月4日


ポール・ランジュバン_1872年1月23日 ~ 1946年12月19日


アウグスト・ピカール__1884年1月28日 ~ 1962年3月24日

ルイ・ド・ブロイ
_1892年8月15日~1987年3月19日


矢野 健太郎_1912年3月1日 ~ 1993年12月25日







以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に関しては適時、
返信・改定を致します。


nowkouji226@gmail.com


2020/12/04_初版投稿
2021/08/30_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
力学関係
電磁気関係
熱統計力学関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


教科書買取専門店による教科書買取サービス【テキストポン】




 

2021年08月29日

ヴァルター・ゲルラッハ
【1889年生まれ-8/29原稿改定】

「ゲルラッハ」の原稿を投稿します。原稿文字数は1021文字です。また、SEO対策で装飾を変更しています。読者満足度を考えアマゾン関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】



【1889年8月1日生まれ ~ 1979年8月10日没】



ゲルラッハはシュテルンと共に行った


実験で有名です。


シュテルンのご紹介は関連人物を中心としており、


実験内容が伝えられていませんでした。


ゲルラッハと実験内容について語りたいと思います。


その実験はゼーマンとローレンツ


による実験と通じる部分があります。


古典的な考えだけでは説明出来ない


量子力学的な状態の縮退を考慮する


必要があるという結論に繋がります。


ゼーマン効果ではナトリム原子からの電磁波、ゲルラッハの実験では加熱して蒸発した銀粒子が対象です。其々の実験対象において磁場をかけた時に縮退が解けていく様子が観察されます。古典的な予測では輝点に幅が出ると予想されます。二つの輝点に分かれる現象は古典的に説明が出来ません。


具体的にゲルラッハとシュテルン


が行った実験では、磁場で銀粒子の中の


電子スピンが分離されています。


加熱された銀粒子がビーム状に


放射されている時にビーム経路


に対して垂直に磁場をかけます。


壁に当てたビームの輝点


を見てみた時に古典論では


輝点は一つです。所が、


ゲルラッハとシュテルンの実験


では「縮退の解けた」2点が


はっきりと見てとれたのです。


量子力学的な考えに従うと、


電子はスピンを持ち、磁場に対して


同じ方向のスピンと


逆の方向のスピンが存在します。


だから、


磁場に対する軌跡が異なるのです。


この実験はゲルラッハが実現したようですが


シュテルンがドイツから亡命していた事情と、


政治絡みの判断、が相まって


当初はゲルラッハの名は表に出ませんでした。


さて、話を現代に近づけると、


2012年に日本で半導体内部で


同じ原理を使い同じ結果を得てます。


アイディアの種は色々な所にありますね。


強磁性体や外部磁場を用いずに電子のスピンを


揃えることに世界で初めて成功_2012年12月


https://www.ntt.co.jp/journal/1212/files/jn201212058.pdf






以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/31_初稿投稿
2021/08/29_改定投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
ドイツ関係のご紹介へ
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


詳しくはコチラへ→【テキストポン】


N・L・S・カルノー
【1796年生まれ-8/29原稿改定】

「カルノー」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話、文章に主語が無く文脈から判断させたりしていたりしました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は3129文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1796年6月1日生まれ ~ 1832年8月24日没】




カルノーの業績


その名は正確にはニコラ・レオナール・サディ・カルノー


: Nicolas Léonard Sadi Carnot。


彼は理論的な熱機関であるカルノーサイクル


を提唱して熱が関与する物理学を考え続けました。


その父は革命時のフランス軍の中で尊敬を集めていて


軍制改革を主導したと言われています。そして、


カルノーは正義感の強い感受性豊かな青年に育ちます。


 

そんなカルノーの関心は蒸気機関にありました。


当時の産業界では蒸気機関を


理論的に説明出来ていなかったのです。


蒸気が急激に膨張することは分かりますが


蒸気を構成する個別の粒子の挙動、とりわけ


集団的運動のもたらす「温度上昇(低下)」や


「圧力」、「体積」といった量との関係が


明確ではありませんでした。


 



カルノーの考え方


経験的な知見として「水を熱した時に発生する蒸気が


液体状態から気体状態に移る中で


膨張して圧力を発生させます」。


その時に発生した圧力で摺動機関を動かして


力を得る議論の中で、カルノーの時代には定量的な


議論を踏まえて論じられる理論環境が無かったのです。


 

カルノーはニュートン力学で出てくる力の他に、その力を


加え続けた距離を考えて「仕事量」の概念を作ります。


重い荷物を「数cm引きずる」現象と「数km引きずる」現象


とでは大きな差がありますので、


「仕事量」の概念は感覚的に理解出来ます。


 

例えば、物体を動かす力と動いたときに発生する摩擦熱


の間には関係があり、それらを結びつけるのにカルノーは


仕事量の概念を使いました。他、比熱、熱容量、


といった概念が出来て様々な現象が繋がっていったのです。


 

ただ残念な事にカルノーは、


非常に短い人生を送っていて


36歳の時に病死してしまいます。


カルノーが評価を受けたのは死後でした。


クライペロンとトムソン卿が評価し、


その後にマッハが評価をしています。


カルノーが作り上げた「仕事」に関する


概念が後の時代に、ようやく評価されたのです。






以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/11/01_初回投稿
2021/08/29_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】


【以下は2021年8月時点での対応英訳です】



Job of Carnot 


Its name is Nicolas Léonard Sadi Carnot.


Carnot advocated the Carnot cycle, a theoretical heat engine, and continued to think about heat-related physics.


His father is said to have been respected in the French army during the Revolution and led the military reforms. And Carnot grows up to be a sensitive young man with a strong sense of justice.


Carnot's interest was in the steam engine. The industry at that time could not explain the steam engine theoretically.


It is understood in the Carnot era that steam expands rapidly, but the behavior of individual particles that make up steam, especially the "temperature rise (decrease)", "pressure", and "volume" brought about by collective motion, etc. The relationship with quantity was not clear.


As an empirical knowledge of Carnot's time, "the steam generated when water is heated expands and generates pressure as it moves from the liquid state to the gaseous state."


In the discussion of gaining power by moving the sliding engine with the pressure generated at that time, there was no theoretical environment in the era of Carnot that was discussed based on quantitative discussions.



Carnot way of thinking 


Carnot creates the concept of "work load" by considering the distance that the force is continuously applied in addition to the force that appears in Newtonian mechanics. There is a big difference between the phenomenon of "dragging a few centimeters" and the phenomenon of "dragging a few kilometers" of heavy luggage, so the concept of "work load" can be understood sensuously.


For example, there is a relationship between the force that moves an object and the frictional heat that is generated when it moves, and Carnot used the concept of work to connect them. In addition, the concept of specific heat and heat capacity was created, and various phenomena were connected.


Unfortunately, Carnot lives a very short life and died of illness at the age of 36.


Carnot was evaluated after his death. Clapeyron and Sir Thomson evaluate it, followed by Mach. Carnot's concept of "work" was finally appreciated in his later years.


2021年08月28日

ハリー・ナイキスト
【1889年生まれ‐8/28原稿改定】

「ナイキスト」の原稿を投稿します。原稿文字数は907文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使ってます。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1889年2月7日 ~ 1976年4月4日】



ナイキストはスウェーデンに生まれました。


1907年に家族がアメリカ合衆国に移り住み


その後、帰化しています。【中略】



また、彼の考案した「ナイキスト線図」は極座標を使い対象系の安定性を議論します。ナイキスト線図も系の安定性を考える為に現代の信号処理の世界で使われていて、今でも市販のアナライザーに機能として搭載されています。


 


以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関連のご紹介へ
イェール大学関連のご紹介へ
熱統計関連のご紹介


2020/11/10_初稿投稿
2021/08/28_改定投稿


詳しくはコチラへ→【テキストポン】


【このサイトはAmazonアソシエイトに参加しています】



マイケル・ファラデー
【1791年生まれ-8/28原稿改定】

「ファラデー」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話、文章に主語が無く文脈から判断させたりしていたりしました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は3397文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】
【1791年9月22日生まれ 〜 1867年8月25日没】




電磁気学の基礎を築いたファラデー


イギリスのファラデーは電磁力学の礎を築きました。


近接作用を考えていって導体の周りの空間


における磁界の様子を想像しました。


そして、それが変動した時の作用などを


一つ一つ実験で明らかにしていきます。


磁束の磁界変化が起電力を生む事実を


定式化しました。優れた実験家でした。


画像ではオックスフォードを使っていますがこの時代にはイングランド内戦に伴い多くの人がロンドンで研究をします。ファラデーはロンドンの王立協会に所属していました。そして、ファラデーが考えた法則はファラデーの電磁誘導の法則と呼ばれます。また別途、ファラデーの電気分解の法則という考え方が存在して、それは電気分解での精製質量を記述します。そうしたファラデーの伝記を読んでいて思うのは、ファラデーはとても庶民的な感覚を持っていたということです。人々がどう思っているか、というより感じているかを他の科学者よりも共感できる点が多いかと思います。一緒にお酒でも飲めたら色々語れるでしょう。



ファラデーの人となりと評価


ファラデーは子供向けにクリスマスレクチャー


をしたり、ろうそくの科学を解説しててみたり、


一人で考えを極めていく他に


社会全体の意識を高めていこう


としていたと感じられます。


私もこの点は見習いたいです。


ただ、当時は階級社会であり、公の場の食事での扱いや馬車の乗り方等でファラデーは差別的な扱いを受けていていたようです。色々な発見をして科学で名を成した彼は晩年、ナイトの称号を何度も 辞退しました。また、ファラデーはクリミア戦争時に兵器開発の依頼に対して言葉を残していますので引用致します。私はファラデーの感性が好きです。


(兵器を)「作ることは容易だ。しかし絶対に手を貸さない!」
(引用・Wikipedia)


科学技術の平和利用を考えると現代でも個々の科学者は判断をする時があります。実際に日本は敗戦国なので出来る事が限られていまが、例えば中東で紛争があった際に、地雷探知ロボットを投入したりしています。日本ならではの役割を果たして欲しいと願います。ファラデーはそんな事も考えさせてくれました。そして、死後、何年もたってファラデーはオックスフォード大学から名誉博士号を受けています。



〆最後に〆





以上、間違いやご意見があれば
以下アドレスまでお願いします。
問題点には適時、
返信・改定を致します。


nowkouji226@gmail.com


2020/09/03_初回投稿
2021/08/21_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
電磁気関係


【このサイトはAmazonアソシエイトに参加しています】


詳しくはコチラへ→【テキストポン】


【2021年8月時点での対応英訳】



Faraday made the basis of electronics


Faraday in England laid the foundation for electrodynamics. He considered proximity and he imagined the appearance of a magnetic field in the space around a conductor. Then, we will clarify the action when it fluctuates one by one by experiment. He formulated the fact that changes in the magnetic field of magnetic flux produce electromotive force. He was an excellent experimenter.


Oxford is used in the image, but many people study in London during the English Civil War. Faraday belonged to the Royal Society of London. And Faraday's law is called Faraday's law of electromagnetic induction. Separately, there is the idea of ​​Faraday's laws of electrolysis, which describes the purified mass in electrolysis. Reading those Faraday biographies, I think Faraday had a very common sense. I think he has more sympathy than other scientists for what people think, rather than what they feel. If you can drink alcohol together, you can talk a lot.


It seems that Faraday was trying to raise the awareness of society as a whole, in addition to giving Christmas lectures for children and explaining the science of candles, thinking extremely alone.


I also want to emulate this point.



Faraday and later evaluation in class society


However, at that time, it was a class society, and it seems that Faraday was treated discriminatory in terms of how to treat it in public meals and how to ride a horse-drawn carriage. He made many discoveries and made a name for himself in science, and in his later years he declined his knight title many times. He also quotes Faraday as he left a word for his request to develop weapons during the Crimean War. I like Faraday's sensibility.


He said (weapons) "easy to make, but never help!"
(Quote / Wikipedia)


Even today, individual scientists sometimes make decisions when considering the peaceful use of science and technology. Actually, Japan is a defeated country, so there are limits to what we can do, but for example, when there is a conflict in the Middle East, we are introducing landmine detection robots. I hope you will play a role unique to Japan. Faraday made me think about that too. And years after his death, Faraday received an honorary doctorate from Oxford University.



2021年08月27日

オットー・シュテルン
【1888年生まれ -8/27原稿改定】

「シュテルン」の原稿を投稿します。原稿文字数は857文字です。AISEOスコアでは97点をとっています。また、読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代順のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。
作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】
【1888年2月17日生まれ ~ 1969年8月17日没】



シュテルンはドイツ生まれの物理学者でナチスに追われ


アメリカへ移ります。シュテルンは先ず、ポーランドの


プラハ大学でアインシュタインに会い、


共にチューリッヒ工科大学に移ります。


気の合う議論相手だったのでしょうか。


調べを進めていくと共にユダヤ系である事情


が大きい気がしてきました。何より、


ホロコーストが実際に行われていた時代ですからね。


同じ恐怖と憤りを感じて反体制の話もしていたことでしょう。


シュテルンはドイツ本国で当時の感心事であった原子線の研究をします。実験の様子としては、温度をどんどんあげていって金属が光り出してからもさらに温度をあげていきます。例えば、具体的に金属を恒温槽の中にいれて小さな窓から出てくる様子を見るのです。


その窓から連続して特定の粒子を放出する事で粒子の性質を明らかにしていきます。結果としてヴァルター・ゲルラッハと共に歴史的な実験を完成させました。この実験で注目されるのは「個別粒子の磁気的性質」です。加熱して蒸発させた銀の粒子をビーム状に放出した時にその粒子線に対して磁界をかけるのです。すると、粒子は二つに分かれて
一点だった輝点(粒子の当たった場所)が
二点の輝点となります。この事実は
粒子にスピンがある事で説明が出来るのです。


戦争に伴い、


ナチスにハンブルグ大学の


地位を追われたシュテルンは


アインシュタインと共に


1933年アメリカに亡命します。


戦後ナチス政権下で教授を続けた


ゲルラッハと対照的ですね。


最終的にはUCB
(カリフォルニア大学バークレー校)で
名誉教授を務めます。81歳の生涯でした。




以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には返信・改定をします。


nowkouji226@gmail.com


2020/10/31_初版投稿
2021/08/27_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関連のご紹介へ
カリフォルニア大学関連のご紹介へ
ドイツ関連のご紹介

量子力学関係


詳しくはコチラへ→【テキストポン】


【このサイトはAmazonアソシエイトに参加しています】

ルイ・コーシー
【1789年生まれ-8/27】

「コーシー」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話、文章に主語が無く文脈から判断させたりしていたりしました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は2539文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1789年8月21日生まれ ~ 1857年5月23日没】


コーシーと当時の社会環境

その名は正確には、

オーギュスタン=ルイ・コーシー

(フランス人)Augustin Louis Cauchyです。

コーシーは数学者で、天文学、光学、流体力学に

大きく貢献しています。




コーシーの生まれた時代に

フランスでは革命が起きていて

それを避ける為に家族は郊外に居を移します。

彼の生まれた時期でした。

コーシーの一家がパリ郊外に移り住んだ時に

近くにラプラスが住んでいました。

コーシーの父とラプラスが交流を進める中で

ラプラスはコーシーのセンスに気づきます。

それは素晴らしい出会いだったのです。




やがてコーシーの一家はパリに戻ってサロンでの

交流をしたりします。コーシーはそんな中で

土木学校を卒業して港を作る仕事をしていたようです。

思想的には両親の影響を受け保守的なところがあり、

シャルル10世の国外退去に伴い、

共に流浪の時代を送ります。そこでコーシーは

ボルドー公の家庭教師などをしていました。




コーシーの研究業績 

研究においては置換方法にコーシーは工夫を凝らし

群論に繋がる研究成果を纏めています。

また解析学の面では、その厳密な性格から

ε・∂(イプシロン・デルタ)論法の

原型となる考えを作り出しました。

結果として、

解析学では厳密な定式化を進め、

現代の数学の礎を作ったのです。

級数の置換をスマートに進めていたと思います。

連続・非連続をつないでいったと言えないでしょうか。

私も複素平面・留数定理…と学んでいった事を思い出します。

現代で使っている解析学ではコーシーが作り上げたもの

が多いです。コーシー・リーマンの方程式・コーシー列・

コーシーの平均値の定理・コーシーの積分定理等、

枚挙にいとまがありません。

その業績は広くたたえられ、

エッフェル塔にその名を残しています。








以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/31_初回投稿
2021/008/27_改定投稿

(旧)舞台別のご紹介
纏めサイトTOPへ
舞台別のご紹介へ
時代別(順)のご紹介
フランス関連のご紹介へ

【このサイトはAmazonアソシエイトに参加しています】


【2021年8月時点での対応英訳】

His  name is exactly Augustin-Louis Cauchy (French).

Cauchy is a mathematician and a major contributor to astronomy, optics and fluid mechanics.

There was a revolution in France when Cauchy was born, and Cauchy's family moved to the suburbs to avoid it. It was the time he was born.

Laplace lived nearby when Cauchy's family moved to the suburbs of Paris.

Laplace notices Cauchy's sense as Cauchy's father and Laplace interact. It was a wonderful encounter.

Eventually, Cauchy's family returns to Paris to interact at the salon. Cauchy seems to have graduated from civil engineering school and worked to build a harbor.

His ideology is conservative, influenced by his parents, and together with Charles X's deportation, he spends an era of exile. There, Cauchy was a tutor of the Duke of Bordeaux.

In his research, Cauchy devised a replacement method and summarized the research results that led to group theory.

In terms of his analysis, his strict nature created the idea that became the prototype of the ε ・ ∂ (epsilon delta) reasoning.

As a result, he proceeded with rigorous formulation in analysis and laid the foundation for modern mathematics.

I think he was smart about replacing series. Can't you say that he connected continuous and discontinuous? I also remember learning about the complex plane and the residue theorem.

Many of the analytical studies used in modern times have been created by Cauchy. Cauchy-Riemann's equation, Cauchy sequence, Cauchy's mean value theorem, Cauchy's integral theorem, etc. are numerous.

His work has been widely praised and has left its name on the Eiffel Tower.

2021年08月26日

シュレディンガー
【1887年生まれ-8/26原稿改定】

「シュレディンガー」の原稿を投稿します。年代順にリライトをしていますが、一巡しているので少し前の時代に戻ってみました。原稿文字数は1692文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】【1887年8月12日生まれ ~ 1961年1月4日没】

シュレディンガーはオーストリア=ハンガリー帝国

に生まれました。彼はその父に影響を受けた

と言われまずが、その父はバイエルン王国の生まれで、

広い教養をもった人だったようです。その点が、

シュレディンガーの性格に影響しているかと思われます。

色々調べるにつけ分かってくるのですが、

シュレディンガーの考えは物理学の枠に囚われない

所があります。未知の事象を捕まえていく際に、

また対象を色々な視野から洗い出していく際に、

活用できるような「考え方のモデル」が

沢山作られていったのでしょう。

他の人が作りえないような独自のモデルを作るという

大きな目標が物理学にはあります。

シュレディンガーは猫の例えで有名です。

具体的には「量子力学的現象」と連動して

「猫を毒殺する仮想実験」を議論しました。

議論の帰結としてミクロな物理現象が

確率的な実在として表現出来るという

シュレディンガーの解釈が完成したのです。

具体的には

空間的に広がる確率波を数学的に考えていきます。

確率波の時間発展はシュレディンガー方程式

と呼ばれ量子力学の基礎方程式となるのです。私は

大学院時代にそこから考え始めて超伝導現象に挑みました。

新しい現象理解に繋がっていったのです。

今もその枠組みで議論がされています。

世界中で議論がされています。

こぼれ話となりますが、若手の物理学者の

勉強会である「物性若手夏の学校」

ではシュレディンガー音頭という歌があり

Ψ(ぷさい)とφ(ふぁぃ)を取り入れて

楽しげく違いを確認出来ます。

英文で発表したりする時にこの二つは似ていて

混同しがちなのですが、直ぐに思い出せます。

シュレディンガー音頭で手のひらを

上にあげる方がΨです。一度踊ると

踊った人は一生忘れません。 

そうした量子力学の表現形式としては、

ハイゼンベルク形式(描像)と

とシュレディンガー形式があり、

その2つは完全に等価です。数学の側面から

大まかに表現すると、ハイゼンベルク形式は

ヒルベルト空間上の行列とベクトルを使い、

シュレディンガー形式では同空間での

演算子と波動関数を使います。共に

直感に響く側面を持ち相補して

全体を補い合うのですが、私には

「粒子の二面性を感じる時などに初学者が

イメージを作る段階」ではシュレディンガー形式

が適していると思われました。そんな記述を

シュレディンガーは纏めたのです。

最後に、もう一度シュレディンガーの人となり

に話を戻したいと思います。シュレディンガー

はウィーン大学でボルツマンの後任であるハゼノール

の教えを受けていて、ボルツマンと関わりが出来たのです。

彼はボルツマンの示した道筋を

受け継いでいた人でした。彼はボルツマンに対して

熱い想いを持っていました。曰く、

「ボルツマンの考えた道こそ
科学に於ける
私の初恋
と言っても良い亅_

【万有百科大事典 16 物理・数学の章より引用しました。】

いわば、ボルツマンが完全に確立出来なかった原子論を

シュレディンガーは彼らしい表現方法で具現化したのです。

また、
ボルツマンを中心に考えると、もう一人の弟子である

エーレンフェストが思い浮かびます。

彼は統計力学の切り口から原子の表現に挑みました。

エーレンフェストの定理は個別粒子の運動を

分かり易い形で記述すると思えます。

他方でシュレディンガーは波動的側面から

原子の表現に挑みました。量子力学の初学者がこの二人の

どちらを先に知るかといえばシュレディンガーでしょう。

量子力学の議論の初期段階で説明出来るからです。

大学ごとの教育カリキュラムで別途統計関係の講義

との兼ね合いも考えなければいけません。ただ、

歴史的にはシュレディンガーの理解が後なのです。

そして二人ともボルツマンの考えを受け継いでいるのです。






以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。

nowkouji226@gmail.com

2020/08/16_初稿投稿
2021/08/26_原稿改定

舞台別のご紹介へ
時代別(順)のご紹介
オーストリア関連のご紹介へ
ウィーン大関連のご紹介へ
量子力学関係へ

【このサイトはAmazonアソシエイトに参加しています】


S・オーム
【1789年生まれ-8/26原稿改定】

「オーム」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話、文章に主語が無く文脈から判断させたりしていたりしました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は2879文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


 【1789年3月16日-1854年7月6日】




オームの法則を見出したオーム


その名はGeorg Simon Ohm。


オームの法則で有名です。


オームの法則は定量的に回路を論じるときに不可欠で


非常に明快なので小学生レベルから説明出来ます。


子供に科学を教える時に理解しやすく、


実験的と原理がつながる事例として明快です。


電圧値;Eは電柱値;Iと抵抗値;R


の積なのです。E=RI。


 

ームの法則確立の経緯


オームは独学で数学、特に幾何学を習得していて


研究生活に入る前に教師として生計を立てて


いる時期がありました。その後、


プロイセン王に幾何学に関する原稿を送り、


その論文で評価を受け、ケルンの


ギムナジウム(中等教育機関)で


物理学を教える機会を得ます。


そこでの実験室で設備が充実していたことは


その後のオームにとってとても良かったのです。


 

オームの法則は、実の所はイギリスの


キャヴェンディッシュが先に発見している


ようですが彼は存命中に発表しませんでした。


オームはキャヴェンディッシュと意見交換


することなく独自に法則を


確立していて論文にまとめました。


 

オームの電子把握について


また、オーム自身は導体内での電子の挙動に関して


近接作用の結果として論じていたようですが


そんなエピソードからも目に見えないミクロな現象を


組み立てていく為に検証をしていく難しさを感じます。


静電気の概念が確立された後に、


電子が溜まっていく認識が出来て、


溜まったものに同位体を近接させると


電気が流れていくのです。


その時に電球が付くのです。


租打った物理量を抜粋して結び付けていったのです。


 

そんな作業を一つ一つ進める困難の中、


原理を確立して社会に意義を問いかけ


現代に多大な功績を遺したオームの名は抵抗値の単位


として今後も使われていきます。






以上、間違い・ご意見は
以下アドレスまでお願いします。
最近、返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/09/30_初稿投稿
2021/08/26_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
ドイツ関係

時代別(順)のご紹介
電磁気関係


【このサイトはAmazonアソシエイトに参加しています】


 

【2021年8月時点での対応英訳】



Ohm who found Ohm's law


Its name is Georg Simon Ohm. Famous for Ohm's law.


Ohm's law is indispensable and very clear when discussing circuits quantitatively, so it can be explained from the elementary school level.


It is easy to understand when teaching science to children, and it is clear as an example where experiments and principles are connected.


The voltage value; E is the product of the utility pole value; I and the resistance value; R. E = RI.



Background of the establishment of Ohm's law


Ohm was self-taught in mathematics, especially geometry, and had a time to make a living as a teacher before entering his research life. He then sent a manuscript on geometry to King Prussian, who was evaluated for the treatise and had the opportunity to teach physics at the Gymnasium in Cologne.


It was very good for Ohm after that that the laboratory there was well equipped.


Ohm's law, in fact, seems to have been discovered earlier by Cavendish in England, but he did not announce it during his lifetime.


Ohm established his own law without exchanging opinions with Cavendish and summarized it in his treatise.



About electronic grasp of Ohm


Also, Ohm himself seems to have argued about the behavior of electrons in the conductor as a result of proximity action, but even from such an episode, it is difficult to verify in order to assemble a micro phenomenon that is invisible. I feel it.


After the concept of static electricity is established, it is possible to recognize that electrons are accumulating, and when an isotope is brought close to the accumulated one, electricity flows. At that time, the light bulb arrives.


He extracted and linked the physical quantities that he had struck.


In the midst of the difficulty of proceeding with such work one by one, the name of Ohm, who established the principle and questioned the significance of society and left a great deal of achievement in modern times, will continue to be used as a unit of resistance value.

2021年08月25日

ブライアン・ハロルド・メイ
【1947年日生まれ-8/25原稿改定】

「ブライアン」の原稿を投稿します。原稿文字数は2539文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1947年7月19日生まれ ~ ご存命】



有名なロックバンド・クィーンのブライアンですが、その名を英語で書き下すと Brian Harold May、CBEです。勲章を頂いているのでCBEがつきます。CBEって分かり辛いので補足しますと騎士団時代の表現での司令官で、階級としてはナイトに次ぐ立場です。部下に将校と団員がいる位置づけです。所謂、女王陛下を守る騎士団の仲間達ですね。For God and the Empire がモットーです。


ブライアンは学生時代に天文学、宇宙工学を専攻していました。2007年に研究を再開して論文を書き博士号をとったので物理学者として取り上げています。


ヘルムホルツの時代から音響解析がより定量的なものとなり、振動数・音の振幅・増減比が記録可能な情報として共有されています。5セントコインでギターを奏でるブライアンは彼なりに物理学を駆使してギターの中での「音を出す仕組み」を解析していって作りこんでオリジナリティーを突き詰めていく作業をしています。無論、学者が同様の試みを今まで何度もしてきたと思いますがブライアンの取り組みは著名なロックバンドの主要メンバーとしての活動でした。楽器メーカーとのコラボレーションも可能ですし、一線級の技術者や職人との会話もブライアンの財産となっていった筈です。無名時代からギターを自作していた日々が最上級の経験の中で更に進化していったのです。他の誰にもできないい「音」を確立していったと感じています。


ロック活動で暫く研究活動を休止していたブライアンは天体に関する研究としてカナリア諸島の天文台で研究を進め、母校インペリアル・カレッジでの審査を通過して博士号を得ました。また別の機会に語りたいと思います。






以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。


nowkouji226@gmail.com


2021/01/17_初版投稿
2021/08/25_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
力学関係のご紹介
熱統計関連のご紹介


【このサイトはAmazonアソシエイトに参加しています】


詳しくはコチラへ→【テキストポン】

ハンス・エルステッド
【1777年生まれ-8/25原稿改定】

「ガウス」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話、文章に主語が無く文脈から判断させたりしていたりしました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は3419文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】
【1777年8月14日生まれ ~ 1851年3月9日没】


 



デンマーク黄金時代の
リーダーエルステッド


ハンス・クリスティアン・エルステッド


; Hans Christian Ørsted


磁場の単位としてその名を残している人です。


ガウスと同じ年に生まれています。


ガウスやエルステッドの時代は電磁気学が


未開の時代だったとも言えます。


得られている知識が未だ断片的で、


全体像が見えていない状態で


手探りの把握を一つ一つ、数学的な


式化を含めて、ぐいぐい進めていたのです。


また、会社名としても名を残しています。


デンマーク黄金時代と呼ばれる時代があり


その時代のリーダーでした。


エルステッドは「思考実験」の概念を


打ち出した人だと言われています。正に


パラダイムシフトを起こした人です。


コペンハーゲンで活躍していました。


其処は後に量子力学が出来ていく上で


重要な議論が交わされる場になります。


また、エルステッドは


童話作家のアンデルセンとは親友です。


また、エルステッドの兄弟はデンマーク


首相を務めています。


こうった「こぼれ話」が豪華な人です。



 エルステッドの業績


物理学者としての業績として大きいのは


電流が磁場を作っていることの発見です。


それは1820年4月の出来事でした。電流近傍の


方位磁針は北でない方向を向いたのです。


そこから数年の内にビオ・サバールの法則、


アンペールの法則に繋がります。


 

エルステッドが物理学と深く関わる


きっかけとなったのはドイツのリッター


という物理学者との出会いでした。


エルステッド独自のカント哲学に


育まれた思想は後の物理学にはっきりした


方向性を与えたと思います。


エルステッドは多才な人物で、


博士論文ではカント哲学を扱っています。


他に美学と物理学でも学生時代に


賞を受けています。電流と磁場の関係も


カント哲学での思想、自然の単一性


が発想の根底にあったと言われています。


晩年は詩集を出版しています。


気球から始まった文章でした。






以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/04_初稿投稿
2021/08/25_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
デンマーク関係
電磁気学の纏め


【このサイトはAmazonアソシエイトに参加しています】


【2021年8月時点での対応英訳】



 About Oersted


Hans Christian Ørsted


That person is the one who has left its name as a unit of Magnetic field. He was born in the same year as Gauss.


It can be said that the era of Gauss and Oersted was an era when electromagnetics was undeveloped. The knowledge gained was still fragmented, and I was groping for each and every one of them, including mathematical formulation, without seeing the whole picture. In addition, the name remains as the company name. There was an era called the Danish Golden Age, and Oersted was the leader of that era.


Oersted is said to have come up with the concept of a "thought experiment." He is exactly the person who caused the paradigm shift. He was active in Copenhagen.


It will be a place where important discussions will be held later in the development of quantum mechanics.


Oersted is also a close friend of the fairy tale writer Andersen. In addition, Oersted's brother is the Prime Minister of Denmark. Such a "spill story" is a gorgeous person.



 Job of Oersted


A major achievement of his work as a physicist is his discovery that electric current creates a magnetic field. It was an event in April 1820. The compass near the current pointed in a direction other than north. Within a few years, it will lead to Biot-Savart's law and Ampere's law.


It was the encounter with a physicist named Ritter in Germany that inspired Oersted to become deeply involved in physics.
I think that the ideas nurtured by Oersted's original Kant philosophy gave a clear direction to later physics.


Oersted is a versatile person, and his dissertation deals with Kant's philosophy. He has also received awards in his school days in aesthetics and physics. It is said that the relationship between electric current and magnetic field was based on the idea of ​​Kant's philosophy and the unity of nature.


Oersted published a collection of poems in his later years. He was a sentence that started with a balloon.


 

2021年08月24日

S・W・ホーキング
【1942年生まれ-8/24原稿改定】

「ホーキング」の原稿を投稿します。原稿文字数は1000文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1942年1月8日生まれ ~ 2018年3月14】


【1942年1月8日生まれ ~ 2018年3月14日没】


 



ホーキング博士は相対論を含めて宇宙の理論を研究しました。特にブラックホール、量子的効果、その生成から消滅に至るまでを突き詰めていった博士です。


博士の御両親は共にオックスフォードに学んていたこともあり、ホーキング博士もオックスフォードで物理学を学びます。各国の王族や次期指導者と共に勉学を修めたわけです。大学時代はボート部に所属して大学院進学時は成績も芳しくなかったようです。そして、ホーキング博士はケンブリッジに進みます。


何より博士は若くして筋萎縮性側索硬化症(ALS)を患い、大きな困難に立ち向かいます。当時は命を落とす病であるといわれ、意思伝達・行動範囲拡大の為に独自の技術使い、デバイスを使いこなしていきます。


研究の面ではブラックホールに関する研究を進め進化を考え、中心部に存在するであろう特異点を考え「特異点と時空の幾何学」の論文をまとめ上げます。その特異点の考え方にには幾つかの段階がありますが、端的には「光的捕捉面 (trapped null surface)」なるものを考えてみます。エネルギー密度を考えると「測地線」というものが考えられるか考えられないか、という議論を繰り広げたのです。その議論は相対論的に古典力学を考える範疇の話であって、量子論的な相対論の考えを最新の科学では進めています。またホーキング博士は、タイムマシーンの実現の為には無限のエネルギーが必要であるとの考えを持っていて、タイムマシーンの実現可能性を否定しています。タイムマシーンは夢のある話ですが当然困難もあるんですね。


そして、最後の時が来たのです。
偉人の人生も終わりを迎える時が来ました。
ホーキングはケンブリッジ大学近くの自宅で
最期を迎えました。そして今、ホーキングは
ニュートンの墓の近くで眠っています。






以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/09_初稿投稿
2021/08/24_改定投稿


(旧)サイトTOPへ
纏めサイトTOPへ
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
オックスフォード関連

熱統計関連のご紹介
力学関係のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


 

ヨハン・C・F・ガウス
【1777年4月30日生まれ ~ 1855年2月23日没】

「ガウス」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話、文章に主語が無く文脈から判断させたりしていたりしました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は3419文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】

ドイツ生まれのガウス

ドイツのガウスは18世紀の数学者にして、物理学者にして、

天文学者です。ガウスの業績として大きいのはガウス分布、

ガウス関数、ガウスの最小自乗法、ガウスの法則等でしょう。

物理では磁束密度の単位に名を残しています。

数学で出てくるガウス分布はガウスの考察した関数

で表されていて、現代でも統計データの処理

で多用されます。実際にサンプル数が多くなると

この分布での表現が適していて「データの中心値」

を真ん中にしてグラフが綺麗な左右対称の山型となります。

山の頂上と裾野の「形」がガウス分布特有の形になります。




また、地球磁気の研究に関連した話として、

フーリエ級数展開に関しての研究を進め、

高速な計算方法を開発しました。特に、

データ数を2倍し続ける場合についてを議論を構築

していますが、それは後の時代に使われる

高速信号処理器の中での作動原理と本質的に同じものでした。

200年以上前に数学的なデシャブー現象があったのです。

ガウスの法則の導出

電磁気学の世界で出てくる「ガウスの法則とは

電荷量が取り囲む曲面から計算される。

といった有名な法則です。より細かくは

電束を面積分した総和が電荷密度の体積積分の総和と等しいと考えられ、その体積の内側にある電気の源を電荷と定義出来るのです。実際に電気の担い手が電荷だと考えると、地上の電位を基準として特定の等電位の導体を考えてみて、それよれり電荷密度が低い状態を正に帯電した環境、基準より電子密度が濃い状態を負に帯電した環境と考える事が出来るのです。

こういった考え方を進め、ガウスは

電気が流れていく状態を記述しました。

また、よく使われているCGS単位系の中に

ガウス単位系とも呼ばれる単位系があります。

パトロンが生活を支えたりしていたという時代背景

もありガウスは教授となる機会は無かったようですが、

デデキンドとリーマンは彼の弟子だったと言われています。

個人的にはやはり、物理学者というよりも数学者として

沢山の仕事を残してきた人ったと思います。

そして、

独逸人らしい厳密さで現象を極めたのです。








以上、間違い・ご意見は
以下アドレス迄お願いします。
問題点には適時、
改定・返信をします。

nowkouji226@gmail.com

2020/09/28_初稿投稿
2021/08/17_改定投稿


旧舞台別まとめへ
舞台別の纏めへ
時代別(順)のご紹介
ドイツ関連のご紹介へ
電磁気学関係へ

【このサイトはAmazonアソシエイトに参加しています】




【2021年8月時点での対応英訳】

Gauss of Germany 

Gauss of Germany is an 18th century mathematician, physicist and astronomer. His major achievements in Gauss are Gaussian distribution, Gaussian function, Gaussian least squares method, Gauss's law, etc. He has left his name in physics as a unit of magnetic flux density.

The Gaussian distribution that appears in mathematics is represented by the function that Gauss considered, and is often used in the processing of statistical data even in modern times. When the number of samples actually increases

The expression in this distribution is suitable, and the graph becomes a beautiful symmetrical mountain shape with the "center value of the data" in the center. The "shape" of the top and bottom of the mountain is unique to the Gaussian distribution.
In addition, as a story related to the study of geomagnetism, Gauss proceeded with research on Fourier series expansion, and Gauss developed a high-speed calculation method. He specifically builds a debate about when he keeps doubling the number of data, which is essentially the same principle of operation in high-speed signal processors used in later times. There was a mathematical deshabu phenomenon over 200 years ago.

It is a famous law that appears in the world of electromagnetism, such as "Gauss's law is calculated from the curved surface surrounded by the amount of electric charge."

electrical property of surface

The sum of the surface integrals of the electric flux is considered to be equal to the sum of the volume integrals of the charge density, and the source of electricity inside that volume can be defined as the charge. Considering that the actual bearer of electricity is the electric charge, consider a conductor with a specific equipotential potential based on the electric potential on the ground. You can think of the state as a negatively charged environment. Advancing this way of thinking, Gauss described the state in which electricity is flowing.

In addition, there is a unit system called Gaussian unit system among the commonly used CGS unit systems.

Gauss did not seem to have had the opportunity to become a professor, partly because the patrons supported his life, but it is said that Dedekind and Lehman were his disciples.

Personally, I think Gauss has left a lot of work as a mathematician rather than a physicist.

And Gauss mastered the phenomenon with his unique rigor.

2021年08月23日

益川敏英
【1940年生まれ-8/23原稿改定】

「益川敏英」の原稿を投稿します。原稿文字数は860文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1940年2月7日生まれ~2021年7月23日】

益川敏英は1940年に名古屋に生まれました。

先の大戦の終戦にほど近いので苦労しています。

5歳の時に名古屋大空襲で自宅が焼夷弾を受け、

非常に恐ろしい経験をしています。その為、

(憲法)「9条科学者の会」に名を連ね、

平和運動に情熱を捧げていたそうです。

そんな益川さんは高校時代に科学雑誌で

坂田昌一が「坂田モデル」を作り上げた事を知り、

大いに興味を抱き名古屋大学理学部に進みます。

当然、坂田研に所属して研究を進め、そこで

後の盟友となる小林誠と出会います。そして

坂田研で博士論文をまとめ上げた後に、

そのコンビは共に京都大学で研究を進めるのです。

特に、当時の大きな感心事だったC-P対称性

に関する理論的枠組みの構築をテーマとして選び、

自宅で風呂に入っている時に坂田さんは

クォークを6種類考えた時に理論が完結する

というアイディアをえました。

因みに、この時に観測されていたクォークは

3種類だったので理論が先行していた訳です。

そんな益川氏はノーベル賞受賞の際には

スピーチを英語で行う慣例を守らずに、

日本語でスピーチを行いました。そんな

益川さんが理路整然とした議論の枠組みを作り、

物静かな小林さんと深い議論をしていった結果

として小林-増川理論は出来上がり、素粒子の理解

が進んだのです。本稿の画像としては名大の風景

を使っています。二人はノーベル賞を京大時代に

とりましたが、その師は名大の人で出会いも名大

でした。いつも気持ちは名大にあった思います。

その一人益川さんが天に召されました。

享年81歳。

謹んでご冥福をお祈りいたします。










以上、間違い・ご意見は
以下アドレスまでお願いします。
全て返信は出来ていませんが
適時、返信・改定をします。

nowkouji226@gmail.com

2021/07/31_初稿投稿
2021/08/23_改定投稿

(旧)舞台別のご紹介
纏めサイトTOPへ
舞台別のご紹介へ
時代別(順)のご紹介
日本関連のご紹介
京大関連のご紹介
纏めサイトTOPへ
電磁気関係へ
量子力学関係へ

【このサイトはAmazonアソシエイトに参加しています】


A・アンペール【1775年~-8/23原稿改定】

「アンペール」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。英語文章を作成していて確認出来るのは内容の正確さです。マリというミドルネームなので「She」としそうになりました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は3415文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】

【1775年1月20日生まれ ~ 1836年6月10日没】

 アンペールの生い立ちと足跡

その名は正確にはアンドレ=マリ・アンペール_

André-Marie Ampère。フランス・リヨンに生まれます。

当時整理の進んでいなかった中で

電磁気現象の理解を深め、電磁気学の

創始者の一人として考えられています。アンペールの父は法廷勤務の真面目な人だったようですが、フランス革命時に意見を述べすぎて断頭に処せられてしまいます。アンペールは大変なショックを受けたと言われています。革命は色々な傷跡を残していたのですね。

アンペアはアンペールの名にちなみます。また、

アンペールの名は右ねじの法則で有名です。

(右ねじの法則をアンペールの法則という時があります)

内容としては、一般的な右方向(時計方向)に

回していく事で進むような、ねじを使った例えです。

そのねじを手に取ってみた時にネジ山のイメージ

が磁場をイメージしていて、ネジが進んでいく方向が

電流の進んでいく方向をイメージしてます。

別のイメージで例えると直流電流が流れる時に

ネジの尖った方が電気の流れる方向で

ネジ山方向が磁場の発生するイメージです。




 アンペールの業績

アンペールの例えはとても直観的で

分かり易いと思えます。学者が陥りがちな

「独善的」とでも言えるような分かり辛い説明

ではなく、誰に伝えても瞬時に「おおぉ。」

と感動出来る事実の伝え方ですね。

また、アンペールはこの事実を伝えるために

二本の電線を平行に使い、

電気が流れる方向を同じにしたり・反対にしたりして

その時に電線が引き合い・反発する例を示しました。

この事は電気を流した時の磁場の発生する

方向のイメージから明らかです。

電磁気学が発展していない時代に、

大衆を意識して分かり易い実験法が求められる

時代に明確な事実を示したのです。

導線の周りに発生する磁場を想像してみるとよいのです。

今でも電流の仕組みを子供に示す事が出来るような

素晴らしい実験だと思います。

目に見えない「磁場」という実在が

如何に振る舞うかイメージ出来ます。

磁場という実在がはっきり掴めていない時代に

アンペールは目に見える形で磁場を形にしたのです。

それは大きな仕事だったと言えます。後世に

そこからさらに理論は発展していくのです。








以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/03_初稿投稿
2021/08/16_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ
舞台別のご紹介へ
時代別(順)のご紹介
フランス関連のご紹介へ
熱統計関連のご紹介へ
電磁気学の纏めへ

【このサイトはAmazonアソシエイトに参加しています】

 Life of Ampere

The name is André-Marie Ampère to be exact. He is born in Lyon, France.

He gained a better understanding of electromagnetic phenomena and is considered one of the founders of electromagnetics, even though he was not well organized at the time. Ampere's father seems to have been a serious court worker, but he was decapitated during the French Revolution by overstated his opinion. Ampere is said to have been very shocked. The revolution left a lot of scars, didn't it?

The unit ampere of electric current is named after Ampere. Also, Ampere's name is famous for the right-handed screw rule. (Sometimes the right-handed screw law is called Ampere's law.) The content is an analogy using a screw that advances by turning it in the general right direction (clockwise direction).

Job of Ampere

When I pick up the screw, the image of the screw thread is the image of a magnetic field, and the direction in which the screw advances is the direction in which the current advances.

Another image is that when a direct current flows, the pointed screw is in the direction of electricity flow and the magnetic field is generated in the screw thread direction.

Ampere's analogy seems very intuitive and straightforward. It's not an incomprehensible explanation that scholars tend to fall into, even if it's "self-righteous," but it's a way of telling the fact that you can instantly be impressed with "Oh."

Ampere also used two wires in parallel to convey this fact, and showed an example in which the wires attracted and repelled when the directions of electricity flow were the same or opposite.

This fact is clear from the image of the direction in which the magnetic field is generated when electricity is applied.

In an era when electromagnetics was not well developed, Ampere showed clear facts in an era when publicly conscious and easy-to-understand experimental methods were required.

Imagine the magnetic field that occurs around a conductor.

I think it's still a wonderful experiment that can show children how the electric current works.

You can imagine how the invisible "magnetic field" actually behaves.

Ampere visibly shaped the magnetic field in an era when the reality of the magnetic field was not clearly understood. It was a big job. The theory develops further from there in posterity.

2021年08月22日

B・D・ジョゼフソン
【1940年生まれ-8/22原稿改定】

「ジョセフソン」の原稿を投稿します。アンダーソンと名前が似ていて研究分野が似ていますね。原稿文字数は948文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】【1940年1月4日生まれ 〜 (ご存命中)】

その名を書き下すと”Brian David Josephson”。

今回、存命中の方を紹介しています。

ジョセフソン博士は今もイギリスで

ご存命の研究者でジョセフソン接合等の

発案で広く知られています。私が

大学院時代に興味を持った凝縮系の大家です。

ジョセフソン接合等の考えは様々な知見に

繋がっています。

このジョセフソン接合とは

超伝導体の間に常伝導体を挟み、

電子の波動的性質を顕在化させる仕組みです。

そもそも、量子力学的には電子は

波動的性質と粒子的な性質を併せ持ちます。

例えば、
そこにおける波長から設計したのが
SQUIDと呼ばれるデバイスで
高感度の磁気センサーや
量子コンピュータのデバイス候補
として応用されます。

また、ジョセフソンは常温核融合に対して研究を進めています。更には科学の枠組みを超えて探求を続けています。ジョセフソンが関心を持つ探求にはシュレーディンガー、ニールス・ボーア、パウリなども関心を持ったと言われますが「物理」「生命」「化学」の境界領域で意識に対しての考察に挑んでいるのです。

ジョセフソン曰く、【(彼は王立協会創立のモットー nullius in verba(一切の権威を認めない)を信条としており、)「科学者が全体としてある考え方を否定したとしても、その考え方が不合理だという証拠にはならない。むしろ、そのような主張の基盤を慎重に調査し、どれほどの精査に耐えるかを判断すべきだ」・出典・Wikipedia】個人的にはその方向性を支持します。不可解な現実を不可解な現象をオカルトネタで終わらせる積りはないです。今不可解だと考えられている現象には因果関係がある半面で人間の知見も完全ではないと認めれば、それらに対して真摯に直面して解明していく事こそ正しい姿だと思います。








以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。

nowkouji226@gmail.com

2020/08/21_初回投稿
2021/08/20_改訂投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係
ケンブリッジ関連
熱統計関連のご紹介へ
量子力学関係へ

【このサイトはAmazonアソシエイトに参加しています】

詳しくはコチラへ→【テキストポン】

ジャック・C・シャルル
【1746年生まれ-8/22原稿改定】

「シャルル」の原稿を投稿します。AISEOスコアは91点です。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話、文章に主語が無く文脈から判断させたりしていたりしました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は3797文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】

【1746年11月12日生まれ ~ 1823年4月7日没】

 

シャルルの生い立ち

その名を全て書き下すと、

ジャック・アレクサンドル・セザール・シャルル

:Jacques Alexandre César Charles

カールという名前をフランス風に読むと

シャルルとなるそうです。

また、セザールって

ミドル・ネームもフランス風だったのですね。

物理学で出てくるシャルルは

フランスに生まれた発明家にして物理学者

にして数学者、そして気球乗りです。

物理学者としては

ボイル・シャルルの法則で有名ですね。

それと同時に水素を使った気球で

初めて飛行した人なのです。

シャルルの研究業績

シャルルは

@「ボイルの法則」や、

Aキャヴェンディッシュの仕事の研究や

BJ・ブラックら当時最新の仕事を研究していき、

「水素の物性」に着目し続けました。

比重が空気に比べて、とても軽いのでシャルルなりの発想で考え、気球に応用出来ると考えたのです。そこでシャルルはプロトタイプの気球を設計しロベール兄弟に製作を依頼しました。パリの工房で気球を作り始めたのです。材料としてはゴムをテレピン油に溶かし、絹のシートにそれを塗った物を使っています。

シャルルの有名な実験

1783年8月27日にシャルルとロベール兄弟は、今のエッフェル塔がある場所で世界初の水素入り気球の飛行試験を行いました。その時には御爺さんだったベンジャミン・フランクリンもアメリカから見に来ていたそうです。そして、ベンジャミンフランクリンはその年の暮れには別の気球を使って有人気球の初飛行を行っています。この時には「王家からルイ・フィリップ2世が率いた一団が見ていて、着陸時に馬で気球を追いかけ、シャルルと同乗していたロベールが気球から降りる際に気球が再び浮かないよう押さえつけた」、というエピソードが残っています。【カッコ内の引用はwikipediaから】
まさに国中の人が注目していたイベントだったのですね。

40万人がシャルルの初飛行を見たと言われています。特にプロジェクト資金集めとして募金を募ったのですが、応じた数百人は特等席で離陸を見れたそうです。その席にはアメリカ合衆国大使としてのベンジャミン・フランクリンもいました。この時代から挑戦を通じて国際交流が実現していたのですね。また、シャルルの尊敬していたジョセフ・モンゴルフィエも居たそうです。

そうした冒険家が残した法則がシャルルの法則です。
V1/T1 = V2/T2 として簡単化出来ますが、
異種気体の体積と温度の関係を簡単に
表していますね。実験、経験から事実が
導き出される良い例だといえます。






以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。

nowkouji226@gmail.com

2021/01/22_初稿投稿
2021/08/22_原稿改定

【(旧)舞台別のご紹介】
【纏めサイトTOPへ】
【舞台別のご紹介へ】
【時代別(順)のご紹介】
【フランス関連のご紹介へ】
【熱統計関連のご紹介へ】
【力学関係のご紹介へ】

【このサイトはAmazonアソシエイトに参加しています】

【2021年8月時点での対応英訳】

About sharles 

If you write down all the names, Jacques Alexandre César Charles

If you read the name Karl in a French style, it will be Charles. Also, the middle name of Cesar was French.

Charles's work

Charles, who appears in physics, is an inventor, physicist, mathematician, and balloonist born in France. He is famous as a physicist for Boyle-Charles' law. At the same time, he was the first person to fly on a hydrogen balloon.

Charles is actually

@ "Boyle's Law" and

A Research on Cavendish's work

B J. Black and others researched the latest work at that time,

He continued to focus on the "physical characteristics of hydrogen."

He thought that the specific density was much lighter than that of air, so he thought of it as Charles's idea and could apply it to balloons. So Charles designed a prototype balloon and asked the Robert brothers to make it. He started making balloons in a workshop in Paris. The material used is rubber dissolved in turpentine and coated on a silk sheet.

Charles's famous experiment

On August 27, 1783, the Charles and Robert brothers conducted the world's first flight test of a hydrogen-containing balloon at the location of the current Eiffel Tower. At that time, his grandfather Benjamin Franklin also came to see him from the United States. And Benjamin Franklin made his first flight of a popular balloon at the end of the year using another balloon. At this time, "a group led by Louis Philippe II was watching from the royal family, chasing the balloon with a horse at the time of landing, and holding down the balloon so that it would not float again when Robert, who was on board with Charles, got off the balloon." The episode remains. [Quotation in parentheses is from wikipedia]
It was an event that people all over the country were paying attention to.

It is said that 400,000 people saw Charles' first flight. In particular, we raised funds to raise funds for the project, but it seems that hundreds of people who responded were able to see takeoff in the special seats. There was also Benjamin Franklin as the United States Ambassador to the seat. From this era, international exchange has been realized through challenges. There was also Joseph Montgolfier, whom Charles respected.

The law left by such adventurers is Charles's law. It can be simplified as V1 / T1 = V2 / T2, but it simply shows the relationship between the volume and temperature of different gases. I think this is a good example where facts can be derived from experiments and experiences.

2021年08月21日

ムツゴロウさん【本名:畑 正憲】
【1935年生まれ-8/21原稿改定】

「ムツゴロウさん」の原稿を投稿します。AISEOスコアは97で、原稿文字数は1062文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

2021/07/06現在でご存命中の方であって、


恐縮ですが、ムツゴロウさんの


一面を紹介したいので投稿します。


私は少年時代に面白い人生だと思いました。


ムツゴロウさんという愛称で知られて


いますが、中身は九州男児です。


大分県でバンカラな青春時代を過ごします。


私はその様子をムツゴロウさんの著書である


「ムツゴロウの青春期」で読みました。


ムツゴロウさんが高校時代に


今の奥様に出合い結ばれる様子が


生き生きと描かれ、同時に東京大学を目指し


猛勉強する様子が描かれていました。


確か


「君等が知っちょるか知らんか(私は)知らんが」


という口癖の先生が居て、


物理学への魅力を伝えていて、


若き日のムツゴロウさん達が集まって聞いていて、


友達同士で話して共鳴して奮起する筋


だったかと思います。そして猛勉強。


後で時間を作りムツゴロウの青春期に続く著作の結婚紀、冒険記等も読んでみたいと思いますが、ムツゴロウさんは文筆での人生を選び当時の学研社で活動を始めます。そこに至るまでに色々と考えたと思います。


東大では駒場寮に暮し医学・動物学・等


を学びます。そもそも物理学科という呼び方


ではなく東大はT類・U類・・・と分けるので


(私が知ってた時代。)対象が無機質の剛体


であろうがアメーバであろうが研究対象


といえば研究対象な訳です。


最高学府の頂点として東大は様々な学科を


少数精鋭で網羅しています。そもそも


微視的な視点に立ち見てみたら其々に性質があり、


寿命があるのです。


「意志を持ってるかもしれないアメーバ」


だったり


「半減期を持っている原子核」


を研究している訳です。


そんな見方も出来ますよね。
話戻ってムツゴロウさんですが、何時か時間をとって調べて書き足したいです。彼の人生は喜びと失望に満ちていますので。そんな中でムツゴロウさん突き進んでいます。もう少し見続けていたい生き様だと感じます。


ムツゴロウさんには
6億円あると言われていた借金がありましたが、
それも全て返済して現在も動物に関わっています。
リンク:有限会社ムツ牧場





以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。


nowkouji226@gmail.com


2020/11/14_初稿投稿
2021/08/21_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】


テキストポンへの査定申込はコチラ

A・ヴォルタ 
【1745年生まれ-8/21原稿改定】

「A・ボルタ」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話、文章に主語が無く文脈から判断させたりしていたりしました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は2528文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】

【1745年2月18日生まれ ~ 1827年3月5日没】

 ボルタについて

ボルタの名は正確には

アレッサンドロ・ジュゼッペ・アントニオ・

アナスタージオ・ヴォルタ伯爵

:Il Conte Alessandro Giuseppe Antonio Anastasio Volta_

という長い名前ですが日本では単純に「ボルタ」

と表現しています。以後この表記を使います。

ボルタはイタリアに生まれ物理学の研究者となります。




 ボルタの業績

特筆すべきは実験的に静電容量を観測し、

電荷と電位を明確に分けて議論する土壌を作りました。

初学者には混同されがちですが

電位と電圧(電位差)は明確に

異なる概念です。アースして低電位側を

地球の地面と同じ電位状態にした時に

完全に両者は一致しますが通常は異なります。

電位は場合に応じて変動して当然の物理量です。

電荷の蓄積である電位を定量的に表現し、

電位の差を使って電圧(電位差)を明確に

出来る様にしました。その功績は電位差の

単位であるボルトとして残っています。

ボルタはまた、電池の発明でも成果を残しました。
世界初の電気貯蔵装置の開発です。
無論、初期の電池には
危険性・貯蔵量・電圧の持続特性
といった点で現代の物と見劣り
するでしょうが電気を貯めて持ち運び
する発想は素晴らしいものです。
現代でも発展を続ける大事な技術です。

ボルタとナポレオン 

最後に、ボルタはナポレオンが大好きでした。
逆にナポレオンもボルタに敬意を示します。
そんな2人ですから、ナポレオンの在位中に
ボルタは伯爵の称号を与えられています。








以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/01_初稿投稿
2021/08/14_改定投稿

詳しくはコチラへ→【テキストポン】


旧サイトでのご紹介へ
舞台別のご紹介へ
時代別(順)のご紹介
イタリア関係のご紹介
力学関係のご紹介へ
電磁気学関係へ

【このサイトはAmazonアソシエイトに参加しています】

【2021/8/14時点での対応英】

About Volta

The name of Volta is exactly the long name of Alessandro Giuseppe Antonio Anastasio Volta_: Il Conte Alessandro Giuseppe Antonio Anastasio Volta_, but in Japan it is simply expressed as "Volta". We will use this notation hereafter. Volta was born in Italy and became a physics researcher.

Job of Volta

Of particular note is the experimental observation of capacitance and the creation of a soil for discussions that clearly separate charges and potentials. Often confused by his beginners

Potential and voltage (potential difference) are distinctly different concepts. When grounded and the low potential side is in the same potential state as the earth's ground

They are exactly the same, but usually different. The electric potential fluctuates depending on the case and is a natural physical quantity.

The potential, which is the accumulation of electric charge, is quantitatively expressed, and the voltage (potential difference) can be clarified using the difference in potential. The achievement remains as a bolt, which is a unit of potential difference.

Volta has also been successful in inventing batteries.
He is the development of the world's first electric storage device.
Of course, for early batteries
Hazard, storage capacity, and voltage persistence characteristics
Inferior to modern ones in that
You will do, but you can store electricity and carry it around.
His ideas he makes are wonderful.
It is an important technology that continues to develop even today.

Volta and Napoleon

Lastly,
Volta loved Napoleon.
On the contrary, Napoleon also pays homage to Volta.
Because they are such two people, during Napoleon's reign
Volta has been given the title of Count.



 

2021年08月20日

J・J・サクライ
【1933年生まれ-8/20原稿改定】

「JJサクライ」の原稿を投稿します。原稿文字数は2108文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】

【1933年1月31日生まれ ~ 1982年11月1日没】

Jサクライの日本語表記は桜井純で日本生まれの人です。

私が使っていていた教科書でカタカナ表記でしたので

個人的にはカタカナ表記がしっくりきて、好きです。

ミドルネームに由来するすると思われますが、

もう一つ「J」をつけて記載する事が多いです。

何故ミドルネームがJなのかは未だ調べています。

響きも良いですね。

JJサクライは新制高校に在学していた16歳の時に

留学生選抜試験に合格し、アメリカに渡りました。

学問好きの少年だったのでしょう。その後、

ニューヨークにある高校を卒業した後に、

ハーバードを主席で卒業しています。


その後、JJサクライはコーネル大の大学院で研究を進め、

在学中に弱い相互作用の考えを提唱しています。

彼の研究では弱い相互作用と強い相互作用が出てくるので

少し言及します。そもそも自然界には4つの力があると

言われていて、ここでの2つは4つの内の2つなのです。



初学者は4つの力を考える時に「力の働く範囲」



「力の大きさ」を別々に把握しないといけません。




具体的に弱い力は、働く範囲が陽子直径より小さいのです。

また、素粒子や準粒子がボゾンを交換して相互作用する中で

弱い力は強い力や電磁学に比べて

数桁小さな力として作用します。

弱い相互作用は標準模型での全てのフェルミ粒子と

ヒッグスボソンに作用します。

フェルミ粒子とボーズ粒子を

合わせて「素粒子」と呼びますが、

相互作用の議論では素粒子間に

働く力が議論されるのです。

特にニュートリノは重力と弱い相互作用のみ

を使って相互作用します。

弱い相互作用は束縛状態をもたらしません。

これは重力が天文学的スケールで月と地球の間の

相互作用に関与していたり、電磁力が原子間レベルで

互いに力を与えあったりする束縛状態とは異なるのです。

また、弱い相互作用とは違い強い核力は原子核の内部で

非常に強い束縛状態を持ちます。別言すれば、

弱い相互作用は結合エネルギーに関与しません。

JJサクライはこうしたメカニズムを

深く研究していきました。

そして49歳で突然、他界してしまいました。

少し調べてみましたが、その死因に対しては

情報が残されていません。何はともあれ、

惜しい人材を失ったこととなり残念です。

4つの力の理解と加速器を初めとした応用研究

は未だ続いています。次々問題が出てきます。

そんな議論に参加して欲しかったです。 

謹んでご冥福をお祈り致します。

合掌。








以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。

nowkouji226@gmail.com

2020/11/11_初稿投稿
2021/08/20_改定投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
アメリカ関連のご紹介へ
UCBのご紹介へ
量子力学関係へ

【このサイトはAmazonアソシエイトに参加しています】

詳しくはコチラへ→【テキストポン】

シャルル・ド・クーロン
【1736年生まれ-2021/8/20原稿改定】

「クーロン」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。AOSEOスコアは97点でした。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話、文章に主語が無く文脈から判断させたりしていたりしました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は3096文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】

【1736年6月14日生まれ ~ 1806年8月23没】

 クーロンの人物像

クーロンの名前は正確には

シャルル=オーギュスタン・ド・クーロン

(Charles-Augustin de Coulomb)

と記載されます。フランス人です。調べてみると

もともとクーロンは測量の仕事などもしていました。

時代柄、色々な分野で功績を残しています。




 クーロンの研究生活

まず、力学的な側面では摩擦に関する研究があります。

とても意外な側面だと思えました。電磁気学で著名なクーロンが

表面状態の考察をしているのです。

電磁気の担い手はとても微細な存在、電子であるのに反して

摩擦現象はそれら微細粒子が物凄い数集まって

相互作用の複雑な運動した結果として論じられる現象なのです。

後述する「ねじり天秤」のデリケートさとは結びつきませんでした。

クーロンは特定の機械が動く時点を考察しています。

「部品間での摩擦とロープの張力」を考慮して

機械全体での動きを論じています。

詳細を追いかけたらきっと

現代の我々から見ても興味深い筈です。

工学的な側面と表面物性からアプローチして

細かく考察すると面白い筈です。そして何より、

当時の視点からは革新的な研究だろうと思えます。




 クーロンと電磁気学

電磁気的な側面では「ねじり天秤」での実験が有名です。

微細な力を検知出来るような仕組みで導体表面

での帯電状態を計測したのです。生活の視点では、

力学は目で見て分かりやすく、電磁力学は目で見て

分かり辛いと言えます。それだから、今でも

静電気でびっくりしたり、手品の種として

電気的性質が使われたりします。

当然、今でも高電圧の配線は子供の手の

届かない所に敷設され、運用されているのです。

クーロンは結果的に電荷に働く力は距離の自乗

に反比例すると示しました。こうした電磁気学における

業績が広く認められ、クーロンの名前は電荷の単位

として今も使われています。クーロンの考えは

後の電磁気学、長い目で見れば

場の理論につながっているのです。








以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
問題点に対しては適時、
返信・改定をします。

nowkouji226@gmail.com

2020/09/29_初稿投稿
2021/08/13_改定投稿






(旧)舞台別のご紹介
纏めサイトTOPへ
舞台別のご紹介へ
時代別(順)のご紹介
フランス関連のご紹介へ
電磁気学関係へ
量子力学関係へ

【このサイトはAmazonアソシエイトに参加しています】

【2021年8月時点での対応英訳】

About Coulomb

The name of Coulomb is written exactly as Charles-Augustin de Coulomb. He is french When I looked it up, Coulomb was also doing surveying work. He has made achievements in various fields due to his time.

Coulomb job

First, on the mechanical side, there is research on friction. This fact seemed to be a very surprising aspect. Coulomb, a well-known in electromagnetism, considers the surface state.

The bearer of electromagnetism is a very fine existence, an electron, whereas the friction phenomenon is a phenomenon that is discussed as a result of the complicated movement of the interaction by gathering a tremendous number of these fine particles. It was not related to the delicacy of the "torsion scales" described later.

Coulomb considers when a particular machine will move. He discusses movement throughout the machine, taking into account "friction between parts and rope tension". If he chases the details, it will surely be interesting to us today. It should be interesting to approach him from the engineering side and the surface physical characteristics and consider it in detail. And above all, from the perspective of those days, it seems to be an innovative research.

 Electric side of Colomb job

On the electromagnetic side, experiments with "torsion scales" are famous. He measured the state of charge on the surface of the conductor with a mechanism that could detect minute forces. From the perspective of life, mechanics is easy to understand visually, and electromagnetic dynamics is hard to understand visually. Therefore, they are still surprised by static electricity and electrical properties are used as a seed for magic tricks.

Of course, high-voltage wiring is still laid and operated out of the reach of children. Coulomb eventually showed that the force acting on the charge is inversely proportional to the square of the distance. His work in electromagnetism has been widely recognized, and the Coulomb name is still used as a unit of charge. Coulomb's ideas led to later electromagnetism, the theory of fields in the long run.

2021年08月19日

ロジャー・ペンローズ
【1931年生まれ-8/19原稿改定】

「ペンローズ」の原稿を投稿します。原稿文字数は876文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】




【1931年8月8日生まれ ~ (ご存命中)】

その名はロジュー・ペンローズ;Sir Roger Penrose OM FRS。英国の物理学者ですが、

まだご存命の方なので

簡単に取り上げたいと

思います。有名人の

ブライアンとは少し

系統が違う気がするのです。


(芸能系ではない

純理論の学者さんです。

ムツゴロウさんとも

雰囲気が違いますね)

ロジャー・ペンローズは神科医にして遺伝学者の父を持ち、父方母方共に沢山の学者、芸術がいる家庭に生まれました。ロジャー自身もケンブリッジに進みます。ホーキングと共にブラックホールにおける特異点を示し、後に2020年のノーベル賞を受賞します。授賞理由はブラックホールと相対論の関係に対しての評価でした。また、その他の研究業績で気になってしまうのは認識に関する仮説に関してです。脳内での活動については個人的に昔から気になっている部分ではあるのですが、ロジャー・ベンローズの話の展開に、ほんの少しの違和感を覚えるのです。その主張はロジャーの著書:皇帝の新しい心_で示されているのそうですが脳内の情報処理には量子力学が関わる。即ちユニタリー発展(U)と波束の収束(R)が含まれている仮定のもとに、片方のRに対する議論が欠けているという立場で話を進めているのです。その系統の話をきちんと読み通してはじめて分かる話なのか、考え落としを含んでいる危うい話なのか、失礼ながら気になってしまうのです。本稿の中で私が使っている「違和感」が本物の違和感なのか取り越し苦労の違和感なのか確かめたいと思います。その意味で非常に興味深いです。








以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2021/07/02_初回投稿

2021/08/19_改定投稿

(旧)舞台別のご紹介
纏めサイトTOPへ
舞台別のご紹介へ
時代別(順)のご紹介
イギリスのご紹介へ
ケンブリッジのご紹介へ
力学関係のご紹介へ
量子力学関係へ

【このサイトはAmazonアソシエイトに参加しています】

テキストポンへの査定申込はコチラ

J・L・ラグランジュ
【1736年生まれ-8/19原稿改定】

「ラグランジュ」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話、文章に主語が無く文脈から判断させたりしていたりしました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は2734文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】

【1736年1月25日生まれ ~ 1813年4月10日没】




その名を全て書き下すと、

ジョゼフ=ルイ・ラグランジュ

:Joseph-Louis Lagrange

ラグランジュの生きた時代

ラグランジュはイタリアのトリノで生まれ

プロイセン王国・フランスで活躍しました。

そんな彼の生きた人生は革命の起きていた時代でした。

同時代のラボエジェが処刑された事に際し

ラグランジュは何故自身が生き延びたか

自問自答したのではないでしょうか。

何故なら彼はマリー・アントワネットの

先生を務めていたからです。




ラグランジュの業績 

学問の世界でラグランジュは多大な業績を残しています。

物理学者というより数学者としての仕事に思えてしまいます。

力学体系の整理をしてラグランジュ形式と言われる

理解を進めています。私も学生時代に

ラグランユアンと呼ぶ関係を多用しました。

解析力学と呼ばれる分野で、

ラグランジュ方程式につながります。

後の数論につながる議論もしていますし、

天体に関する研究等もしています。




 考え方の有効性

ラグランジュの解析的な考えが有効だったのは

各種物理量を一般化して変分と呼ばれる類の

数学的な形式につながるからです。

後の量子力学はニュートンの作った微積分

だけではなく物理量の関係を

ラグランジュの使ったような関係で表現します。

つまり、

「ラグランジュアン」と呼ばれる数学形式を使います。

また、ラグランジュはエネルギー保存則から

最少作用の原理を導きその考えは力学に留まらずに

電磁気学・量子力学でも使われています。

こういった定式化でのパラダイムシフトが

後の体系に不可欠です。




ラグランジュの未定乗数法や

定式化されたラグランジュアン

は誰しもが認める見事なものです。

そして、ラグランジュの名は

今でもエッフェル塔に刻まれています。

彼の残した仕事と栄誉と共に。








以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。

nowkouji226@gmail.com

2020/10/02_初稿投稿
2021/08/19_改定投稿

(旧)舞台別のご紹介
纏めサイトTOPへ
舞台別のご紹介へ
時代別(順)のご紹介
フランス関連のご紹介へ
熱統計関連のご紹介へ
力学関係のご紹介へ

【このサイトはAmazonアソシエイトに参加しています】

教科書買取専門店による教科書買取サービス【テキストポン】


(2021年8月時点での対応英訳)

If you write down all the names,

Joseph-Louis Lagrange




The era of Lagrange's life

Lagrange was born in Turin, Italy and was active in the Kingdom of Prussia, France. His life was a revolutionary era.

When his contemporary Labo Eger was executed, Lagrange might have asked himself why he survived.

Because he was a teacher of Marie Antoinette.

Lagrange's achievements

In the academic world, Lagrange has made great achievements. He seems more like his job as a mathematician than as a physicist.

He organizes the mechanical system and promotes the understanding of what is called the Lagrangian form. I also used a lot of relationships called Raglan Yuan when I was a student.

In a field called analytical mechanics, it leads to the Lagrange equation. We are also discussing things that will lead to later number theory, and we are also doing research on celestial bodies.

Effectiveness of thinking

Lagrange's analytical idea was effective because it generalizes various physical quantities and leads to a kind of mathematical form called variation.

Later quantum mechanics expresses not only the calculus made by Newton but also the relationship of physical quantities with the relationship used by Lagrange. In other words, it uses a mathematical form called "La Grand Juan".
In addition, Lagrange derives the principle of minimum action from the law of conservation of energy, and the idea is used not only in mechanics but also in electromagnetism and quantum mechanics. A paradigm shift in these formulations is essential for later systems.

The Lagrange's undetermined multiplier method and the formalized Lagrange Jean are undisputed and stunning.

And the name of Lagrange is still engraved on the Eiffel Tower. With the work and honor he left behind.

2021年08月18日

ロバート・シュリーファー
【1931年生まれ-8/18原稿改定】

「シュリーファー」の原稿を投稿します。彼は所謂BCS理論のSを頭文字に使う人で、新しい時代の人物です。こうした記載をしていて段々に現代に近づいてきていると感じます。一番最近の人物のご紹介をした後を考えみると、別途リライトは17世紀以前の人物から進めているので、19世紀ごろから並行してリライトをしてみると有益かも知れません。関心のある時代を含め、よりサイトを充実させたいです。また、本原稿でのAISEOスコアは97点で、文字数は1220文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】

【1931年5月31日 ~ 2019年7月27日】

BCS理論を作った3人の中の一人が

シュリーファーであって、

BCS理論でのSはシュリーファのSです。

シュリーファは少年時代は手作りロケットを作ったりアマチュア無線が好きだったりする電子工学好きな少年でした。そんなシュリーファはMIT(マサチューセッツ工科大学)で半導体の研究を当初進めていました。特に半導体表面での電子の振る舞いを研究していたのです。そして、後に超伝導現象の研究に移ります。

シュリーファ達がBCS理論をまとめた後、世界での研究は常温での超伝導実現に向けた研究が進んでいます。常温高圧環境下で現象を起こしたりする試みがなされていて、マイナス百数十ケルビンまで転移温度は近づいてきています。

現実に実現が難しい様な高圧をかけた時に、常温で超電導現象が実現した報告もあります。私が研究していた時代には青学の秋光先生や東工大の細野先生が挑んでいました。それぞれご存命かと思われますので詳細は控えます。

科学史と言うより最前線に近いかと思えますので。

ご本人達にしてみれば

「今でも研究してますよ!」って気持ちも

あるのではないかとと思えるのです。

話し戻って、シュリーファは1957年から米国代表の立場で英国バーミンガム大学とコペンハーゲンのボーア研で超電導の研究を続けています。そして残念な事に、晩年に自動車事故を起こし人を殺めてしまい、懲役を課されています。カリフォルニア州サンディエゴにある刑務所で懲役に服しました。素晴らしい研究のセンスとうっかりミスを犯してしまう性格は共にシュリーファの人生に影響を与えました。出来れば緊張感を持って生活を送って頂きたかったです。こんな話をするのは事故当時シュリーファは免許停止中だったからです。立場のある人間であれば尚更、責任を持った行動が求められます。
それだから、この話を知ってとても残念です。バーディン教授の人を集める性格とシュリーファー教授の人を遠ざけてしまう性格は対象的に思えてしまうのです。バーディンは仲間とトランジスタを開発して、別途BCS理論をつくりあげて仲間の輪を広げました。その過程で出会った日本人、中嶋貞雄をアメリカに呼んでもてなしていたりします。朗らかなアメリカ人のイメージです。反面、シュリーファーは立派な立場をいくつも受けた後に人を殺めてしまいました。朗らかなアメリカ人として語れない人生です。こんな話を我々は大きな教訓として考えるべきだと思います。








以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。

nowkouji226@gmail.com

2020/09/17_初稿
2021/08/18_改定

舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関連のご紹介へ
イギリス関係のご紹介へ
オランダ関係のご紹介へ
熱統計関連のご紹介へ
量子力学関係へ

【このサイトはAmazonアソシエイトに参加しています】

詳しくはコチラへ→【テキストポン】

ジェームズ・ワット
【1736年生まれ-8/18原稿改定】

「ワット」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話、文章に主語が無く文脈から判断させたりしていたりしました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は4407文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1736年1月19日生まれ ~ 1819年8月25日没】







 ワットとはどんな人でしょう


ワットは蒸気機関の改良を通じて産業革命に

大きな成果を残したイギリスの偉人です。

イギリスにおいて産業革命が起きて、

年に4耕作が行われ、農業従事者が自営業から

雇われ農夫となったり、植民地からの労働力

を含めて人が大きく動き、工場稼働率が高まっていく中で、

急激に市場が拡大して産業が大きく変化していくのです。

そうし時代に蒸気機関や紡績機に対しての

技術開発に対する研究の重要性は増していきました。

 

そんな中、ワットはグラスゴー大学でジョゼフ・ブラックら

の協力を得て工房を作り作業を続けます。

蒸気機関を対象に研鑽を続けます。

 ワットによる蒸気機関の開発


具体的な改良には蒸気機関における凝縮器の設計において、ワットは排熱効率を見直すことによってロスを減らして出力効率を大きく高めたのです。当初の設計でシリンダー部での熱の出入りが非効率である事情に着目していて、そこを改良した訳です。ポールトンという資金面での協力者も得て、ワットは事業化に成功して成功を修めます。

ワットが最終的に成功を収めた話を初めにしましたが、

実際の所は製品化までに大きな道のりがありました。

当時の加治屋さん達は今と比べて精度の低い生産過程

を当たり前だと思っていたので、ミリ単位

(場合によってはさらに高精度)の加工を

現在考えるような誤差範囲でこなしていく事は

出来なかったのです。蒸気機関の性質上、

ピストンとシリンダー間の寸法誤差は

大きく性能を損ねます。丸い形で摺動方向に

延びていくピストンとシリンダーの精度を

上げていく事は大変な作業だった筈です。最終的には

大砲製造に向けて開発された精密、中ぐり技術

を使い製造していきます。また一方で、ワットはこれらの

製造に関わる技術に対しての特許習得にも

配慮しなければなりませんでした。

そういった創意工夫を重ねる中でワットは

関連会社の仕事として「鉱山の揚水機械」

の仕事を受けます。それは大変大きなもので、

直径127センチメートルのシリンダーをもった

7メートル以上の大きさの機械でした。

あまりに大きいので専用の建屋を建てて

運営していたそうです。その後、

機械に色々な改良を加えていきます。

益々効率的な機械になっていったのです。

 そのほかのワットの業績


現代の自動車のエンジンで当たり前に使われているフライホイールもワットの発明です。回転ムラを無くして機械を円滑に動作させることで動きの効率を上げて振動を抑え、耐久性を向上させるのです。

何より、

ワットはそうした仕事の中でエネルギーの定式化を進め

力(Newton)の概念から仕事量(Watt)の概念を発展させました。

多くの人々から尊敬を受けました。考え抜いた討論をして自分の見識を広げていった人でした。近年、イギリスのお札に肖像画が用いられています。





以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。


nowkouji226@gmail.com


2021/07/07_初回投稿
2021/08/18_原稿改定


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
イギリス関係のご紹介
力学関係のご紹介
熱統計関連のご紹介


【このサイトはAmazonアソシエイトに参加しています】


(2021/年8月時点での対応英訳)



What kind of person is Watt?


Watt is a great British man who has made great strides in the Industrial Revolution through the improvement of steam engines.

Due to the Industrial Revolution in Britain, four farms are cultivated a year, farmers are hired from self-employment to become farmers, people including labor from the colony move significantly, and the factory utilization rate increases. In the meantime, the market will expand rapidly and the industry will change drastically.

In that era, the importance of research on technological development for steam engines and spinning machines increased.

Meanwhile, Watt continues his work at the University of Glasgow with the help of Joseph Black and others to create a workshop. He continues his studies on steam engines.

Development of steam engine by Watt


As a concrete improvement, in the design of the condenser in the steam engine, Watt reduced the loss and greatly increased the output efficiency by reviewing the exhaust heat efficiency. His original design focused on the inefficiency of heat in and out of the cylinder, which was improved. With the help of Paulton, a financial collaborator, Watt succeeds in commercializing it.

We started with the story of Watt's ultimate success, but in reality there was a big road to commercialization.

At that time, Kajiya and others took it for granted that the production process was less accurate than it is now, so it was possible to handle machining in millimeters (or even higher precision in some cases) within the margin of error that we are currently thinking about. I didn't. Due to the nature of the steam engine, dimensional errors between the piston and cylinder will significantly impair performance. It must have been a difficult task to improve the accuracy of the piston and cylinder, which have a round shape and extend in the sliding direction. in the end

We will manufacture using the precision and boring technology developed for cannon manufacturing. On the other hand, Watt had to consider obtaining patents for these manufacturing technologies.

While repeating such ingenuity, Watt receives the work of "pumping machine of the mine" as the work of the affiliated company. It was a very large machine, over 7 meters in size with a cylinder with a diameter of 127 centimeters.

It was so big that he built and operated a dedicated building. After that, he made various improvements to the machine. It has become an increasingly efficient machine.

Other Watts achievements


The flywheel, which is commonly used in modern automobile engines, is also Watt's invention. By eliminating uneven rotation and operating the machine smoothly, the efficiency of movement is increased, vibration is suppressed, and durability is improved.

Above all, Watt proceeded with the formulation of energy in such work and developed the concept of work (Watt) from the concept of force (Newton).

He was respected by many. He was a person who had a well-thought-out discussion and broadened his insight. In recent years, portraits have been used on British bills.




2021年08月17日

レオン・クーパー
_1930年生まれ8/17原稿改定

 

「クーパー」の原稿を投稿します。原稿文字数は1305文字です。AISEOスコアは90点です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1930年2月28日 ~(ご存命中)】


初めに、本稿は関連用語の解説が
中心となリます。今後も含め、
分かり易い内容にしたいので
超伝導現象を明らかにすべきだ
と感じたからです。既に内容を
ご承知の方にはしつこく感じるかと。
そうでしたらごめんなさい。


クーパーはジョン・バーディーン等と共に
BCS理論を確立しました。
クーパーはユダヤ系です。
賢い人達ですね。


そもそもBCS理論の大事な考え方
であるクーパー対という考え方を
クーパーは26歳の時に纏めています。


さて、本題です。1911年のK・オンネス
の発見により通常の伝導性とは異なる
超伝導状態が存在すると
明らかになりました。
定量的には絶対零度近くの
マイナス273℃=ゼロ・ケルビン(k)
に近づくと超伝導現象が起きます。
その時は抵抗値ゼロです。
例えばニオブ(Nb)は9.22ケルビンで
超伝導状態になります。超伝導状態への
転移を上手く説明した理論がBCS理論で
あってそこでのCはクーパーの名前に
由来します。


ここで別の側面から超伝導状態を考えます。温度を下げ相転移温度で現象が起きると電流を流した時に抵抗値がゼロになりますが同時に相転移温度で磁界に対して変化が生じます。現時点での応用としてリニアモーターカーがあげられます。細かくは超伝導体の内部で内部磁場がゼロになり、外部からの磁界を遮断します。超伝導状態になった時に磁石が浮かぶ写真は有名な例えですね。更に磁石は極性を持ちますから、ラダーと呼ばれる軌道で極性を切り替えていく事でリニアモーターカーは進むのです。この完全反磁性またはマイスナー効果と呼ばれる現象は超伝導現象での特徴の一つです。


ここで関連して磁力線について整理したいと思います。ご存知の通り磁石はN極とS極からなり磁力を持ちます。一般的に模式図で示される様に磁力線は片方から他方へゆったりした曲線で繋がっていきます。所が超伝導現象では内部へ磁力線が侵入出来ない様な現象が起きます。相転移の前後で形が突然変わります。更には変化の違いで第一種超伝導体 と第二種超伝導体に物質によって分かれます。これらの現象を理解する為にクーパー等が確立したBCS理論が役立つのです。


この考えが発展していき、現代では相転移の温度がどんどん高くなっています。実用上は常温常圧下で相転移を起こすことが大事になっていますので液体ヘリウムよりも安価な液体窒素で冷やせる事が望ましいのです。実際、液体素の沸点は−196℃ですので現在は、液体窒素で冷やす事で相転移を実用出来る素材を中心に研究が行われて居ます。そして、現在では現象発生に対して「ゆらぎ」のメカニズムをより解明していこうという取り組みが進んでいます。さらなる進展に期待しましょう。






以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/16_初回投稿
2021/08/17_改定投稿


舞台別のご紹介へ】
時代別(順)のご紹介】

アメリカ関連のご紹介へ】
熱統計関連のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】


テキストポンへの査定申込はコチラ


平賀源内【1728年生まれ-8/10原稿改定】

「平賀源内」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話、文章に主語が無く文脈から判断させたりしていたりしました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は3772文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1728年生まれ ~ 1780年1月24日没】




平賀源内について


少し時代が古いです。平賀源内は江戸時代、


田沼意次が老中を務めていた時代で


多彩な能力を発揮しています。物理学関係に留まらない。


そもそも、平賀源内は讃岐の国に生まれます。


家祖は信濃源氏の平賀氏。平賀氏は武田氏に敗れ、


一度、改姓して源内の時代に平賀姓に復姓しています。



時代考察


 

科学史の観点から平賀源内の時代を考えてみると欧米と日本の時代のずれを感じます。その「ずれ」は大きなものでニュートンがバローからルーカス職を受けたのが1664年、万有引力を定式化したのが1665年であることを思い起こせば西洋と日本の隔たりはとても大きいです。加えて、平賀源内が「発明」したであろうものの独自性を考えていくと「新規性」という部分が殆ど見受けられません。内容は後述しますが、後世に残して人類の財産と出来るものは作り出せなかったのです。無論、当時の人々には目新しく、庶民に啓蒙をして意識を変えていった業績は大きいのですが、「数学」なりの学問体系を整えてはいません。足し算引き算が出来ても「微分。積分」それなあに?って有様でした。教育制度が大きく異なる事情があるのですが、結果は大きく異なるのです。日本ではその後、
数理学の学問体系は数百年間未開のままでした。



平賀源内の業績


 

平賀源内が手掛けた分野は医学、薬学、漢学、


浄瑠璃プロデュース、鉱山の採掘、金属精錬、


オランダ語、細工物の販売、


油絵、俳句と多岐にわたりました。


その一つが「発明」で平賀源内は物理現象の啓蒙に


一役買っているのです。所謂、エレキテルの紹介ですね。


エレキテルは不思議な箱で内部にガラスによる


摩擦起電部と蓄電部を持っています。実の所、


平賀源内が発明したというよりオランダ製の物を


平賀源内が紹介した訳ですが江戸時代の


庶民達には摩訶不思議な魔法に見えたでしょうね。


なにより、平賀源内の現象理解は現在の学問体系


とは大きく異なっていたようです。


念の為にコメントしておく、と新しい考えを作り出して発表して他の国の人に内容を問いかけたりする動きは見受けられません。平賀源内の時代から百年以上後に海外の学問理解を学び、自ら論文を書いていき、世界に内容を問いかけるのです。そこまでの道のりは、まだまだ長いのです。平賀源内はそんな時代の先人でした。



以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/18_初稿投稿
2021/08/10_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介


【このサイトはAmazonアソシエイトに参加しています】


(2021年8月時点での対応英訳)



about GENNAI


It's a little old story. Hiraga Gennai is demonstrating a variety of abilities during the Edo period and when Tanuma Okitsugu was a senior citizen. It goes beyond physics.


In the first place, Hiraga Gennai was born in Sanuki Province.


His ancestor is Mr. Hiraga of Shinano Genji Family. Mr. Hiraga was defeated by Mr. Takeda, and once changed his name to Hiraga in the Gennai era.


If you think about the times in Hiraga Gennai from the perspective of the history of science, you can feel the difference between the times of Europe, America and Japan. The "deviation" is large, and the gap between the West and Japan is very large, recalling that Newton received the Lucas job from Barrow in 1664 and formulated universal gravitation in 1665. In addition, when considering the uniqueness of what Hiraga Gennai would have "invented," there is almost no "novelty." I will explain the contents later, but I could not create something that could be left as a property of humankind for posterity. Of course, it was new to the people at that time, and although it was a great achievement to educate the common people and change their consciousness, it has not prepared an academic system like "mathematics". Even if addition and subtraction are possible, "differentiation. Integral" What is it? It was like that. There are circumstances where the education system is very different, but the results are very different. In Japan, the academic system of mathematics has remained undeveloped for hundreds of years since then.



Work of GENNAI


Hiraga Gennai's fields ranged from medicine, pharmacy, Chinese studies, joruri production, mine mining, metal refining, Dutch, craft sales, oil paintings, and haiku.


One of them is "invention", and Hiraga Gennai plays a role in enlightening physical phenomena. This is the introduction of so-called Elekiter.


Elekiter is a mysterious box that has a glass triboelectric generator and a power storage unit inside. As a matter of fact, Hiraga Gennai introduced a Dutch product rather than an invention by Hiraga Gennai, but it seemed like a mysterious magic to the common people in the Edo period.


Above all, it seems that the understanding of phenomena in Hiraga Gennai was very different from the current academic system.


If you comment just in case, there is no movement to create and announce new ideas and ask people from other countries about the content. More than 100 years after the time of Hiraga Gennai, he learned to understand foreign scholarship, wrote a treatise himself, and asked the world about the content. The road to that point is still long. Hiraga Gennai was a pioneer of that era.

2021年08月16日

マレー・ゲルマン
【1929年生まれ-8/16原稿改定】

「ゲルマン」の原稿を投稿します。原稿文字数は1105文字です。AISEOスコアは97点です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】【1929年9月15日 ~ 2019年5月24日】

ゲルマンは米ニューヨーク生まれの理論家です。
素粒子論の世界でノーベル賞を受けています。
ゲルマンの名を本来はゲル-マンと書きますが、
【Gell-Mannと書きますが、】本稿ではゲルマンとします。
記述が楽で、読みやすいからです。
ゲルマンはイェール大で学士号を受け、MITで博士号を受けました。その後、プリンストン高等研究所、コロンビア大、シカゴ大、カリフォルニア工科大で研究を続けます。サンタフェ研究所の設立者の一人でもあります。ゲルマンの研究実績としてはクォークの提唱が大きかったですね。加速器の開発後には様々な粒子が未整理のまま次々と発見され、それらの関係と性質は未解決な部分が残るままに、問題が蓄積されていきます。それらを整理・理解する手段がクォークだと言えるでしょうか。ゲルマンの理解体系では対象性が使われていて、ストレンジネスやカラーといった概念で素粒子が理解されていきます。
秩序ある奥深い理論だと思います。
さて、ゲルマンの業績として素粒子の分類に関する側面を取り上げてきましたが、ゲルマンの研究での真骨頂は粒子の反応に関しての研究ではないでしょうか。関連してR・P・ファインマンという論敵がいました。あくまで伝えられている内容なのですが、ゲルマンとファイン・マンの論争はまるで子供の喧嘩みたいにも思えます。激怒したファイン・マンが、「貴様の名前綴りからハイフォン消すぞ!」【Gell-Mann改めGellmannとするぞ!の意】と怒鳴りつけたら、「ゲルマンがお前の名前をハイフォン付きで書いてやる!」【Feynman改めFeyn-Manとしてやる!の意】と言い返す有り様だったようです。アメリカ人の感覚なのでしょうか。西部劇の勢いなのでしょうか。ただ少し理解出来るかも、と思ったのは互いの愛する家族を侮辱していたのですね。瞬間的に家祖も汚す発想は、頭の切れる天才同士の喧嘩だったのでしょう。より効果的な屈辱の与え方を考えて。。。
いや、やはり激怒して
子供じみた喧嘩してたのかもしれません。;)
そんなゲルマンとファイン・マンは
それぞれに素晴らしい業績を残しました。








以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/11/05_初稿投稿
2021/08/16_改定投稿

舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関連のご紹介へ
イェール大学関連のご紹介へ
纏めサイトTOPへ
電磁気関係へ
量子力学関係へ

【このサイトはAmazonアソシエイトに参加しています】

詳しくはコチラへ→【テキストポン】

2021年08月15日

大貫 義郎_1928年 ~ ご存命中
【1928年生まれ-8/15原稿改定】

「大貫義郎」の原稿を投稿します。AISEOでは97点を得ています。原稿文字数は768文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


↑Credit:Wikipedia↑


【1928年生まれ ~ ご存命中没】




大貫義郎の人脈


大貫義郎は名古屋大で坂田昌一に教えを受け、


群論を使った素粒子論の構築を


行いました。そもそも低温物理学


では名古屋で発展してきた部分が大きいです。


本ブログの別項で中嶋貞雄バーディン


のエピソードをご紹介しましたが、


後にノーベル賞を受賞する二人、


益川敏英と小林誠は大貫義郎が育てました。


名古屋大学のつながりが素粒子論で大きな


役割を果たしていたと言えるでしょう。



大貫義郎の研究業績


大貫義郎は素粒子を構成する素子の
対象性に着目して、数学的手法として
群論」を使って整理していきました。
素粒子の反応過程で関わる現象は多岐にわたり、個別の要素に拘っているだけでは話が進まないのです。反応に関わるグループを詳細に分類して個別の反応要素を考えるよりもまず、一団の性格を見極めたうえで、グループの性質に応じた個別様子の役割をしっかり考えていく作業が群論を使ったアプローチで可能になっていったのです。そのアプローチが大貫義郎の業績です。

より詳細には、坂田モデルにおける
基本粒子同士の入れ替えに対して
素粒子としての性質が変わらないと
いう考え方を足掛かりに群論を組み
立てたのです。


そうした考え方を駆使して議論を組み立てて、


大貫義郎はクォークを明確に分類し、


整理していったのです。



〆さいごに〆



以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には適時、
返信・改定をします。


nowkouji226@gmail.com


2020/12/21_初版投稿
2021/08/15改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


古本売却はコチラへ→【テキストポン】

2021年08月14日

広重 徹
【1928年生まれ-8/14原稿改定】

「広重徹」の原稿を改定します。今回は広重の業績で社会学的なご紹介が不足していると感じ補足しました。原稿文字数は910文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1928年8月28日生まれ ~ 1975年1月7日没】



広重博士は京大理学部を卒業した後に


大学院をドロップアウトしてます。。。


戦争の時代に青春時代を過ごし、


占領下で多感な時期を過ごし、


世相としても色々あった時に研究者としてのスタート


させた時期だったので大変だったろうかと思います。


広重徹は初め素粒子論を専攻していたそうです。


広重徹は特に科学史の中で社会的側面に焦点


をあてて研究をしていました。村上洋一郎と


本を書いたりランダウローレンツの業績を


翻訳して日本に紹介していたりしました。


それだから文章を読んだ時に、きっと感じます。


広重徹の守っていた立場があるのです。


社会の中で占める


科学史の大きな役割を感じます。


社会から過度な期待がある半面で、


ある意味で無理解な評価があるのかな、と


覚悟しながら冷静に話して


一般人に理解してもらう事が大事です。


何よりも、その理解の中で文章を読んでいる人に


整理した形の「全体像」を伝えて、


現状での現象理解と問題点を出来るだけ


考えられるように出来れば、歴史を語りながら、


科学の発展に繋がっていくのです。


私も科学史の文章を作っている一人だと考えると、


少し身の引き締まる思いがします。


話し戻って、広重徹は30代で博士課程を終えて


(於、名古屋大学)、40代で早くして亡くなります。


もう少し話しが聞きたかったなぁ、って感じですね。


その後、斯様な議論はあまり無いかと思うのです。


また、広重徹の奥様が自分史を


残していたのでリンクを残します。


広重徹のお人柄が偲ばれると同時に


終戦後の世相が感じられて


興味深いかと思えます。ご覧下さい。


http://www.asahi-net.or.jp/~fv9h-ab/kamakura/DrMiki.html





以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/10_初稿投稿
2021/08/14_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
京大関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


 


詳しくはコチラへ→【テキストポン】

ダニエル・ベルヌーイ【1700年生まれ‐2021/8/14原稿改定】

「ダニエル・ベルヌーイ」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話、文章に主語が無く文脈から判断させたりしていたりしました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は2038文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】




【1700年2月8日生まれ ~ 1782年3月17日没】

ダニエル・ベルヌーイの名前で

ダニエルって大事です。科学史

に詳しい人ならピンと来るの

ですが、ベルヌーイ一族は沢山、

科学史に出てきます。

3世代で8人が著名人です。


先ず、今回取り上げたダニエルはスイスに生まれ

3兄弟で、全て物理学者・数学者です。

また、ダニエルの父の世代にも何人かの

学者が居るようで、ダニエルの叔父の仕事を父が

引継ぐ場面もあったようです。




また、こんな事もありました。

1734年のパリ・アカデミー大賞で

父のヨハンと息子のダニエルが

同時に賞を受賞した事が父の名誉

を傷つけダニエルはベルヌーイ家

から出入り禁止の扱いを受けます。

父は死ぬまでダニエルを恨んで

いました。有名なダニエルの

流体力学に関する著作でヨハンによる

盗用もあったようです。家名が重い故に、

ヨハンは名誉で目がくらみ、良識を忘れています




そんな事もありましたが、ダニエルは研究を続け、

パリ・アカデミー大賞の受賞も10回になったようです。

何よりニュートン力学と数学を考え

合わせ「流体力学」を発展させました。

非粘性流体に対する「ベルヌーイの法則」は有益で、

変形する物体にニュートン力学の適用範囲を広めています。

そうした仕事は船舶の運航等に大変、役立ちました。








以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/30_初回投稿
2021/08/14_改定投稿

【(旧)舞台別のご紹介】
【纏めサイトTOPへ】
【舞台別のご紹介へ】
【時代別(順)のご紹介】
【スイス関係のご紹介へ】
【フランス関連のご紹介へ】
【力学関係のご紹介へ】

【このサイトはAmazonアソシエイトに参加しています】









(2021年8月時点での対応英文)

Daniel is important in the name of Daniel Bernoulli. If you are familiar with the history of science, it will come to you, but there are many Bernoulli families in the history of science. Eight people are celebrities in three generations.

First of all, Daniel, who was born in Switzerland, has three brothers, all of whom are physicists and mathematicians.

Also, it seems that there are some scholars in Daniel's father's generation, and there was a scene where his father took over the work of Daniel's uncle.

Also, there was such a thing.

The simultaneous award of his father Johann and his son Daniel at the 1734 Paris Academy Awards hurts his father's honor and Daniel is banned from the Bernoulli family.

His father had a grudge against Daniel until his death. It seems that there was plagiarism by Johann in the famous work on fluid dynamics of Daniel. Because of his heavy family name, Johann is dazzled by honor and forgets good sense.

However, Daniel continued his research and seems to have won the Paris Academy Awards 10 times. Above all, he developed "fluid mechanics" by considering Newtonian mechanics and mathematics.

"Bernoulli's principle" for non-viscous fluids is useful and extends Newtonian mechanics to deforming objects.

Such work was very useful for the operation of ships.

2021年08月13日

小出昭一郎
【1927生まれ-8/13原稿改定】

「小出昭一郎」の原稿を投稿します。原稿文字数は989文字です。AISEOスコアは97点です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1927年3月25日生まれ ~ 2008年8月30日没】



小出昭一郎は多くの専門書を残した事
で知られています。東京に生まれ
東京帝大で学びました。第5回
ソルベー会議が開かれた年に生まれています。


教育に時間を捧げた人生だったのでしょうか。研究成果としては余り伝わっていません。ただ、金属錯塩の光スペクトルを研究していたようです。そこで手掛かりとして錯体について調べを進めてみます。錯体とは広義には、「配位結合や水素結合によって形成された分子の総称」(Wikipedia)狭義には、「金属と非金属の原子が結合した構造を持つ化合物」(Wikipedia)


何だか亀の甲羅みたいな記号が沢山出てきます。
そこからもう少し考えてみると、
光の吸光や発光に伴い対象物資
内の状態遷移に関する情報が得られるのです。
そしてそこから、電磁気特性や、
触媒の効果が理解出来るかと。


具体的に主な錯体としては
アンミン錯体_テトラアンミン銅錯体_[Cu(NH3)4]^2+
シアノ錯体_ヘキサシアニド鉄錯体_[Fe(CN)6]^4-[Fe(CN)6]^3+
ハロゲノ錯体-テトラクロリド鉄錯体_[Fe(CN)6]^4-[FeCl4]-
ヒドロキシ錯体 - アルミン酸_[Al(OH)4]-(または_[Al(OH)4(H2O)2]-
などがあるようです。ただ、当時の日本物理学は
本丸を攻めきれてはいなかったのですね。


プランクの黒体輻射理論発表から数十年がたち、
他国で議論が交わされていた時代に対して、
小出昭一郎の暮らした敗戦国日本は
戦前・戦後の混乱の中で
情報がどこまで取れていたのでしょうか。
リアルタイムで議論が進まない環境で、
ソルベー会議の成果をタイムラグのある中で
把握しています。学会誌を見る度に興奮した筈です。


小出昭一郎はそんな中でも量子力学の
理解を進め国内に広めていたのです。
そして、何より後進を育てていたのです。
小出昭一郎は多くの教科書で
物理の世界を紹介していました。






以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には適時、返信・改定をします。


nowkouji226@gmail.com


2020/11/20_初回投稿
2021/08/13_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】


詳しくはコチラへ→【テキストポン】

イタリア関係の物理学者
【コペルニクスからフェルミまでの系譜8/13原稿改定】

以下、原稿を改定します。ご覧下さい。【以下原稿です】

↑ Credit; Pixabay↑


イタリア共和国。人口は6千万人、


GDPは世界第7位。


欧州連合に所属する独立国です。


古代より地中海気質を受け継ぎ、


独自のラテン系文化を作り上げてきたイタリアですが、


物理学関係、数学関係でも多彩な人材を育んでいます。


何よりも歴史ある国ですよね。ご生誕順にご紹介します。


 

アルキメデス _BC287 - BC212


N・コペルニクス_1473年2月19日 ~ 1543年5月24日
(_独系ポーランド人_イタリアへ留学)


ジョルダーノ・ブルーノ_1548年 ~ 1600年2月17日


ガリレオ・ガリレイ_1564年2月15日 ~ 1642年1月8日


ロバート・ボイル_1627年1月25日 ~ 1691年12月31日


 

ルイージ・ガルヴァーニ _1737 - 1798 


アントニオ・ヴォルタ_1745年2月18日 ~ 1827年3月5日


アントニオ・パチノッティ _1841 - 1912 


エンリコ・フェルミ__1901年9月29日 ~ 1954年11月28日






以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に関しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/12/04_初回投稿
2021/08/013_改定投稿


纏めサイトTOP
舞台別のご紹介へ
時代別(順)のご紹介

力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】



2021年08月12日

コリン・マクローリン【1698年生まれ‐2021/8/13原稿改定】

「マクローリン」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話、文章に主語が無く文脈から判断させたりしていたりしました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は3228文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】

 マクローリンについて

マクローリンの名を耳にするのは

数学の講義ではないでしょうか。

物理学者というよりも数学者ですが

一昔前の物理学と数学は境目があいまいでした。

その名を全て記すとコリン・マクローリン

(Colin Maclaurin)です。

Wikipedeaで「マクローリン」という言葉だけで検索したら
ロボットアニメが出てきたりしますが、
「マクローリン展開」で検索すると一発です

マクローリンの業績について

マクローリンは特に彼の名にちなんだ展開で有名です。
その内容は「0を中心としたテイラー展開」であって、
とても特別な場合なのですが
その有益性は非常に大きいのです。
その有益性は単純な私達では思い付かなかったでしょう。

込み入った話をすると、マクローリンが定式化した
数学的な定式化は「任意の関数の級数への分解」です。
任意の関数が持つ変化率を、
1次成分の寄与、2次成分の寄与、3時成分の寄与、、、
と分けて表現していくのです。

マクローリンと残した仕事 

 マクローリンは英スコットランドに生まれました。
ニュートン_と仕事をする中で彼の信頼を得て、
大学への推薦状を書いてもらう程でした。

マクローリン自身もニュートン_の考えに惚れ込んでいて、
ニュートンの紹介を目的として出版活動をしていました。
こうした仕事を通じてスコットランド啓蒙運動
に勤しんだ【いそしんだ】のです。

多くの人は高校時代以降に数学を使わなくなるでしょうが、
実生活の中で数学の世界はとても役に立っています。
特に、今回ご紹介しているマクローリンの考えは
一般関数の級数展開といった考えにつながり、
その考えは最終的にデジタル回路における近似処理
に繋がるのです。スマホの中とかの回路での処理原理です。
一般の人は意識しませんが恩恵を受けています。

理工学系の過程に進む初学者は出来るだけ

数学と産業のつながりを意識して下さい。

一見関係ないように思える数学の世界も、その概念を

土台として現代の応用技術が成り立っているのです。

無意味無乾燥に思える講義の内容が

貴方の人生で思わぬ成果を生む場合があります。

〆最後に〆






以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/11/06_初稿投稿
2021/08/13_改定投稿

【(旧)舞台別のご紹介】
【纏めサイトTOPへ】
【舞台別のご紹介へ】
【時代別(順)のご紹介】
【イギリス関係のご紹介】

【このサイトはAmazonアソシエイトに参加しています】

(2021年8月時点での対応英訳)

About McLaughlin

Isn't it a math lecture that you hear the name of McLaughlin? He is a mathematician rather than a physicist, but a decade ago physics and mathematics had a vague line. The name is Colin Maclaurin.

If you search for "Macroline" in Wikipedea, you will see robot animation, but if you search for "Macroline expansion", it will be one shot.
Twice

About McLaughlin's achievements

McLaughlin is especially famous for his developments. The content is "Taylor development centered on 0", which is a very special case, but its usefulness is very great. Its benefits would not have come to our minds simply.

To put it in a complicated way, the mathematical formulation that McLaughlin formulated is "decomposition of an arbitrary function into a series". The rate of change of an arbitrary function is expressed separately as the contribution of the primary component, the contribution of the secondary component, the contribution of the 3 o'clock component, and so on.

Work left with McLaughlin

McLaughlin was born in Scotland, England.
While working with Newton, he gained his trust and even got a letter of recommendation to the university. McLaughlin himself fell in love with Newton's ideas and was publishing for the purpose of introducing Newton. Through these jobs, I worked for the Scottish Enlightenment Movement.

Many people will stop using math after high school, but the world of math is very useful in real life. In particular, the idea of ​​McLaughlin introduced this time leads to the idea of ​​series expansion of general functions, and that idea eventually leads to the approximation processing in digital circuits. It is a processing principle in a circuit such as in a smartphone. The general public is not aware of it, but they are benefiting from it. Beginners who advance to the science and engineering process should be aware of the connection between mathematics and industry as much as possible.

Even in the world of mathematics, which seems unrelated at first glance, modern applied technology is based on that concept. The content of a lecture that seems meaningless and dry may produce unexpected results in your life.

西島 和彦
【1926年生まれ-8/12原稿改定】

「西島 和彦」の原稿を投稿します。原稿文字数は934文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


 

【1926年10月4日生まれ ~ 2009年2月15日没】


【↑_Credit:Wikipedia】



西島和彦は茨城県に生まれました。
東大を卒業後に大阪市立大学で教鞭
をとります。その後イリノイ大学の後に
東京大学、京都大学で教鞭をとります。


そんな経歴の中において、西島和彦の業績として特筆すべきはストレンジネスの提唱でしょう。素粒子の性質を吟味していく中で当時は電荷量、バリオンといった値が知られていたようですが、それに加えてストレンジネスといったパラメターを西島和彦は導入して、素粒子の性質を語る礎を固めていったのです。


 西島和彦が素粒子を考えていく中で、特定の粒子と反粒子が対になって生成される場合が多く見受けられたりしましたが、そのメカニズムは説明されていませんでした。生成にかかる時間を考察して、反応の中間に存在するであろう中間子を考察していったのです。保存される量として質量の他に別の量を考えていき、散乱断面積の計算を追従し辻褄(つじつま)の合う理論を構築します。果てしない思考の作業です。


西島和彦は学生時代に中野董夫、
マレー・ゲルマンとストレンジネスを法則化
しました。強い相互作用や電磁相互作用
において反応の前後でストレンジネスが
保存されるのです。そうした物理量を一つ一つ
生み出していく事がとても大事です。


西島和彦らが考え出したストレンジネスは直接観測にかかるものでは無く、反応の前後で、ストレンジクォークと反ストレンジクォークの数を使って定義されます。そして、ストレンジネスを使った中野西島ゲルマン・モデルは坂田模型やSU3と呼ばれるモデルへ、クォークモデルと繋がり素粒子の振る舞いを明らかにしていくのです。


そして、統一的な現象理解へと繋がるのです。






以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/11/12_初稿投稿
2021/08/12_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
京大関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


テキストポンへの査定申込はコチラ

P・V・ミュッセンブルーク
【1692年生まれ‐2021/8/12原稿改定】

「ミュッセンブルーク」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話、文章に主語が無く文脈から判断させたりしていたりしました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は3353文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1692年3月14日-1761年9月19日没】






その名はピーテル・ファン・ミュッセンブルーク

;Pieter van Musschenbroek。

ライデン瓶の発明で知られているオランダの物理学者です。

ポンプや顕微鏡、望遠鏡を作る職人の子として生まれます。

何より、最初の蓄電器であるライデン瓶

を作ったことで知られています。

ラテン語学校でギリシア語・ラテン語・フランス語・英語、ドイツ語などを学んだ後にライデン大学で医学博士となります。当時の学識の付け方は今と大きく異なっていたようですね。そして、ロンドンで当時の大物である物理学者ニュートンの講義を受けています。

その後、ミュッセンブルークは数学、哲学、医学、占星術の教授を歴任します。占星術は当時の教養の中で合理的な学問体系であると考えられていて、少し前の時代には王家に使えていたノストラダムスが天文学と占星術を修めていたという史実もあります。そして、ミュッセンブルークが1726年に刊行した「Elementa Physica」では広くニュートンの理論をヨーロッパに広めています。

その後、

静電気の力を中心にミュッセンブルークは関心を深め、

ガラス瓶の中に充満した水の中で帯電した棒が

反発しあう現象を形にします。非常に効果的な装置で

水の中で実験を行うことで重力の効果を

浮力で打ち消して微細な反発力をとらえられます。

また、支点を介した二つの棒が重力と直角方向に

開いていくので開いた角度がθの時に重力の分力が

Sinθで考えられるのです。

数学上、θが0の近傍ではSinθが殆ど0なのです。

理論で期待される効果が目視で確認できます。

浮力が重力を打ち消す効果と分力でSinθだけ考えればよい

事情が相まって電気による微細な反発力が目に見える

効果として現れます。開き角度が狭い時点では

殆ど重力の効果がない形で

帯電に起因する力が可視化出来るのです。

 

それまで帯電棒をこすり続けたりしなければ

示せなかった「静電容量に起因する力」が

ミュッセンブルークによって示されました。

後の電磁気学の発展に繋がっていきます。

確かな一歩が残されたと言えるでしょう。





以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2021/07/01_初回投稿
2021/08/12_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
オランダ関係のご紹介へ】
イギリス関係のご紹介

電磁気関係へ】


【このサイトはAmazonアソシエイトに参加しています】


テキストポンへの査定申込はコチラ


(2021年8月時点での対応英訳)

About Musschenbrook 


Its name is Pieter van Musschenbrook

; Pieter van Musschenbroek.

Musschenbruck is a Dutch physicist known for the invention of the Leyden jar. He is born as a child of a craftsman who makes pumps, microscopes and telescopes. He is best known for making his first capacitor, the Leyden jar.

He will become a Doctor of Medicine at Leiden University after studying Greek, Latin, French, English, German, etc. at a Latin school. It seems that his way of learning at that time was very different from what he is now. And he is taking a lecture in London by the then-big physicist Newton.

After that, Musschenbrook was a professor of mathematics, philosophy, medicine and astrology. Astrology is considered to be a rational academic system in the culture of the time, and there is a historical fact that Nostradamus, who was used for the royal family a while ago, studied astronomy and astrology. And in "Elementa Physica" published by Musschenbrook in 1726, Newton's theory is widely spread in Europe.

Method of Musschenbrook


After that, Musschenbrook deepened his interest around the force of static electricity, and formed a phenomenon in which charged rods repel each other in the water filled in a glass bottle. By conducting experiments in water with a very effective device, the effect of gravity can be canceled by buoyancy and a minute repulsive force can be captured.

Also, since the two rods that pass through the fulcrum open in the direction perpendicular to gravity, the component force of gravity can be considered in Sinθ when the opening angle is θ.

Mathematically, Sin θ is almost 0 near θ of 0.

You can visually confirm the effect expected in theory.

The effect of buoyancy canceling gravity and the fact that only Sinθ needs to be considered as a component force combine to make a minute repulsive force due to electricity appear as a visible effect. When the opening angle is narrow, the force caused by charging can be visualized with almost no effect of gravity.

Work of Musschenbrook


Musschenbrook showed the "force due to capacitance" that could only be shown by rubbing the charging rod until then. It will lead to the later development of electromagnetism.

It can be said that Musschenbrook has left a solid step.

2021年08月11日

小柴昌俊
【1926年生まれ- 8/11原稿改定】

「小柴昌俊」の原稿を投稿します。原稿文字数は1092文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1926年9月19日生まれ ~ 2020年11月12日没】



小柴昌俊は物理学の新しい分野を切り開いた先人でした。


2020/11/12の夜に老衰の為、東京都内の病院で


お亡くなりになりました。大きな仕事を成し遂げた


後での享年94歳の大往生です。


小柴昌俊は物質の基本元素を構成する素粒子の


1つであるニュートリノを観測にかける事に成功しました。


その結果をもとに今ではニュートリノ天文学


という新しい分野を確立しています。


ニュートリーノは星の進化過程で発生する基本粒子です。


驚いたことに、ニュートリーノを観測にかけたのは、小柴昌俊が東京大学を定年退官する一月前の観測でした。強運を指摘された小柴氏は「運はだれにでも等しく降り注ぐが、捕まえる準備をしているのか、していないのかで差がつく」(のですよ)、と反論しました。強運の一言で片づけられないほど沢山の実験をして、議論をして、下準備をしてきたから、斯様に語れたのでしょう。その前に沢山の知恵を巡らしてみたのでしょう。


東京大学宇宙線研究所に所属している梶田隆章は小柴昌俊の弟子にあたりますが、ニュートリーノに質量がある事を示しノーベル賞を受けています。また、戸塚洋二も小柴昌俊の弟子にあたります。小柴昌俊は朝永振一郎から可愛がられた若かりし時代を経て梶田隆章教授、戸塚洋二教授を育てたのです。


小柴昌俊は俊岐阜県飛驒市にある鉱山地下、1000メートルに3000トンの水を使った、巨大装置である通称「カミオカンデ」を建設し、天体からのニュートリノを観測することに世界で初めて成功しました。その装置ではニュートリーノが飛来する方向、観測した時刻、エネルギー分布を明確に検出します。その装置を使い小柴昌俊は実際に観測をしました。カミオカンデの主目的はニュートリーノではありませんでしたが、ニュートリーノも観測したい、という2段作戦で成功を得たのです。小柴昌俊はそうした結果を使いニュートリーノ物理学を進めたのです。何より彼は大変な努力家でした。そして情熱家でした。科学に対する限りない愛を感じます。そんな男が大きな仕事を成し遂げた後、静かな眠りに落ちたのですね。大きなお悔やみを申し上げます。合掌。






以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/11/12_初稿投稿
2021/08/11_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】



オックスフォード(OXFORD)
大学関連の物理学者【2021/8/11原稿改定】

以下オックスフォードの原稿を改定します。ご覧下さい。【以下原稿です】




↑Credit:pixabay↑

はじめに

オックスフォード大学の物理学者を纏めます。

言わずと知れた世界屈指の名門大学です。

全般的な話として、日々の原稿改定を進めていて感じるのですが惰性で文章を続けてしまうのはいけないだろうと思います。一つの項目特定の物理学者をご紹介するからには、他の人との関連や他の分野との関連を意識して、取り上げた人の立ち位置を浮き彫りにして、その人ならではの人生をご紹介します。本題に戻って、大学にも本当に個性があります。
特にケンブリッジは個性的です。


各国の王家の人間も学ぶ格式をもった大学です。個人的に先ず思い浮かぶのはボートレースの対抗戦です。現存する大学としては世界で3番目に古い歴史をもっていて、英語圏では最古の大学だと言われています。物理で人材を輩出しているケンブリッジ大学のルーツであって、日本とのつながりもあります。今上天皇や雅子様も学んでいたそうです。入学式と卒業式はラテン語であって、歴史を感じさせます。ご覧下さい。

年代順の記載

ロバート・ボイル_1627年1月25日 ~ 1691年12月31日

ロバート・フック_1635年7月28日 ~ 1703年3月3日

マイケル・ファラデー_1791年9月22日 〜 1867年8月25日(名誉教授)

竹内均(たけうち ひとし)_1920年7月2日 ~ 2004年4月20日

R・ペンローズ_Sir Roger Penrose OM FRS_1931年8月8日 ~ご存命中

スティブン・W・ホーキング_1942年1月8日~2018年3月14日

〆最後に〆

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2021/03/27_初版投稿
2021/08/11_改定投稿

【(旧)舞台別のご紹介】
【纏めサイトTOPへ】
【舞台別のご紹介へ】
【時代別(順)のご紹介】
【イギリス関係のご紹介】

【このサイトはAmazonアソシエイトに参加しています】




2021年08月10日

江崎玲於奈
【1925年生まれ-8/10原稿改定】

「江崎玲於奈」の原稿を投稿します。原稿文字数は98文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1925年3月12日生まれ ~ 【ご存命中】 】



 

概説


江崎玲於奈は先の世界大戦時代の物理学者です。電子デバイスを発明してスゥエーデンのグスタフ国王からノーベル賞を受けています。量子力学を深く理解して、その原理を応用したトンネル効果を応用したデバイスでした。因みに、このグスタフ国王って面白い人で、結婚式の披露宴にABBAを呼んだら新曲のダンシング・クィーンを披露してくれて、それが世界的な大ヒットになったという逸話なんかがあります。その国王が26歳で初めてノーベル賞を手渡した一人が江崎玲於奈だったのです。別の一人はブライアン・ジョゼフソンとでした。1973年、江崎玲於奈48歳の時でした。そこで彼は国王に『自然科学の成果を称える式典では「人種や差別無く」違った国から人々が集まってくるのだ』、と喜びを伝えました。



江崎玲於奈の業績


デバイス工学においてミクロの性格を応用することはとても重要です。対象としているデバイスの中で量子的な性格が顕著に表れる部分を応用すると従来の考えでは予測できなかったような機能が使えるようになったのです。具体的にはゲルマニウムを対象として考えた時に、そのPN接合幅に注目します。そこにおける伝導電子の波動的側面が伝導率に関わり、接合幅を薄くしていった時に量子効果が表れたのです。ポテンシャルを考えた時に通過できない筈の場所を電子が通過するイメージです。実空間で想像して、「ポテンシャルの壁」を何故か通過してしまう系を考えてみて下さい。まさに量子的な効果なのです。



晩年の江崎玲於奈


江崎玲於奈は学者という立場で活躍した後、筑波大学等で教育者として活躍しています。第2の人生をしっかり歩んでいて、とても尊敬出来ます。更に語りたい部分はありますが、江崎玲於奈氏はご存命中なのでここまでと致します。書き足したい気持ちはありますが、半面で少しでも静かに長生きして頂きたいと思っています。



〆最後に〆





以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。


nowkouji226@gmail.com


2020/08/27_初版投稿
2021/08/10_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
熱統計関連のご紹介へ
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】




イギリス関係の人々
ニュートンからディラック、他【2021/8/5原稿改定】

【↑ Credit; Pixabay ↑】


イギリスは人口6600万人の立憲君主国でGDPや購買力でも世界の十指に入る力を持っています。国際的に確固たる地位を英国は築いています。何よりそれは世界中に植民地をもって富とネットワークを蓄積してきたからに他なりません。そうした土台の一つとして自然科学の世界をリードしてきた面があるのではないでしょうか。彼らが口にする「Royal Duty」という言葉には庶民には実現出来ない高度な文化的活動も含まている気がしてしまいます。特に物理学はヨーロッパ全域で議論されていましたが、特にイギリスで培われた部分が大きいです。誰しもが認める偉大な議論の歴史があります。今回、列挙出来て少し光栄です。ご覧下さい。


ロバート・ボイル_1627年1月25日 ~ 1691年12月31日
アイザック・バロー_1630年10月 ~ 1677年5月4日
ロバート・フック_1635年7月28日 ~ 1703年3月3日
アイザック・ニュートン_1642年12月25日 ~ 1727年3月20日
コリン・マクローリン_1698年2月 ~ 1746年6月14日
ジェームズ・ワット_ 1736年1月19日 ~ 1819年8月25日
マイケル・ファラデー_1791年9月22日 〜 1867年8月25日
J・P・ジュール1818年12月24日 〜 1889年10月11日
ウィリアム・トムソン_1824年6月26日 ~ 1907年12月17日
J・C・マクスウェル_1831年6月13日 ~ 1879年11月5日

J・W・ストラット__1842年11月12日 ~ 1919年6月30日
ジョン・A・フレミング_1849年11月29日 ~ 1945年4月18日

田中舘愛橘_1856年10月16日 ~ 1952年5月21日
J・J・トムソン_1856年12月18日~1940年8月30日
E・ラザフォード_1871年8月30日 ~ 1937年10月19日
マックス・ボルン_1882年12月11日 ~1970年1月5日【英国へ亡命】

ニールス・ボーア_1885年10月7日~1962年11月18日【英国へ留学】
J・チャドウィック_1891年10月20日 ~ 1974年7月24日【英国へ留学】
アーサー・コンプトン_1892年9月10日~1962年3月15日【英国へ留学】
サティエンドラ・ナート・ボース_1894年1月1日 ~ 1974年2月4日【王立協会会員】
ポール・ディラック_1902年8月8日 ~ 1984年10月20日【英国へ移住】
セシル・パウエル_1903年12月5日 ~ 1969年8月9日
J・R・オッペンハイマー__1904年4月22日 ~ 1967年2月18日【英国へ亡命】

H・A・ベーテ_1906年7月2日 ~ 2005年3月6日【英国へ亡命】
レフ・D・ランダウ_1908年1月22日 ~ 1968年4月1日【英国へ留学】

P・アンダーソン_1923年12月13日~2020年3月29日【英国で勤務】
ロジャー・ペンローズ_1931年8月8日生まれ ~ (ご存命中)

B・D・ジョゼフソン_1940年1月4日〜 (ご存命中)
S・W・ホーキング_1942年1月8日~2018年3月14日
ブライアン・ハロルド・メイ_1947年7月19日~ご存命中






以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2020/12/06_初稿投稿
2021/08/05_改定投稿


旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介】
ケンブリッジのご紹介へ】
力学関係へ】
電磁気関係へ】
熱統計関連のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】


テキストポンへの査定申込はコチラ

2021年08月09日

中嶋 貞雄
【1923年生まれ-8/9原稿改定】

「中嶋貞雄」の原稿を投稿します。原稿文字数は874文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1923年6月4日生まれ ~ 2008年12月14日没】



映画監督で似た名前の方が居ますが
あちらは貞夫と書きます。
こちらは貞雄と書きます。
中嶋貞雄は私が昔使っていた量子力学での
教科書の著者でした。(発行元は岩波書店)
東京大学を卒業後に名古屋大で教授を務め、
東大物性研の所長を務めています。
超伝導現象の理論化に先鞭
をつけた方です。


超電導の議論史の中で有名な
エピソードがありますのでご紹介します。


中嶋貞雄は低温物理の物性に関わる
研究をしていきました。そんな中で
名古屋で会議が開かれ、くりこみ理論を
応用した低温電子物性の議論をします。
その話にアメリカのバーディーンが着目し、
講演内容のコピーを中嶋に求めました。
その時点ではカメリー・オネスの発見した
超伝導現象は実験的に示されていま
したが理論的な説明はなされてません。
バーディーンはそれを作ろうとしていたのです。


中嶋はきっと研究の方向性に確信を
持った事でしょう。後に名古屋駅で
バーディンにコピーを渡します。
バーディンは帰国後に英訳し、
共同研究者であるクーパー・シュリーファーと共に
考察を進め、クーパー対のアイディアを盛り込み、
BCS理論を完成させます。日本で無く
アメリカで生まれた事が残念ですが、
そうした議論の端緒は日本でも芽生えて
いたのです。


私は科学技術は人類が共有する財産
だと思っています。それだから、
コピーを届けた中嶋貞雄の行為は正しかった
と感じています。これからの若い研究者達も
知を共有して育んで欲しいと思います。
そうした行為が、ひいては日本の発展に
繋がっていくと信じています。
そして、世界人類の発展に
繋がっていくと信じています。


最後は信念とか、
宗教っぽい話になりましたが
感動・情熱から繋がる話
ではないでしょうか。






以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/12/19_初版投稿
2021/08/09_改定投稿


纏めサイトTOP
舞台別のご紹介へ
日本関連のご紹介へ
東大関連のご紹介へ
熱統計関連のご紹介へ
量子力学関係のご紹介へ


テキストポンへの査定申込はコチラ

UCB関連の物理学者
オッペンハイマー・DJボーム等【2021/8/9原稿改定】

本日、UCBを改定します。調べ直してみたらさすがにすごい大学ですね。調べきれません。先ずは本日時点での原稿を残しますのでご覧下さい。【以下原稿です】


↑Credit:https://www.gettyimages.co


特にUCBはマンハッタン計画の遂行拠点として役割を果たしました。ロサンゼルス校(UCLA)に日本から帰化したJJサクライが所属していた事も知られています。素粒子の教科書を書いていた思います。周期表で表されている元素の中で16個はこの大学で発見されています。調べれば調べるほど物理学者が出てくるので、内容は追って増補していく事になると思います。ご覧ください。


また、全般的な話として、日々の原稿改定を進めていて感じるのですが惰性で文章を続けてしまうのはいけないだろうと思います。一つの項目特定の物理学者をご紹介するからには、他の人との関連や他の分野との関連を意識して、取り上げた人の立ち位置を浮き彫りにして、その人ならではの人生をご紹介します。本題に戻って、大学にも本当に個性があります。
とくにUCBは個性的です。

ローレンス


オットー・シュテルン1888年2月17日 ~ 1969年8月17日


J・R・オッペンハイマー__1904年4月22日 ~ 1967年2月18日


エミリオ・ジノ・セグレ−1905


ハンス・アルプレヒト・ベーテ__1906年7月2日 ~ 2005年3月6日


ルイス・W・アルヴァレズ‐1911


ウィリス・ラム‐1913



チャールズ・タウンズ‐1915


D・J・ボーム__1917年12月20日 ~ 1992年10月27日


オーウェン・チェンバレンー1920


_J・J・サクライ __1933年1月31日 ~ 1982年11月1日



以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2021/03/22_初版投稿
2021/08/04_改定投稿


舞台別のご紹介へ】
時代別(順)のご紹介】

アメリカ関連のご紹介へ】
イェール大学関連のご紹介へ】
熱統計関連へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】





 

2021年08月08日

P・W・アンダーソン
【1923年生まれ‐8/8原稿改定】

「アンダーソン」の原稿を投稿します。原稿文字数は1121文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1923年12月13日生まれ ~ 2020年3月29日没】



その名の綴りは”Philip Warren Anderson”。


物性研究で有名なアンダーソン博士をご紹介します。


所属研究機関としてはハーバード大で学び


ベル研・ケンブリッジ大・プリンストン大学


で勤務しました。米国や英国の綺羅星が並んでます。


素晴らしい研究人生です。


アンダーソンの研究で先ず思いつくものは
アンダーソン局在です。


無秩序系における電子の基本的な性格で、
物性論の一つの基礎原理になっています。
その理論では電子が実空間上で局在した状態は
非局在の状態と明らかに異なり
エネルギー的に区別されます。


当たり前ですが、超電導の話で出てくる位相空間での局在と明確に区別する必要があります。アンダーソン局在では電子が空間的に局在するので、電気伝導について考えた時に「固体中の電子が殿堂に寄与しなくなる」という事実が大事です。導体が不導体に近いづいていくのです。


更にアンダーソンは、長さ・時間のスケールを
変換する理論をスケーリング理論として展開して
理論を発展させたのです。


また、磁性を紐解く解釈も行っています。
こういった業績を評価され、アンダーソンは
ノーベル物理学賞を受賞しています。


とある研究によると、論文引用の頻度から評価して
アンダーソンは世界で「最も創造的な物理学者」
だという位置づけを得ています。


そしてアンダーソンは 東京大学から名誉博士号
を贈られています。その記念として
物性研で記念植樹されていたようですが、
赤坂・防衛省の近くでしょうか。柏でしょうか。
何時か見に行きたいと思います。


最後に、アンダーソンの
残した言葉を一つご紹介します。


”More is different”


アンダーソンは多様性の中から秩序を拾い出していました。皆さんも多様性に怯まないで下さい。寧ろ、多様性の中で逍遥する心持で複雑怪奇の中で物事の本質を探って下さい。数学的な手法に拘って、何度も検算を繰り返してみても良いと思えます。数学はあくまで現実のモデル化なのですが、本質に近いことが多いです。また、別解を探してみると面白いかもしれません。
少しでも多くの手法で考え続けて下さい。私も励みます。






以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/11/03_初稿投稿
2021/08/08_改定投稿


舞台別のご紹介へ】
時代別(順)のご紹介】

アメリカ関連へ】
イギリス関連へ】
ケンブリッジのご紹介へ】
【東大関連のご紹介】

熱統計関連のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】


詳しくはコチラへ→【テキストポン】

イェール大学の関連人物
ギブス・山川健次郎・等【2021/8/8原稿改定】

本日、以下原稿を改定します。だいぶ整理が進んできて場所毎の再整理が出来ています。ご覧下さい。
【以下原稿です】

↑Credit:gettyimages.co↑

世界に名門大学と呼ばれる大学は沢山ありますが
その中で物理学の舞台となってる大学を取上げます。

このご紹介は米国イェール大学です。
アイビーリーグの一つを占めています。

全般的な話として、日々の原稿改定を進めていて感じるのですが惰性で文章を続けてしまうのはいけないだろうと思います。一つの項目特定の物理学者をご紹介するからには、他の人との関連や他の分野との関連を意識して、取り上げた人の立ち位置を浮き彫りにして、その人ならではの人生をご紹介します。本題に戻って、大学にも本当に個性があります。
特にイェール大は個性的です。

山川健次郎が学んでいるので
日本物理学発祥と大いに関係があり、
不均一系の統計力学が発展した舞台でもあります。
最近では死に関する哲学的な対話が有名ですね。

以下、登場人物を羅列します。

ウィラード・ギブズ_1839年2月11日 ~ 1903年4月28日

山川 健次郎__1854年9月9日 ~ 1931年6月26日

ハリー・ナイキスト_1889年2月7日 ~ 1976年4月4日

マレー・ゲルマン__1929年9月15日 ~ 2019年5月24日

また、今回のテーマとは無関係ですが
音楽家の高島ちさこ、5人の米国大統領、
49人以上のノーベル賞受賞者
を輩出している名門大学です。








以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/24_初版投稿
2021/08/08_改定投稿

【舞台別のご紹介へ】
【時代別(順)のご紹介】
【アメリカ関連のご紹介へ】
【UCBのご紹介へ】
【力学関係へ】
【電磁気関係へ】
【熱統計関連のご紹介へ】
【量子力学関係へ】

【このサイトはAmazonアソシエイトに参加しています】



2021年08月07日

南部 陽一郎【1921年生まれ‐2021/8/7原稿改定】

「南部陽一郎」の原稿を投稿します。原稿文字数は1033文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1921年1月18日生まれ ~ 2015年7月5日没】




南部 陽一郎は第二次世界戦時に研究を志しました。


所が、時は戦時中。彼の頭脳は武器製造に貢献


できると判断されて、陸軍のレーダー研に配属されました。


戦時下ではどんな研究をしていたんでしょうね。


そして、どんな気持ちだったのでしょうね。


戦争の前後で東京帝国大学で研究を進めます。


戦後、南部 陽一郎は


朝永 振一郎のグループで研究を続けます。


そして物質を構成する原子を考えていき、


今に続く素粒子論を完成させていきます。


南部陽一郎の新規性は真空概念の考え直しでしょう。


「特定の対称性をもった物理系がエネルギー


で色々な状態を考えた時に的に、より


安定な真空状態に自発的に落ち着く」のです。


BCS理論でのクーパ対生成はこの考え方


に従っています。電子対生成が安定なのです。


中間子をひもとき、素粒子間の総合作用を考え、その形成に関して実験事実と、つじつまの合う理論を展開していきます。そうした研究を重ね南部陽一郎は「自発的対称性の破れ」でノーベル賞を受賞しています。南部陽一郎の話の組み立てとしては、強磁性体の自発磁化状態(外部からの磁場無しで内部磁気モーメントを揃えている状態)が温度上昇に伴い磁化を失う状態を考え、ラグラジアンを巧みに使い素粒子に適用しているのです。また彼は量子色力学や紐理論でも成果を上げています。


そういえば、南部洋一郎は私が学生時代に使っていた教科書の著者でした。その時点で米国の国籍を得ていた記憶
があり、研究者に対しての日本での待遇に疑問を抱いたものです。私は理論物理学の研究室に所属して居ましたが、卒業後も研究を続けて研究者として身を立てている仲間は今では数えるほどしかいません。多くは私のように、民間の会社に所属して物理学とは全く関係のない業務に従事しています。


少子化という流れもありますが名誉職としての教授に対して日本社会の扱いは低いとも感じていました。狭き門である事に加えて扱いが低いのです。


それだから


南部 陽一郎がアメリカに帰化した気持ちは


少しは理解出来る気がするのです。



以上、間違い・ご意見は
以下アドレス迄お願いします。
適時、返信改定をします。


nowkouji226@gmail.com


2020/09/10_初版投稿
2021/08/07_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
【日本関連のご紹介】
【東大関連のご紹介】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】




アメリカ関係の物理学者のまとめ
ベンジャミンフランクリンからファインマン他【2021/8/7原稿改定】

本日、以下アメリカ関係の原稿を改定します。ご覧下さい。【以下原稿です】

【↑ Credit:Pixabay.com ↑】



始めに

アメリカ(America)は2021年現在では科学研究・技術革新において他を寄せ付けない大国です。アメリカ人の人口は3.27億人。物理学に於いては最後の世界大戦後に中心は欧州からアメリカに中心が移ったとも言えます。今後は中国の台頭も有り、各国が独自の進化を遂げていくので多様化しているともいえます。国家が力を集めて予算を注ぎ、特定の科学を支援する時代が続いているのです。初期にはキブスの「ほのぼのした古き良きアメリカ」を彷彿とさせる時代もありましたが、マンハッタン計画を初めとする破滅的な部分も看過出来ません。何はともあれ、今も時代は進んでいます。今後は少しでも理性的な方向付けが必要ではないでしょうか。亡命後にアメリカに帰化した学者等を含めて以下にアメリカ関係の人物を列記します。



年代別のご紹介(20世紀以前)

ベンジャミン・フランクリン_ 1706年1月17日 ~ 1790年4月
E・W・モーリー__1838年1月29日 ~ 1923年2月24日
ウィラード・ギブズ_1839年2月11日 ~ 1903年4月28日
トーマス・A・エジソン_1847年2月11日 ~ 1931年10月18日
アルバート・A・マイケルソン_1852年12月19日 ~ 1931年5月9日
ニコラ・テスラ__1856年7月10日 ~ 1943年1月7日
ロバート・ミリカン__1868年3月22日 ~ 1953年12月19日
A・アインシュタイン_1879年3月14日 ~ 1955年4月18日
ピーター・デバイ_ 1884年3月24日 ~ 1966年11月2日

オットー・シュテルン_1888年2月17日 ~ 1969年8月17日
ハリー・ナイキスト_1889年2月7日 ~ 1976年4月4日
E・P・ハッブル_1889年11月20日 ~ 1953年9月28日
アーサー・コンプトン_1892年9月10日~1962年3月15日


 
年代別のご紹介(20世紀以後)

アーネスト・O・ローレンス_1901年8月8日 ~ 1958年8月27日
エンリコ・フェルミ_1901年9月29日 ~ 1954年11月28日
E・ウィグナー_1902年11月17日 ~ 1995年1月1日
J・R・オッペンハイマー__1904年4月22日 ~ 1967年2月18日
ハンス・アルプレヒト・ベーテ__1906年7月2日 ~ 2005年3月6日

エドワード・テラー__1908年1月15日 ~ 2003年9月9日
ジョン・バーディーン___1908年5月23日 ~ 1991年1月30日
D・J・ボーム_1917年12月20日 ~ 1992年10月27日
R・P・ファインマン__ 1918年5月11日 〜1988年2月15日
アイザック・アシモフ_1920年1月2日 ~ 1992年4月6日
南部 陽一郎__1921年1月18日 ~ 2015年7月5日
P・アンダーソン_1923年12月13日~2020年3月29日

マレー・ゲルマン__1929年9月15日 ~ 2019年5月24日
レオン・クーパー__1930年2月28日 ~(ご存命中)
ロバート・シュリーファー _1931年5月31日 ~ 2019年7月27日
_J・J・サクライ __1933年1月31日 ~ 1982年11月1日





以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/11/01_初版投稿
2021/08/03_改定投稿


纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
イェール大学関連のご紹介へ】
カリフォルニア大学関連のご紹介へ】
力学関係へ】
電磁気関係へ】
熱統計関連のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】


 

大河内正敏
【1878年生まれ-2021/8/07原稿改定】

「大河内正敏」の原稿を投稿します。原稿文字数は833文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】



大河内家の御曹司


大河内正敏は旧上総大多喜藩主にして子爵であった


大河内正質の息子として生まれました。


正敏は学習院初等科に進み、大正天皇と共に学びます。


また大河内とは珍しい名字だなと思っていたら


奥様も大河内家から娶っていたりして、なんだか


皇族みたいな感じがしました。平民とは違う華麗なる一族


って感じです。きっと鹿鳴館で踊っていたりしたのでしょう。


政界では子爵議員として貴族院で議員を2期務めます。そんな中で若かりし無名の田中角栄を可愛がっていたといわれます。そんな人なので理化学研究所の3代目所長に就任したした時は理研研究員にして、貴族院議員で子爵、そして東京帝大教授でした。そんな偉人を今回はご紹介します。


大河内正敏の業績


大河内正敏は東大で物理学を学んでましたが時節柄、


寺田寅彦と飛行弾丸の研究をしていたようです。


物理学を駆使すれば流体力学や表面の解析が出来ます。


大河内正敏が進めた具体的な別の活用事例としては、


ピストンの開発があります。ここでもシリンダー内の


熱流体解析や、摂動面の摩擦を解析出来ます。


この研究は後の株式会社、リケンにつながります。


戦後このグループは、GHQより十五大財閥の


一つとして指定を受けます。



そして、眠りに


こうした業績を残して今、大河内正敏は埼玉県にある


平林寺で永眠しています。


その近くには理化学研究所の分室があり、


今でも研究者たちが世界に冠たる研究を続けています。






〆最後に〆


以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。


nowkouji226@gmail.com


2020/12/17_初版投稿
2021/07/24_改訂投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
【日本関連のご紹介】
【東大関連のご紹介】
力学関係のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】

ニコラ・テスラ
【1856年生まれ‐2021/08/07原稿投稿】

「テスラ」の原稿を投稿します。原稿文字数は749文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】

【1856年7月10日生まれ ~ 1943年1月7日没】

テスラはオーストリア帝国に生まれ工夫を重ね、

誘導モーターを発明します。そのモーターを広める為に

アメリカに渡ります。かのエジソンのもとで働いていました

が独立して高電圧の変換をして発表をしたり

回転界磁型の電動システムを実用化して

供電社会の礎を築いたりしました。

エジソンとは次第に対立関係が生まれますが、2陣営の対立は送電方式の考え方の違いが大きかったようです。エジソンが直流による電力事業を考えていたのに対してテスラは交流による電力事業に利点があると考えていました。実際に交流が主流になるのです。

幸運な事にテスラはプレゼンテーションが上手でした。

学会での発表を聞いていたジョージ・ウェスティングハウス

が感銘を受け資金供給を受け始めます。最終的には

ナイアガラの滝を使った発電システムの実現に繋がり、

テスラは成功を収めました。

数々の事業を成功へ導いたテスラですが、

色々な別れがあり晩年は寂しい老後を送っていた様です。

テスラは生涯独身でした。そしてテスラの名は今、

磁場の単位として使われている他に、会社の名前

として名を残しています。数トンの重さがあった

と言われる彼の発明品や設計図はFBIが写しをとった

後に母語へと返されています。








以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/16_初版投稿
2021/08/07_改定投稿

【舞台別のご紹介へ】
【時代別(順)のご紹介】
【アメリカ関係へ】
【電磁気関係へ】
【オーストリア関連のご紹介へ】

詳しくはコチラへ→【テキストポン】

【このサイトはAmazonアソシエイトに参加しています】

2021年08月06日

竹内均
【1920年生まれ‐2021/8/6原稿改定】

「竹内均」の原稿を投稿します。原稿文字数は1032文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】




私の中での竹内均さんのイメージは


特徴的な眼鏡かけたコメンテーターです。


実際、文筆活動中もあんな感じだったそうです。


沢山本を出していますが、作業はテープレコーダ


への録音一辺倒です。文章に起こす秘書さんが居て


一緒に作業します。独特の書き方ですね。




それでもお人柄から悪い印象は持ちません。人から好かれる性格ですね。竹内均は自分に厳しくて子供に優しい人だったと言われています。独特の喋り口調が印象的で通り易い声で聴きやすいリズムで人に語りかけていました。子供向けの伝記を沢山、監修してい居て「キューリー夫人伝」とか「エジソン伝」とかの表紙に小さく竹内均の名前が入っていたりしました。そんな啓蒙活動を考え続けて初代NEWTON編集長として日本でも一般向け教育書を作っていきます。



物理学の理解には個人の勉強も必要ですが、学問の性質上、万物を人がどう考えるか(モデル化していき理解するか)という論点が欠かせません。個人が理解するという考え方と同時に日本人が、そして人類が理解していくというプロセスが欠かせません。大衆にも理解出来る物理モデルが作れた時に理論は出来上がるのです。ギブスの文章を書くときに協調しましたが「数学者と物理学者の視点は異なる」のです。数学は論理として完結しているモデルであれば現実と対応が付かないでも問題がないです。そんなものです。物理学は絶えず現実と対応する理論を作らないと意味がありません。竹内均はそういった民衆との対話をとても大事にしていました。

竹内均の業績を考えていくと寺田寅彦の系譜です。具体的には直接の講義・指導を受けていない孫弟子にあたります。地球物理学に関心を持って、特にプレートテクトニクス理論をを広く広めています。実際に地面が少しずつ動いていく様子を伝える際に物理学者として地球の内部構造や境界面での様子を伝えたのです。深い知見を持って伝えたのです。そして何より、竹内均独特の「優しい言葉」で伝えたのです。





以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2021/07/04_初版投稿
2021/08/06_原稿改定


舞台別のご紹介へ】
時代別(順)のご紹介】
日本関連のご紹介】
東大関連のご紹介】
力学関係へ】
量子力学関係へ】


詳しくはコチラへ→【テキストポン】


【このサイトはAmazonアソシエイトに参加しています】



D・J・ボーム
_【1917年生まれ-2021/8/6原稿改定】

「D・J・ボーム」の原稿を投稿します。原稿文字数は934文字です。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。最後に、ブログ宣伝でツイッター使います。7/30(金)朝の時点でフォロワーは合計【12092】でした。
作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1917年12月20日 ~ 1992年10月27日】



正確にはその名は、


デヴィッド・ジョーゼフ・ボーム_


David Joseph Bohm、ヘブライ語表記


ではדייוויד ג'וֹזף בוֹהם, דוד יוֹסף בוֹהם。


偶然でしょうがボームはロシア革命の


年に生まれてます。そんな時代背景も


ボームの人生に影響を残しているのでは


ないでしょうか。ハンガリー系‎‎ユダヤ人の父と


リトアニア系ユダヤ人の母の間に


ペンシルベニア州で生まれ、


UCB(カリフォルニア州立大学バークレー校)


オッペンハイマーの教えを受けます。


そんな時期に学生時代に当時の知人の影響で思想的


に影響を受け、異なった社会モデルを持つ


急進的な主義の思想をボームは抱きます。


後にはその為にFBIにマークされたりします。


 

第2次世界対戦の時にはボームは師である


オッペンハイマーに従いマンハッタン計画


に参加します。その計画は陽子と重陽子の


衝突研究を進め、濃縮ウランを作り原爆を


製造する計画で実行に移されました。


戦後、ボームはプリンストン大学で


アインシュタインと共に働いていましたが、


いわゆるマッカーシズムにあい、


プリンストン大学を追われます。


社会主義者としての過去の活動を当局に


問題視されたのです。アインシュタイン


ボームに彼の助手として大学に残る事を勧めました。


ところが、その願いは叶わずにボームは


ブラジルのサンパウロ大学に移りました。


研究者としてボームは幾多の成果を残しています。先ず量子力学の解釈の面でボーム解釈。EPRパラドックスの提唱。第二は電磁気学でのAB効果です。それぞれ問題の本質をとらえようと考え続けていたように思えます。こうした業績で、その分野の考えに今でも残る影響を与えています。






間違い・ご意見は
以下のアドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/31_初稿投稿
2021/08/06_改定投稿


纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
アメリカ関係のご紹介へ】
電磁気関係へ】
量子力学関係へ】


教科書買取専門店による教科書買取サービス【テキストポン】


【このサイトはAmazonアソシエイトに参加しています】

仁科 芳雄

【1890年生まれ-2021/08/06原稿改定】

本日、仁科芳雄の原稿改定します。文字数は842文字でした。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/23(金)朝の時点でフォロワーは合計【11902】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


ご覧下さい。

-以下原稿です-


 【1890年12月6日生まれ ~ 1951年1月10日没】


仁科芳雄は稀代の「人たらし」だったと言われています。仁科さんは人に惚れ込む性格でした。仁科さんが人に入れあげる性格で、その人の良い所を見つけて、それを伸ばす。そんな仁科さんの元に人が集まる。そんな風にして沢山の人々を育てあげていった凄さが仁科さんにはあるんです。


仁科さん本人はオランダ・コペンハーゲンのニールス・ボーアのもとで育ち、その自由闊達なコペンハーゲンの学風を日本に持ち込み、多くの学者を育てました。1928年にオスカル・クラインとコンプトン散乱の有効断面積を議論しています。また帰国後にはハイゼンベルクディラックを日本に招待して日本の中での物理学への理解を深め啓蒙活動を続けています。更には、師であるボーアを日本に呼び寄せています。


研究内容として仁科さんはサイクロンの建設を進めて、


様々な成果をあげてます。そのサイクロンを大型化する


際には仁科さんは大変苦労しています。先行する


カリフォルニア大学のローレンスとは日米関係に伴い


関係が悪くなっていったのですが、サイクロトロン関係の情報交換は


軍事的な側面を持つので出来なくなっていきました。


そして終戦と共に、苦心して作り上げたサイクロンは


GHQにより東京湾に破棄されてしまいます。


戦後には仁科さんは理化学研究所の所長を務め、科研製薬の前身の会社で社長を務めましたが、肝臓ガンを患い61歳で亡なってしまいます。放射線被ばくの影響もあったであろうと言われていて、残念です。多くの人材育成に捧げた人生だったと感じています。






以上、間違い・ご意見は
次のアドレスまでお願いします。
適時、返信・改定を致します。


nowkouji226@gmail.com


2020/12/13_初版投稿
2021/07/25_改定投稿


テキストポンへの査定申込はコチラ


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
【日本関連のご紹介】
【東大関連のご紹介】
力学関係のご紹介へ】
熱統計関連のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】


高木 貞治
【1875年生まれ-2021/08/06原稿改定】

「高木貞治」の原稿を投稿します。原稿文字数は2678文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。
また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。
作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。
【以下原稿です】


【1875年4月21日生まれ ~ 1960年2月28日没】


↑Credit:Wikipedia↑



今回、日本人数学者をご紹介します。そのお名前は


高木貞治と書いて名前を「ていじ」と読ませます。


高木貞治は岐阜に生まれ現在の京都大学を卒業した後


東京大学に進みます。現在の学校制度と


異なる印象も受けます。今時の表現をすると


京大で学位をとって東大でマスターをとった感じでしょうか。


その後、高木貞治はドイツへ留学してヒルベルトの


教え受けます。現代の代数幾何学の原型を


体系立てていったのでしょう。当時の日本で使われていた


数学は所謂「和算」の発展形だったと思われます。


数学的には実数が扱われていますが、


少数が一般に使われていた形跡は見受けられません。


もっとも、一円・七銭といった感覚はあるので


1/3が0.33333・・・と考え続けていける筈です。


小数点の概念はあったと考えても切断の概念や


作図を使った証明等には発展していなかったでしょう。


また、空間を考えていく際にヒルベルト空間


という概念があり、量子力学で多用されます。


そもそも、個人的に高木貞治の名を知ったのはムツゴロウさんの著作でした。たしか「ムツゴロウの青春期」。その中で彼が高校時代に地元九州の先生に紹介された本が高木貞治の「解析概論」でした。解析概論が明快であると言われ、高校の教科書とは別に数学のエッセンスを学んでいきます。その後、バンカラな青春時代を過ごしたムツゴロウさんは東大の物理学科に進み、最後はどうぶつ王国を作ります。話戻って解析概論ですが、岩波文庫から出ていたその本を私も買って、面白くで読んだ思い出があります。


尚、2011年の時点で日本国内における著作権の


保護期間満了に伴いネットで著作が公開され始めています。


【Wikisourceや青空文庫を見てみて下さい】



以上、間違い・ご意見は

以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/11/08_初回投稿
2021/07/24_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
【日本関連のご紹介】
【東大関連のご紹介】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】



2021年08月05日

久保 亮五
【1920年生まれ-2021/8/5原稿改定】

「久保亮五」の原稿を投稿します。原稿文字数は940文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します


【以下原稿です】


【1920年2月15日生まれ ~ 1995年3月31没】



久保亮五と同名(漢字違い)の


別人が居ますが、以下記載は


物理学者に関する文章で、


ここでの久保亮五は統計力学で


私が使った教科書の著者です。


私の指導教官は講義を受けた


そうです。そんな時代の


物理学者についての記載です。


久保亮五は学者肌の家で育ち、


お父様の仕事で子供時代には


台湾で生活しています。


高校まで台湾で過ごし、


帰国後に旧制高校へ入学、


東大へ入学、その後に助手、


助教授、教授をつとめました。


久保亮五の仕事で何より特筆


すべきは物性論での成果です。


ゴムの弾性に関する研究と、


線形応答理論を使った


フーリエ変換NMRへの


応用研究があげられます。


久保亮五の考えたNMRの


概説を一般の人向けに記し


てみたいと思います。先ず


フーリエ変換理論は単純には


「時系列の波形を周波数を


基準に考えた波形に変換し


て解析する技術」です。


そうした「数学的に確立


されているフーリエ変換」


を理論的基礎として


電子回路で応用しています。


離散化された電気信号に


対して回路上で実質的に


マトリクス変換を加えます。


診察で実際にNMRを使った経験のある人はその中で測定を受けている時を思い出してみてください。頭の中を調べる時などに、強磁場を人間の頭部に二次元的に与えます。その時に大きな音がしますが、その時系列でインパルス的な情報を機械的に処理して周波数応答に関する情報を得ます。結果的に吸収スペクトルを測定することで各スピンの情報を集め、そこから最終的には断面の画像を処理します。最終的な写真で見える画像は、これらの処理の結果です。


そして今、久保亮五は


この世に居ませんが、


その仕事を応用したNMRは


世界中の病院で患者達の


情報を集めています。


きっと今、この瞬間も


集めています。






以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/11_初稿投稿
2021/08/05_改定投稿


(旧)舞台別のご紹介】
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
【日本関連のご紹介】
【東大関連のご紹介】
力学関係のご紹介へ】
熱統計関連のご紹介へ】


【このサイトはAmazonアソシエイトに参加しています】

坂田 昌一
【1911年生まれ2021/8/5原稿改定】

「坂田昌一」の原稿を投稿します。原稿文字数は675文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。8/1(日)朝の時点でフォロワーは合計【12093】でした。定点記録を残すと、7/23と7/25と8/1でf/f数は、
コウジ改 SyvE.804/3599と826/3625と867/3654.
バンドリ sv2F.810/2666と824/2682と867/2717.
浩司   BLLp.578/2339と585/2340と621/2381.
kouji kouji.1971/3298と1992/3309と2029/3341.
作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1911年1月18日生まれ ~ 1970年10月16日没】

【↑_Credit:Wikipedia】



坂田昌一は素粒子を研究した物理学者です。


湯川秀樹朝永一郎らと同じ時代を生き、


議論を交わし、物理学会を切り開きました。


京都帝国大学を卒業していて


名古屋帝国大学で教えています。


また坂田昌一の奥様の信子さんは


SF作家・星新一の従兄弟にあたります。


坂田昌一の理論物理学での業績は


電磁場の量子化に関するものが


あげられます。当時は場を量子化する


時に電子の質量が発散する事が


問題でした。その問題に対して坂田昌一は


中間子の概念を使って問題解決に挑みます。


最終的に、この量子電磁力学での問題は


朝永振一郎がくりこみ理論使い説明します。


また坂田昌一は湯川秀樹の中間子に


関する論文で協同執筆者を務めています。


また坂田昌一の業績としては、


陽子・中性子・ラムダ粒子を基本粒子


と考え、その構成に対する「坂田モデル」


を提唱した点が、特筆すべきでしょう。


その坂田モデルは大貫 義郎益川敏英、小林誠


ら次の理論的な土台となり議論が進んだのです。


それぞれ次世代の議論へと繋がった、


確かな成果です。






以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/12_初稿投稿
2021/08/05_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
【日本関連のご紹介】
京大関連のご紹介】
力学関係のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】

ヨハネス・ケプラー
【1571年生まれ‐2021/08/05原稿改定】

「ケプラー」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。いつか中国語訳も付けられたら良いですね。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話、文章に主語が無く文脈から判断させたりしていたりしました。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていた懸念があり案す故、以後この点は改善します。原稿文字数は3852文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1571年12月27日生まれ ~ 1630年11月15日没】




ケプラーの生い立ち


ドイツに生まれたケプラーは天文学者にして数学者、


哲学者、占星術師でありました。そして、


ケプラーの母は薬草治療をしてました。


ケプラーの天文物理学の仕事として素晴らしい点は、


年間の観測情報から数学を使った考察を進め、


天体の星達が(基本的には平面上で)楕円軌道を描く


とか公転周期と面積速度の関係を導き出すといった


秩序だった理論的な結果を導き出した点です。


ケプラーは「数学モデル」を物理学に当てはめた


初めての物理学者だったという点も見逃せ無いポイントです。


 

ケプラーは幼少期に苦労します。


ケプラーの父は家族の為に傭兵として戦いに参加します。


ケプラーが5歳から17歳の間、その父は家族と離れ


暮らしていました。そして八十年戦争と呼ばれた戦いで、


ケプラーの父はネーデルランドで亡くなります。


加えてケプラー本人は天然痘にかかり視力低下にあい、


一生苦労をしました。また天然痘では、、、


ケプラーは妻子を失ってしまいます。


 

ケプラーの業績


そんなケプラーは天文学者として地動説に出合いました。


特にコペルニクスがコペルニクス的転回を打ち出した


タイミングでケプラーは天文を学びましたが、


ケプラーはコペルニクスを全面的に支持します。


そういった考え方を読んだケプラーを


今度はガリレオ・ガリレイが支持します。


そして何よりケプラーはティコ・ブラーエに出会います。


科学が飛躍的に進化する時代があると思えますが、


ケプラーの前後の時代はまさに、そんな時代でしょう。


この時代の動きがあったからこそ、後の時代の思索の中で


力学が生まれてきて、電磁気学が生まれてきたのだと思えます。


20世紀の初頭にも国を超えて人々が議論して


科学技術に大きな進展が見受けられました。


そんな視点で「社会史」の側面を垣間見ながら


「科学史」を考えてみると人類の進化を感じられます。


私が「進化」と呼んだ「変化」が好ましいか


という議論がありますが、私は好ましいと思います。


可能性が広がるからです。


技術を制御する責任は別問題で別に議論します。


 

ティコ・ブラーエは遺言で集めた膨大な


データを遺産としてケプラーに残しました。


価値ある貴重なデータをケプラーがが受け取り


そして整理して様々な法則を作り出します。


2人の業績から今に残るケプラーの法則が完成したのです。


惑星の運動は体系立てて幾何学上で表現されています。


ケプラーは星を考える枠組みを作り出したのです。


そして次なる様々な理論体系に繋がっていったのです。



〆最後に〆





以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/19_初版投稿
2021/08/05_改定投稿


旧舞台別まとめへ】
舞台別の纏めへ】
時代別(順)のご紹介】
デンマーク関係の紹介へ】
ドイツ関連のご紹介へ】


【このサイトはAmazonアソシエイトに参加しています】



(対応英訳)


Kepler had Born in Germany, Kepler was an astronomer, mathematician, philosopher, and astrologer. And Kepler's mother was doing herbal remedies. The great thing about Kepler's work in astronomical physics is that it advances mathematical consideration from annual observation information, and the stars of the celestial body draw elliptical orbits (basically on a plane), orbital period and area velocity. It is the point that we have derived an orderly theoretical result such as deriving a relationship. It is also worth noting that Kepler was the first physicist to apply a "mathematical model" to physics.


Kepler struggles in his childhood. Kepler's father participates in the battle as a mercenary for his family. While Kepler was between the ages of five and 17, his father lived away from his family. Kepler's father died in the Netherlands in a battle called the Eighty Years War. In addition, Kepler himself suffered from smallpox and suffered from his poor eyesight for the rest of his life. Also in smallpox, Kepler loses his wife and children.


Kepler came across the heliocentric theory as an astronomer. Kepler learned astronomical, especially when Copernicus launched a Copernican Revolution, but Kepler fully supports Copernicus. Galileo Galilei now supports Kepler who read such an idea. And above all, Kepler meets Tycho Brahe.


It seems that there is an era in which science will evolve dramatically, but the era before and after Kepler is exactly such an era. It seems that the movement of this era was the reason why mechanics was born and electromagnetics was born in the thoughts of later times. Even at the beginning of the 20th century, people from different countries discussed and made great progress in science and technology. If you think about "history of science" while glimpsing the aspect of "social history" from that perspective, you can feel the evolution of humankind. There is some debate about whether "change," which I called "evolution," is preferable, but I think it is preferable. Because the possibilities open up. Responsibility for controlling technology is discussed separately on a separate issue.


Tycho Brahe left Kepler with the vast amount of data he collected in his will as his legacy. Kepler receives valuable and valuable data and organizes it to create various laws. From the achievements of the two, Kepler's law that remains today was completed. The movement of planets is systematically and geometrically represented. Kepler created a framework for thinking about stars. And he was connected to the following various theoretical systems.



ハリー・ナイキスト
_【1889年生まれ‐2021/8/05原稿改定】

「ナイキスト」の原稿を投稿します。原稿文字数は890文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/23(金)朝の時点でフォロワーは合計【11902】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1889年2月7日 ~ 1976年4月4日】



ナイキストはスウェーデンに生まれました。


1907年に家族がアメリカ合衆国に移り住み


その後、帰化しています。その時点でナイキストは


ハイスクール修了くらいでしょうか。アメリカの名門


イェール大学を卒業した後に1917年からAT&T研究所


で研究します。その後にナイキストは


ベル研究所で研究します。


アインシュタインはブラウン運動で考えましたが


微視的な分子の運動と巨視的に観測される


物理量の間の応答関係を考えています。


ベル研究所でナイキストは研究を進め


1926年にジョンソンが発見した熱雑音に対して、


「揺動散逸定理」を駆使して理論的な根拠を与えます。


そこでいう熱雑音とは揺らぎという言葉でも表現


されます。例えば交流電流が流れる時の熱雑音


を考えてみると、流れる交流の周波数に関わらずに


回路の設計とも無関係に電流が流れる時点で生じます。


熱雑音とはそうした性質を持つ物理量なのです。


 

また、ナイキストは一方でFB増幅器の安定性を研究します。別途、特筆すべきは離散化された信号のサンプリングに関する処理手法でしょう。そのナイキストが提唱した周波数はナイキスト周波数と呼ばれ信号処理の世界では基礎的な理念となっています。実用的には2の8乗である256から考えて、2.56倍のサンプリング周波数を使い計測する事でナイキスト周波数を保証しています。


また、彼の考案したナイキスト線図は極座標を使い対象系の安定性を議論します。ナイキスト線図も系の安定性を考える為に現代の信号処理の世界で使われていて、今でも市販のアナライザーに機能として搭載されています。






以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


【舞台別のご紹介へ】
時代別(順)のご紹介】

アメリカ関連のご紹介へ】
イェール大学関連のご紹介へ】
熱統計関連のご紹介へ】


2020/11/10_初稿投稿
2021/06/25_改定投稿


詳しくはコチラへ→【テキストポン】


【このサイトはAmazonアソシエイトに参加しています】

H・A・ローレンツ
【1853年 〜 2021/08/05‐原稿改定】

「ローレンツ」の原稿を投稿します。原稿文字数は1487文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


↑ Credit ; Wikipedea ↑


【1853年7月18日生まれ ~ 1928年2月4日没】



その名は正確にはHendrik Antoon Lorentz。


です。オランダに物理学で有名なライデン大学


がありますが、ローレンツは其処の出身者です。


後にエーレンフェストがコロキウムを開いていきますが、


そんな大学を理論の面で育んでいった一人が


今回ご紹介するローレンツです。


 

この大学では他に、


エンリコ・フェルミ
西周(日本の哲学者)、
ヘイケ・カメリー・オネス_
アルベルト・アインシュタイン
クリスティアーン・ホイヘンス
フィリップ・シーボルト(博物学者)、
ポール・エーレンフェスト


が学んだり、教えたり、議論をしたりしていました。


他、オランダで個人的に関心があるのは


デルフト工科大学です。そこは現在、


低温物理学で有名な拠点ですので別途、


機会があれば取りあげたいと思います。





さて話戻ってローレンツですが、


電気・磁気・光の関係を解きほぐしました。


手法としては座標系の変換を効果的に使います。


特にアインシュタインが特殊相対性理論


を論じる際に起点の一つとして使った、


「光速度不変の定理」はローレンツが導いた


変換に関する考察があって成立しています。


無論、アインシュタインは、


その人柄と業績を高く評価していて、


ローレンツを「人生で出会った最重要な人物」


であったと語っています。ローレンツとアインシュタインはエーレンフェストの家でよく語り合っていたと言われています。時間が出来たら寄合って、その時々の関心のある議題について語り合っていたのでしょう。有益な夜の時間が過ごせたはずです。このブログで今ご紹介している写真はそんな中での風景です。


ローレンツの業績は、電磁気学、電子論、


光学、相対性理論と多岐にわたります。


弟子のゼーマンが電子に起因するスペクトル線


が磁場中で分裂する事実を示した時には


理論的論拠を与えノーベル賞を受けています。


荷電粒子を考えた時には


@静電場からの力が働き
A静磁場からの力が働き
B電場中で速度vで働くとき力が働き、


その総和としてローレンツ力が表現されます。


また、ローレンツ変換は相対論を語る時の


基礎になっています。更に、双極子の性質を表


すローレンツ・ローレンツの式などでローレンツは


名前を残しています。その中で


特に印象深いのはやはり変換に関する物でしょう。


 

ローレンツは座標系の変換の中で局所時間
と移動体の長さの収縮を議論していきます。そこから、
「ローレンツ収縮」といった言葉も生まれてます。
理論への要請として、
マイケルソン・モーレの実験を理論から
説明するには光速度普遍の枠組みで
事実を組み立てなければなりません。
これが可能な理論的土台として
ローレンツ変換は秀逸だったのです。


最後に、そのご臨終の話を語りたいと思います。


ローレンツの葬儀当日は追悼の意を込め、


オランダ中の電話が3分間電話が止められました。


英国王立協会会長だったアーネスト・ラザフォード


お別れの言葉を述べる中で多くの人が


ローレンツを惜しみました。


 



以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/24_初版投稿
2021/07/24_改定投稿


旧舞台別まとめへ】
舞台別の纏めへ】
時代別(順)のご紹介】
オランダ関係の紹介へ】
ライデン大学のご紹介へ】
電磁気学の纏めへ】
熱統計力学関係へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】


 

2021年08月04日

アイザック・アシモフ
【1920年生まれ-2021/8/4原稿改定】

「アシモフ」の原稿を投稿します。私のサイトは原稿文字数は798文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】

【1920年1月2日 ~ 1992年4月6日】

アシモフの人物像

今回、少し物理から離れます。アシモフは

「ロボット3原則」で有名なSF作家です。

実際のアシモフの研究分野としては

生化学なのですが、作家としての顔

の方が有名ですね。調べてみるとアシモフ

はロシア生まれでした。リニアモーターカー

が走る今日の世界を見せてあげたいと、

個人的には考えてしまいます。また、

もはやロボットも日常的ですよね。そんな未来を

アシモフは20世紀のうちに予見していました。

20世紀の知見で機械化が進む未来を描き、

進んだらどうなるだろうと考えますが、

好ましい方向性を指摘して大衆に問いかける。

つまり、科学の夢を投げかけていたのです。

アシモフの作家デビュー

アシモフは1938年に初めてのSF作品を雑誌に

持ちかけて認められ、1939年から作家デビュー

しています。才能を認めるアメリカっぽいですね。

この年にコロンビア大学を卒業して

大学院に進みます。

所謂、ロボット三原則などを提唱していますが、

時代は第二次大戦に向かう時代で

アシモフは学校を休学したりしています。

科学が知識を集めるスピードの速さに

アシモフは驚愕していて、社会が叡智を集結

する事を求めていました。相変わらず分断

している世界をどう見るのでしょうか。

意外な結末

そして、意外な最後なのですが、アシモフは

1992年にHIV感染が元でこの世を去ってます。

心臓バイパス手術の時に使用された

輸血血液が感染源のようです。

本当に色々と経験してきた人生だったと思います。








以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。

nowkouji226@gmail.com

2020/08/24_初回投稿
2021/08/04_改定投稿

【舞台別のご紹介へ】
【時代別(順)のご紹介】
【アメリカ関連のご紹介へ】

【このサイトはAmazonアソシエイトに参加しています】

ジョン・バーディーン
【1908年生まれ-2021/8/4原稿改定】

「バーディン」の原稿を投稿します。原稿文字数は1310文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/30(金)朝の時点でフォロワーは合計【12092】でした。定点記録を残すと、7/23と7/25と7/30でf/f数は、
コウジ改 SyvE.804/3599と826/3625と868/3655.
バンドリ sv2F.810/2666と824/2682と860/2720.
浩司   BLLp.578/2339と585/2340と609/2378.
kouji kouji.1971/3298と1992/3309と2018/3339.
作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】

【1908年5月23日 ~ 1991年1月30日】

本稿は何度も追記したいです。

それは私にとって、関心のある

低温電子物性の話だからです。

今回は極低温での現象理解を進めた

バーディンについてご紹介致します。

バーディンは二回のノーベル賞を受けています。

一回目はベル研での仲間とのトランジスタの発明、

二回目は以下に記載するBCS理論です。

前述したカメリー・オネスの超電導現象の発見以後、

その現象を説明する為に色々な理論が試みられ

たでしょうが、イリノイ大学のバーディンを中心

とした3人がBCS理論を確立します。バーディン、

レオン・クーパー、ロバート・シュリーファー  

3人の名前の頭文字を並べてBCS理論と呼ばれます。

このコンビの始まりはバーディンがクーパーを招聘する事から始まります。そこにバーディン研究室の大学院生、シュリーファー が加わり研究が進みます。

BCS理論の内容はフォノン(音子)を介した電子が対になった結果(クーパ対の考え方)、そのコンビがスピンを打ち消し合って結合するという理論でした。相転移温度をその理論で説明し、今日、超伝導を考えるうえで理論の基礎となっています。
このBCS理論の妙はフェルミオンである電子が凝縮状態をとるところにあります。本来、同じ状態をとる事が出来ない電子が対になってボゾン化することで巨視的な現象にとして観察される超伝導現象が実現するのです。

そもそも、金属中を移動する電子を単純な質点のモデルで考えると正の荷電をもった原子核の間を負の電荷が自由自在に無抵抗で動き回る事は到底出来ません。何らかの相互作用が起きて抵抗に繋がります。ところが、電子の波動関数を考え、波動的側面が顕著に現れる状態を作っていくのが超伝導現象だと言えます。その条件として大事な尺度の一つが温度だったのです。現時点での関心は遷移を起こす温度のメカニズムを解明する事です。現在での転移温度は高温超電導と言ってもマイナス百℃以下ですので転移温度に至るまでは液体ヘリウムや液体窒素を使って冷却しなければいけません。実用化しているリニアモーターカーや量子コンピューター等の応用技術も冷却した上で超電導現象を実現しているので、コストと安定性が課題となっています。転移温度が変わっていって、より常温に近い温度で現象を起こすことが出来ればメリットは非常に大きいです。温度に関わるメカニズムとして中嶋貞雄がバーディンに与えたヒントが繰り込み理論の応用でした。そのヒントは手法だったともいえますが、電気伝導に関わる要素(素粒子)が「どういった条件で」、「どういった役割を果たすか」が重要です。その手掛かりの一つが「ゆらぎ」に関するメカニズムではないかと考えている人が居ます。今後の大きな課題です。






以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。

nowkouji226@gmail.com

2020/09/15_初稿投稿
2021/08/01_改定投稿

【舞台別のご紹介へ】
【時代別(順)のご紹介】
【アメリカ関連のご紹介へ】
【熱統計関連のご紹介へ】
【量子力学関係へ】


詳しくはコチラへ→【テキストポン】


【このサイトはAmazonアソシエイトに参加しています】

石原純
【1881年1月15日生まれ‐2021/08/04原稿改定】

「石原純(あつし・じゅん)」の原稿を投稿します。原稿文字数は726文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/23(金)朝の時点でフォロワーは合計【11902】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1881年1月15日生まれ ~ 1947年1月19日没】



日本の物理学史の中から一人、


ご紹介します。2021年の時点で


同性同名の方が現存されますが、


これは19世紀の物理学者の記事です。



多彩な活躍をした石原さん

山川健次郎田中館愛橘長岡半太郎


本多光太郎寺田寅彦、、、、


と続く黎明期の中で異色の人生を歩み


ました。アインシュタイン来日時に


通訳を務め、西田幾多郎に不確定関係


を伝えたパイオニアです。


日本物理学界に多大な貢献を残しつつ、


女性関係で帝大を去ります。あーぁあ。


そもそも石原さん、歌人の


伊藤左千夫の弟子なので斉藤茂吉に家庭を


大事にするように説得されたりしていますが、


聞く耳を持たずにのめり込んでいたようです。


アララギの発刊に携わったメンバーでしたが、


この事件でアララギ脱会に至ります。


と、ここまではwikipedia等に載っている


範疇の話です。


 
語り継がれた石原さん

私的な思い出としては、大学の恩師が彼を評価


していて、講義の中で情熱を込めて語ってくれて


いた時間です。日本の科学の為に多大な功績を


残しながらも学会と距離を置き、交通事故による


不慮の最後を遂げた人生を思いを込めて暖かい


語り口で講じていました。


 
〆最後に〆




以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。、


nowkouji226@gmail.com


2020/11/11_初回投稿
2021/07/25_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
【日本関連のご紹介】
【東大関連のご紹介】
力学関係のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】


 

アウグスト・ピカール
【1884年生まれ-2021/8/04原稿改定】


  1. 「ピカール」の原稿を投稿します。原稿文字数は776文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/23(金)朝の時点でフォロワーは合計【11902】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】



アウグスト・ピカールは宇宙と深海に


大いなる関心を持っていた人でした。


 

アウグスト・ピカールはスイスのフランス系家庭に生まれ


少年時代から科学に興味を示し、


チューリッヒ工科大学で物理学を学び宇宙線、


オゾンといった研究をしていくのですが


その探究心は冒険に繋がっていくダナミックなものでした。





まず、アウグスト・ピカールは成層圏に挑みます。


フランス国立基金から資金援助を得て、


自らが設計した気球に水素を詰めて上空16,000 mの


成層圏に達します。これは気球による世界初の達成でした。


空の果てに人類が初めてたどり着いたのです。


その先は遥かなる宇宙なのです。


 

その後、ピカールはバチスカーフと名付けた


深海潜水艇で深海に挑みます。


上空の果ての次は深海の果てを目指します。


バチスカーフは鉄の錘を抱いて沈んでいき


浮き上がる時には錘を切り離す


という仕組みで探検をします。浮力はガソリンでした。


 

そして、冒険家ピカールの血は代々受け継がれていきます。


息子であるジャック・ピカールを伴ってバチスカーフに搭乗し、


マリアナ海溝のチャレンジャー海淵到達を達成しています。


更には孫のベルトラン・ピカールが世界で初めて、


気球による無着陸世界一周を達成しています。


おじいさんの冒険を思い起こしながら飛んでいたのでしょう。


思いは空のかなたへ。素敵な一族ですね。






以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。
nowkouji226@gmail.com


2021/01/19_初稿投稿
2021/07/23_改定投稿


纏めサイトTOPへ】
舞台別のご紹介
時代別(順)のご紹介】
フランス関連のご紹介へ】
スイス関係のご紹介へ】
力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】


2021年08月03日

R・P・ファインマン
【1918年生まれ-2021/8/3原稿改定】

本日、ファインマンの原稿を改定します。原稿文字数は956文字です。8月に入り、英語表記と記事増補を考えています。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/30(金)朝の時点でフォロワーは合計【12092】でした。定点記録を残すと、7/23と7/25と7/30でf/f数は、
コウジ改 SyvE.804/3599と826/3625と868/3655.
バンドリ sv2F.810/2666と824/2682と860/2720.
浩司   BLLp.578/2339と585/2340と609/2378.
kouji kouji.1971/3298と1992/3309と2018/3339.
作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1918年5月11日 〜1988年2月15日】



アメリカのファインマンは


学生時代に使っていた教科書


の著者でした。世界中で


その教科書は使われています。


量子電磁気学の業績で


朝永 振一郎と共にノーベル


を受賞しています。。


他、ファインマンの名を聞いて真っ先に思い出す
のは経路積分です。数学的な定式化が驚異的に思えました。
【参考_Wikipedeiaの記載:経路積分


簡単にファインマンの考えを纏めると二つの経路を初めに考えて、其々からの寄与を考えていく時に拡張が出来て二つ、三つ、四つ、、、無限大の経路。と経路を無限大に広げていくのです。もう少し具体的にファインマンの考えを紹介しますと、ダブルスリットの実験を拡張した場合に何も無い空間を考える事になっていくという考え方なのです。この経路に関するファインマンの考え方には数学的な難点も指摘されているようですが物理の世界では非常に面白い考えであり、考え進めていきたい視点です。また、素粒子の反応を模式化したファインマンダイアグラムは視覚的に、直感的に秀逸です。本当に天才の技に見えました。


業績の話が先行しましたが、最後に生い立ち,ひとつながりの話を盛り込みます。ファインマンはユダヤ人故に苦労を強いられています。ユダヤ人枠で大学に入れなかったりした時代もありましたがMITやプリンストン大学で研究を進めます。電気力学の量子論についてのゼミをプリンストン大学で行うことになった時には、ゼミの話を聞きつけてユージン・ウィグナー、ヘンリー・ノリス・ラッセル、フォン・ノイマン、E・パウリアインシュタインが参加していたそうです。そして、ファインマンはアインシュタインと共に原爆開発の計画であるマンハッタン計画に参画しています。その中で、率直に意見を述べたメモが没後の2018年にサザビースで落札されています。






以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/09/01_初版投稿
2021/08/03_改定投稿


纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
アメリカ関係のご紹介へ】
電磁気関係へ】
量子力学関係へ】


詳しくはコチラへ→【テキストポン】


【このサイトはAmazonアソシエイトに参加しています】

ニコライ・N・ボゴリューボフ
【1909年生まれ‐2021/8/3原稿改定】

「ボゴリューボフ」の原稿を投稿します。原稿文字数は671文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/30(金)朝の時点でフォロワーは合計【12092】でした。定点記録を残すと、7/23と7/25と7/30でf/f数は、
コウジ改 SyvE.804/3599と826/3625と868/3655.
バンドリ sv2F.810/2666と824/2682と860/2720.
浩司   BLLp.578/2339と585/2340と609/2378.
kouji kouji.1971/3298と1992/3309と2018/3339.
作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1909年8月21日 ~ 1992年2月13日】



名前から分かるかとおもいますが、


ボゴリューボフはロシアの物理学者です。


本稿を記載するにあたり改めてボゴリューボフ


の「人となり」を調べてみましたが


伝わっていません。その名で検索をかけると


私のブログが上位に出てきてしまう有様です。


ボゴリューコフは20世紀初頭の生まれなので


革命前後のソビエト連邦で青年期を迎え、


閉鎖的な学会環境で研究を進めていたと


考えるべきなのでしょう。因みに、


プランクメダルを受けていますので


ドイツ関係の画像を使っています。


何よりも、数学的に


ボゴリューボフ変換と呼ばれる考えを打ち出し


行列形式で表される状態遷移を対角化する事で


表現していると言えるでしょう。


別言すれば、観測にかかる定常状態を
数学手法を使って作りだしています。

つまり、数学的にいう固有値問題に帰着させて
定常的な状態を表現しているのです。


 

この定常状態を使い、ボゴリューボフは
現実にヘリウムの超流動状態を表しました。
ボーズ粒子の超流動をボゴリューボフ変換で示し
フェルミ粒子の超電導をボゴリューボフ変換で
示す訳です。役にたちますね。







以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/08_初稿投稿
2021/08/03_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
ドイツ関連のご紹介へ】
熱統計関連のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】

湯川秀樹
【1907年生まれ-2021/8/3原稿改定】

「湯川秀樹」の原稿を投稿します。原稿文字数は1442文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/30(金)朝の時点でフォロワーは合計【12092】でした。定点記録を残すと、7/23と7/25と7/30でf/f数は、
コウジ改 SyvE.804/3599と826/3625と868/3655.
バンドリ sv2F.810/2666と824/2682と860/2720.
浩司   BLLp.578/2339と585/2340と609/2378.
kouji kouji.1971/3298と1992/3309と2018/3339.
作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1907年1月23日生まれ ~ 1981年9月8日没】


【↑_Credit:Wikipedia】



冒頭に紹介している本「旅人」は湯川秀樹の


自伝です。その湯川秀樹は朝永振一郎と同じ時代


を生きています。


互いに刺激しあう関係を築き、共に


時代のテーマに取り組んでいます。


伝記を読んでいくと湯川秀樹が情熱を持って


物理学に取り組んでいた様子が分かります。


色々な所で引用されているのですが


「アイデアの秘訣は、執念である。」


と湯川秀樹は明言しています。一見、


不可解な現象を紐解き、単純明快な原理を抽出


する仕事をしてきたのです。そもそも、


湯川秀樹の関心は物質の相互作用であって、


その世界は全く目に見えません。彼は


情熱で綿密に話を組み立てます。


重力・電磁力以外の微細粒子間の


相互作用を引き起こす「強い力」


に着目して議論を進めました。


湯川秀樹の時代には場の考えが発展


していく過程で原子の中での相互作用を


湯川秀樹は中間子という概念で紐解いたのです。


湯川秀樹のアイディアは「場を担う粒子」


という考え方です。そもそも、重力(万有引力)


を考えると二つの質点が存在した時に


その質点同士が互いを引き合い現象が説明


されます。この明快なモデルに反して、


「電子の数百倍の質量をもつ中間子の仮定」


は当時の観測とは別に設定されていて、


ボーアハイゼンベルクは内容の吟味


を求めていたと言われます。


最終的には1947年の英国物理学者セシル・パウエルによる「中間子観測」が契機となり、湯川秀樹はノーベル賞を受けます。「物理での概念確立の危うさ」を感じてしまう歴史です。理論的な要請と言えなくはないですが、辻褄合わせの為の概念は色々な角度から真剣に議論されなければいけません。別の言い方をすれば、その概念を磨き上げて納得のいく説明をすることが出来た時に「大きな仕事をした」と言えるのではないでしょうか。


湯川秀樹はボゾンの一つとして中間子を仮定して強い力を説明してみせたのです。


湯川秀樹の業績は京都大学の原子力研究を初めとして日本の物理学者たちに引き継がれています。
個人的なご縁としては私が幼少時代を過ごした東京板橋にあった理化学研究所の分室で教鞭をとっていたようです。少し時代がずれますが、私の故郷で彼が活動していたと思うと不思議な気持ちです。ノーベル賞受賞者の朝永振一郎もそこに居ました。最近までは、理化学研究所は本駒込にも拠点があり、今でもホンダ朝霞の近くに拠点があります。何故か、と調べを続けていったら埼玉県にある平林寺に創始者の一人である大河内氏の墓所があります。そんな、理化学研の霊的な側面を知って、私は何となく納得してしまいました。


また、湯川秀樹はラッセル=アインシュタイン宣言にも参加しています。以前のブログでもこの関連の話は盛り込んでいますが私は研究者が異議を唱えても社会が破滅的な兵器を作る現実を大変、問題だと思っています。アインシュタインであれ湯川秀樹であれアシモフであれ社会が叡智を集結して対応することを私は夢見ています。






以上、間違い・ご意見は
以下アドレスまでお願いします。
全て返信は出来ていませんが
適時、返信・改定をします。


nowkouji226@gmail.com


2020/09/07_初稿投稿
2021/08/03_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
【日本関連のご紹介】
【京大関連のご紹介】
纏めサイトTOPへ】
電磁気関係へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】

アンリ・ポアンカレ
【1854年生れ ‐2021/08/03原稿改定】

「ポアンカレ」の原稿を投稿します。原稿文字数は861文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1854年4月29日生れ ~ 1912年7月17日没】



その名を書下すと、ジュール=アンリ・ポアンカレ


(Jules-Henri Poincaré)。多様体における考察である


ポアンカレ予想で、よく知られています。また、


小さなトリビアなのですが、J・ポアンカレは


フランス大統領の従兄弟でもありました。


 

ポアンカレは数学、物理学、天文学において


名を残しています。残した業績は大きいのです。しかし、


その数学的立場には賛否両論があります。


一般の見方をしたら分からない程度の賛否両論のでしょうね。

ポアンカレは第一回ソルベーユ会議にも出席していて、


マリ・キューリとの写真は色々な所で紹介されています。


どんな話をしていたのか興味深いですね。


時間が出来たら議事録探して分析したいです。


ポアンカレの思考方法で独自性を見出せるでしょう。


他、ポアンカレの業績としては


位相幾何学の分野でのトポロジーの


概念形成などもあります。ヒルベルト形式主義よりも


直感に重きを置くスタイルは、いかにも数学者らしい、


とも思えますが、特定の人からみたら


意味不明に思えたりするのでしょう。また、


とある数学的な発見時に、思考過程を詳細に残し、


思考プロセスでの心理学的側面の研究に


影響を残したとも言われています。


 

また、以下の著作は何時か時間が出来たら


読んでみたいと考えているポアンカレの著作です。


個人的な課題ですね。


・事実の選択・偶然_寺田寅彦訳_岩波書店


・科学と仮説_湯川秀樹・井上健編_中央公論


・科学の価値_田辺元 訳_一穂社






以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/31_初版投稿
2021/07/25_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
フランス関連のご紹介へ】
熱統計関連のご紹介へ】
力学関係のご紹介へ】


【このサイトはAmazonアソシエイトに参加しています】

P・エーレンフェスト
【1880年生まれ‐2021/8/03原稿改定】

「エーレンフェスト」の原稿を投稿します。原稿文字数は2363文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/23(金)朝の時点でフォロワーは合計【11902】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】

【1880年1月18日生まれ ~ 1933年9月25日没】

【←ローレンツとアインシュタイン_
エーレンフェストの自宅前で
Crediit;:_ pinterest.com_】



ポール・エーレンフェストは統計力学と量子力学を


洗練された形で結びつけたと言えるでしょう。


2つの指標である期待値と波動関数を結びつけたのです。


また、本稿の中で使っている写真も意義深いです。


アインシュタインローレンツという2人の偉人を


より強く結びつけているのがエーレンフェストだからです。


エーレンフェストの家で沢山の考えが進んでいった筈なのです 。

オーストリアに生まれウィーンで育った


エーレンフェストは研究生活において


非常に恵まれていたと思います。


まず、ボルツマンの講義を受ける環境をもち、熱力学の考えや気体分子の運動論に大変、感銘を受けます。ミクロの世界と可視下で想像できる質点モデルの世界を繋げる事が出来たのです。更に小旅行でローレンツに出合い、互いに刺激を受け、その後、アインシュタインと交友関係を結びます。アインシュタインとエーレンフェストは共に
ユダヤ系でしたので多くの
「思想」・「話題」を共有したことでしょう。


冒頭に、エーレンフェストは2つの指標、期待値と波動関数を関連付けたと記載しましたが「期待値」とは簡単に言えば「平均値」の事です。例えば、距離で考えてみると精度を上げるほど実測値には幅が出てきます。4.155oだったり4.154oだったりします。そこで数回の測定の平均値をとって確からしいと思われる数値を決めます。期待値です。期待値という言葉を使う時には分散値とか誤差とか併記され統計的な処理がなされていると思って下さい。
【より細かい話としては離散値だけでなく連続値
に対して
期待値・分散値を考えていきます。】


また、エーレンフェストが考えていたもう一つの概念である波動関数は、細かい世界を表現するにあたり、当時は観測にかからない、とも考えられたミクロな対象に対する物理量を表現する数学的手段です。ヒルベルト空間で議論される関数で、無限次元の規定をとります。ミクロの物質には粒子性と波動性が混在する事情もあり、双方を具現化する波動関数が登場します。


エーレンフェストの定式化した定理によると
波動性が顕著に表れていると思える現象でも
その運動量や速度が求まり粒子と比較して
議論する事が可能です。2つの手法が繋がるのです。



フランスのド・ブロイが提唱した物質波という概念は論文審査の時点で独逸のアインシュタインが高く評価して、オランダのエーレンフェストが定量的な議論を深めたのです。その概念形成の達成は国を超えて人々が求め続けた疑問解決でした。そして今では大学生であっても共有できている人類の知識なのです。また、ボルツマンの没後にエーレンフェストはその大きな業績をいくつも纏めて発表しました。そうした活動を知った人々は当然、エレンフェストに期待を寄せます。ボルツマンが執筆中だった未完の仕事にエーレンフェストは着手します。数学者が統計力学を考える仕事だったそうですが、形になっていないモデルの検証に対して鋭い考察がありました。また、棚上げになっていた問題を洗い出して整理していました。その作業には数学者であったエーレンフェストの奥様が協力していて、共に数学モデルを駆使して未解決の物理での問題に挑んでいました。


また、
エーレンフェストは優れた教育者でした。
1912年にドイツ語圏の大学訪問の中でプランクに会い、ゾンマーフェルトに会い、アインシュタインに会います。
そしてライデン大学でのローレンツの地位を引き継ぎます。
ライデン大学の教授を務めた彼のもとには
多彩な人材が集まり育っていきました。
彼は弟子達をヨーロッパの研究機関で修行
する事を勧め、海外の違った環境で研究を
する事を奨励しました。
ヘンリク・クラマース、
ジェラルド・カイパー
などが学生として所属、
グンナー・ノルドシュトルム、
エンリコ・フェルミ
イーゴリ・タム、オスカル・クライン、
ロバート・オッペンハイマー
ハイゼンベルク
ポール・ディラック
_が外国人研究者として

長期間研究をしました。

ボルツマンを思い返すとエーレンフェストという人が点であって、その点がオーストリアという糸でボルツマンと結ばれていったような気がします。そして、ボルツマンの考えを受け継いだエーレンフェストが他国の糸と絡み合っていく気がします。また、ボルツマンの考えを受け継いだシュレディンガーがエーレンフェストの研究室で議論したディラックと同時に1933年のノーベル物理学賞を受賞します。人を育てるという大変さと重要さを感じます。大きな仕事です。


そして晩年なのですが、エーレンフェストは
重度のうつ病に苦しんでいたようです。
アインシュタインが仕事量を減らすように
職場に働きかけたたようです。
最後はダウン症だった末っ子Wassikを
打ち殺し自らも命を絶ちます。
ご冥福をお祈りするしか出来ません。
彼が考え抜いた末の結論だったのです。


そして、エーレンフェストが始めた
ライデン大学での夜間・物理学コロキウムは、
今でも「Colloquium Ehrenfestii」と呼ばれ、
続いているそうです。
今晩も議論しているかも知れません。





以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/21_初版投稿
2021/07/23_改定投稿


舞台別のご紹介へ】
時代別(順)のご紹介】

オーストリア関連のご紹介へ】
ウィーン大関連のご紹介へ】
オランダ関係の紹介へ】
ライデン大学のご紹介】

熱統計関連のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】

2021年08月02日

ハンス・アルプレヒト・ベーテ
【1906年生まれ-2021/8/02原稿改定】

「ハンズ・ベーテ」の原稿を投稿します。原稿文字数は1131文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/30(金)朝の時点でフォロワーは合計【12092】でした。定点記録を残すと、7/23と7/25と7/30でf/f数は、
コウジ改 SyvE.804/3599と826/3625と868/3655.
バンドリ sv2F.810/2666と824/2682と860/2720.
浩司   BLLp.578/2339と585/2340と609/2378.
kouji kouji.1971/3298と1992/3309と2018/3339.
作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1906年7月2日生まれ ~ 2005年3月6日没】


ベーテはユダヤ系なのでナチス政権下で


苦労します。国を追われイギリスに逃れ、


マンチェスター大学で職を得ます。


第二次大戦の間はオッペンハイマー


招きでUCB(カリフォルニア大バークレー校)


の特別会議に参加します。そこでは核兵器の


開発が始められ、ロスアラモス研究所が


出来るとベーテは理論部門の監督を務めます。


戦後はトルーマン大統領が水素爆弾の開発


を断行した流れでベーテは引き続き開発


において重要な役割を果たします。


その他、ベーテの業績としては大きく二点があげられると思います。一つは恒星の内部で核融合反応が起きうると指摘をして、重力と釣り合う内側からの力を考えたことです。星の進化を考える時に超高圧下で起こりうる現象を予見したのです。現在考えられている進化過程でベーテの考え方は不可欠です。大まかに星の進化を考えていくと「@万有引力でガスや、チリが集まっていき、段々に中心方向に向かって『まとまり』が出来てきてAまとまりの質量がどんどん増えていくのですが、この時にB星の内部で内部で核融合反応が起きて外側方向に広がる力が働き、C万有引力で集まる力と内部から核反応で外側へ広がっていく力がつりあう」と考えられています。そして、重量が増えていき星の進化が進むと恒星として光を発するようになり、白色矮星、ブラックホールの段階を踏むだろうと考えます。地球や木星などの光っていない星は現在内部からの核融合の膨張と、内部への引力でが釣り合っている状態です。また星の話とは別に、加速器で実現される様々な現象を説明していく内に超高圧下・超高温下で起こり得る原子核の崩壊状態をベーテは理論立てて説明して新たな知見としました。


また、ベーテのもう一つの業績は量子電磁気学に繋がっていくラムシフトを非相対論的に厳密に突き詰めていって極めて正確な計算をしていったのです。


この面でファインマンは弟子にあたります。


ベーテは大変な時代を生きた偉大な理論家でした。


「原子核反応理論への貢献、特に星の内部


におけるエネルギー生成に関する発見」で


ノーベル賞を受けています。






以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。


nowkouji226@gmail.com


2020/11/23_初版投稿
2020/08/02_改定投稿


舞台別のご紹介へ】
時代別(順)のご紹介】
【ドイツ関係のご紹介へ】
【イギリス関係のご紹介へ】

アメリカ関連のご紹介へ】
イェール大学関連のご紹介へ】
UCBのご紹介へ】

熱統計関連へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】


詳しくはコチラへ→【テキストポン】

レフ・D・ランダウ【1908年生まれ‐2021/8/2原稿改定】

「ランダウ」の原稿を投稿します。原稿文字数は811文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/30(金)朝の時点でフォロワーは合計【12092】でした。定点記録を残すと、7/23と7/25と7/30でf/f数は、
コウジ改 SyvE.804/3599と826/3625と868/3655.
バンドリ sv2F.810/2666と824/2682と860/2720.
浩司   BLLp.578/2339と585/2340と609/2378.
kouji kouji.1971/3298と1992/3309と2018/3339.
作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1908年1月22日生まれ ~ 1968年4月1日没】



その名を書き下しておくと


レフ・ダヴィドヴィッチ・ランダウです。


ランダウは有名なユダヤ系ロシア人の


科学者で日本でも教科書を目にしたことが


あるのではないでしょうか。1962年に


「絶対零度近傍でのヘリウムの理論的研究」


でノーベル物理学賞を受けています。


さて、ランダウは石油技術者の父と教育者の母


から生まれます。12歳で微分法を理解し、


14歳で国立大学に入学、物理数学科と化学学科


を同時に履修します。19歳で学士の称号を


得るとレニングラード物理工学研究所で


電磁場の中での電子性質である量子電磁気学


を研究していきます。そしてコペンハーゲン


にあるボーアの研究所で大きな影響を受けました。


その後、ケンブリッジでディラック・カピッツァと共同研究を進め所謂「ランダウ反磁性」の研究をまとめます。その後にチューリッヒでパウリと共同研究をした後にランダウはレニングラードに戻りました。


ランダウの幸せだった時期を中心に記載しましたがモスクワの研究所で要職を務めていながらスターリン批判をしたことで、刑務所に服役したりしていますそ、交通事故にあったりもしています。水素爆弾の製造にも不本意ながら加担しています。そして60歳でこの世を去ります。


ただ、ランダウの業績は不変です。準粒子・フェルミ流体やギンツブルグ&ランダウ理論は低温凝縮系の世界を大きく進ませました。






以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に関しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/09/24_初稿投稿
2021/08/02_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
【アメリカ関係のご紹介へ】
【ケンブリッジ大学のご紹介へ】
【イギリス関係のご紹介】
【デンマーク関係へ】
熱統計関連のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】

矢野 健太郎
【1912年生まれ‐2021/8/2原稿改定】

「矢野健太郎」の原稿を投稿します。原稿文字数は970文字です。また。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。更に学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。フォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1912年3月1日生まれ ~ 1993年12月25日没】



矢野健太郎は私が使っていた教科書の著者でした。


同名の方で漫画家の「矢野健太郎」と


サッカー選手の「矢野健太郎」が居ますが、


本稿は数学者の矢野健太郎に関する原稿です。


因みに、名前の「矢野」に関するエピソード


として有名なものがあります。外人との雑談


をする中で「矢野」って英語でいえばどんな表現?


と聞かれた際に矢野さんは当意即妙で


「矢」=「Vector」、「野(野原)」=「Field」


だから「矢野」って「ベクトル場」ですね。


と答えたそうです。当然、外人は大喜び。


専門は幾何学関係か解析学関係だったかと。


彫刻家の子として生まれ東京帝大で学びます。


 

矢野健太郎はは小学生時代にアインシュタインが来日し


刺激を受けました。また、帝大の山内恭彦先生から


物理学の理解には代数幾何学が必要だと教えを受けました。


物理現象のモデル化の有用性を感じたのかと思えます。


その後、矢野はカルタン先生の下で学ぶべく


パリ大学留学します。そこで


纏めた博士論文は射影接続空間に


関する論文でした。この頃から


統一場理論に関心を持ちます。


 

戦後にはプリンストン高等研究所で微分幾何学の


研究をしていき、同時期に在席していたアインシュタイン


交流を持ちます。奥様と一緒にアインシュタイン


写った写真は大事にしていて、家宝としたそうです。


 

矢野健太郎の著者は多岐に渡り、


受験参考書の定番だった


解法のテクニック」は矢野健太郎の著作です。


また、アイザックアシモフポアンカレ


アインシュタイン書物を日本に


紹介する際に監修をしたりしました。


私や皆さんが知った情報も


矢野健太郎の仕事かも知れませんね。そんな、


矢野健太郎はバイオリンが好きな静かな人でした。


安らかな印象を持ち続けたいと思います。






以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/11/12_初稿投稿
2021/08/02_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
【日本関連のご紹介】
【東大関連のご紹介】
力学関係のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】


テキストポンへの査定申込はコチラ

シュレディンガー
【1887年生まれ-2021/8/02原稿改定】

「シュレディンガー」の原稿を投稿します。原稿文字数は1522文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/23(金)朝の時点でフォロワーは合計【11902】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1887年8月12日生まれ ~ 1961年1月4日没】


シュレディンガーはオーストリア=ハンガリー帝国


に生まれました。彼はその父に影響を受けた


と言われまずが、その父はバイエルン王国の生まれで、


広い教養をもった人だったようです。その点が、


シュレディンガーの性格に影響しているかと思われます。


色々調べるにつけ分かってくるのですが、


シュレディンガーの考えは物理学の枠に囚われない


所があります。未知の事象を捕まえていく際に、


また対象を色々な視野から洗い出していく際に、


活用できるような「考え方のモデル」が


沢山作られていったのでしょう。


他の人が作りえないような独自のモデルを作るという


大きな目標が物理学にはあります。


シュレディンガーは猫の例えで有名です。


具体的には「量子力学的現象」と連動して


「猫を毒殺する仮想実験」を議論しました。


議論の帰結としてミクロな物理現象が


確率的な実在として表現出来るという


シュレディンガーの解釈が完成したのです。


具体的には


空間的に広がる確率波を数学的に考えていきます。


確率波の時間発展はシュレディンガー方程式


と呼ばれ量子力学の基礎方程式となるのです。私は


大学院時代にそこから考え始めて超伝導現象に挑みました。


新しい現象理解に繋がっていったのです。


今もその枠組みで議論がされています。


世界中で議論がされています。


そうした量子力学の表現形式としては、


ハイゼンベルク形式とシュレディンガー形式があり、


その2つは完全に等価です。数学の側面から


大まかに表現すると、ハイゼンベルク形式は


ヒルベルト空間上の行列とベクトルを使い、


シュレディンガー形式では同空間での


演算子と波動関数を使います。共に


直感に響く側面を持ち相補して全体を補い合うのですが、


私には「粒子の二面性を感じる時などに初学者が


イメージを作る段階」ではシュレディンガー形式


が適していると思われました。そんな記述を


シュレディンガーは纏めたのです。


最後に、もう一度シュレディンガーの人となり


に話を戻したいと思います。シュレディンガー


はウィーン大学でボルツマンの後任であるハゼノール


の教えを受けていて、ボルツマンと関わりが出来たのです。


彼はボルツマンの示した道筋を


受け継いでいた人でした彼はボルツマンに対して


い想いを持っていました。曰く、


「ボルツマンの考えた道こそ
科学に於ける
私の初恋
と言っても良い亅_


【万有百科大事典 16 物理・数学の章より引用しました。】


いわば、ボルツマンが完全に確立出来なかった原子論を


シュレディンガーは彼らしい表現方法で具現化したのです。


また、
ボルツマンを中心に考えると、もう一人の弟子である


エーレンフェストが思い浮かびます。


彼は統計力学の切り口から原子の表現に挑みました。


エーレンフェストの定理は個別粒子の運動を


分かり易い形で記述すると思えます。


他方でシュレディンガーは波動的側面から


原子の表現に挑みました。量子力学の初学者がこの二人の


どちらを先に知るかといえばシュレディンガーでしょう。


量子力学の議論の範囲で説明出来るからです。


大学ごとの教育カリキュラムで別途統計関係の講義


との兼ね合いも考えなければいけません。ただ、


歴史的にはシュレディンガーの理解が後なのです。


そして二人ともボルツマンの考えを受け継いでいるのです。





以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。


nowkouji226@gmail.com


2020/08/16_初稿投稿
2021/07/24_原稿改定


舞台別のご紹介へ】
時代別(順)のご紹介】

オーストリア関連のご紹介へ】
ウィーン大関連のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】



ピーター・デバイ
【1884年生まれ-2021/8/01原稿改定】

 

「デバイ」の原稿を投稿します。原稿文字数は1041文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/23(金)朝の時点でフォロワーは合計【11902】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1884年3月24日生まれ ~ 1966年11月2日没】


デバイはオランダの物理学者にして化学者です。


ドイツで教授を務めていたりもしました。


戦時には渡米してコーネル大学で教授を務めていました。


そんなデバイは、比熱の定式化で名を残しています。


また、


電子の双極子モーメントを使って誘電率の説明をしました。


自由電子が内部に存在しない誘電体を考えた時に、


その物質内部で電場付加時に電子と原子核は


反対方向に移動して双極子を作ります。


この考えで「双極子モーメント」が定義され、


その単位体積当たりの値を吟味することで


電場と誘電率の関係が示せたのです。
誘電率は真空中を基準とした時に


アルミナ、雲母、NaCl、水晶、ダイヤモンドで
5から9の値をとり、水(純水)で80の値をとり、
メチルアルコールで33の値をとります。
【理科年表より】_


こうした業績からデバイは


分子モーメントの単位として名を残しています。


また、


デバイの別の業績としては比熱に対しての物もあります。


一般的に比熱のモデルですが、今日では一般的に


アインシュタイン・モデルとデバイ・モデルが使われます。


アインシュタインの比熱モデルは拘束された


原子核のがバネでつながれたイメージです。


二次元で例えてみると碁盤の線の交点に原子があって、


交点間の線にバネがあって隣の交点に熱を伝えます。


交点に足る特定の原子が激しく動くとその隣に


隣接する上下左右4点の原子がバネを介して


エネルギーを受けるイメージのモデルです。


対してデバイ・モデルは音子(フォノン)が


箱の中を動き回るモデルであって理想気体が


運動する様子に近いです。デバイモデルでは


長波長の弾性波をモデルに取り入れる事が


出来るうえに、外界とのリンクも勘定しやすいです。


具体的にデバイモデルでは外界とのリンクを取り入れていて、
それは箱の出口となるドアで表されています。


こういった概念を纏めているサイトを見つけました。
以下にURLを記します。
ご参考にして下さい。



(ときわ台学さん)
(別リンク)






以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/25_初稿投稿
2021/07/24_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
オランダ関係へ】
ドイツ関係へ】
アメリカ関係へ】
力学関係へ】
電磁気関係へ】
熱統計力学関係へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】

寺田 寅彦
【1878年生まれ‐2021/8/02原稿改定】

「寺田寅彦」の原稿を投稿します。原稿文字数は866文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】

【1878年11月28日生まれ ~ 1935年12月31日没】



寺田寅彦について


寺田寅彦は物理学者にして俳人です。
文筆家としては牛頓の名を名乗っていたり。
牛頓と書いてニュートンと読ませてました。


熊本の高校で英語教師として赴任していた
夏目漱石と出会います。後に文学に関わる
のはこの出会い大きかったといわれています。
贅沢な人生ですね。夏目漱石の作品
「吾輩は猫である」の中では寒月君として
登場する人物のモデルとなっていて
作品を通じて御人柄に触れた人も多いのでは
ないでしょうか。
因みに、


2021年春の時点で日経新聞で進んでいる連載小説では、その様子が描かれているようです。何時も斜め読みしていますが、寒月さんは淡々と話を進める人で、そのお人柄が伝わってきます。当時の時代背景や文人達との交流が感じられて面白いです。



寺田寅彦と研究について


研究の点でも時代の枠にとらわれない視点を持ち実績を残しています。その中でも評価が高い
研究業績はラウエの業績に刺激を受けた研究で
「X線の結晶透過」についての業績です。先進的な結晶解析に関して考察ををしてます。そして、
1913年に「X線と結晶」をNatureに発表してます。


寺田寅彦の研究人生をふりかえると、
田中舘愛橘に教えを受け、
原子の長岡モデルを提唱した長岡半太郎
教えを受けて、学生結婚をして、
その奥様に早く先立たれ、
東京帝国大理科大学で教鞭をとった後に
ベルリン大学で地球物理学を研究し、
理化学研究所、 東京帝大地震研究所
で研究を続けました。
57歳で亡くなられています。





〆最後に〆


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/09/09_初稿投稿
2021/07/23_改訂投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
【日本関連のご紹介】
【東大関連のご紹介】
力学関係のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】



2021年08月01日

エドワード・テラー【1908年生まれ‐2021/8/1原稿改定】

「E・テラー」の原稿を投稿します。原稿文字数は902文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/30(金)朝の時点でフォロワーは合計【12092】でした。定点記録を残すと、7/23と7/25と7/30でf/f数は、
コウジ改 SyvE.804/3599と826/3625と868/3655.
バンドリ sv2F.810/2666と824/2682と860/2720.
浩司   BLLp.578/2339と585/2340と609/2378.
kouji kouji.1971/3298と1992/3309と2018/3339.
作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1908年1月15日生まれ ~ 2003年9月9日没】



エドワード・テラーは水爆の父と呼ばれ、


晩年のオッペンハイマーと対立します。


エドワード・テラーはハンガリーのブタペスト


で弁護士の父と4か国語を使う母から生まれ


ました。ユダヤ系であったエドワード・テラー


の父は職を追われ、ハンガリー・ドイツ・アメリカ


と移住を重ねました。ただ、学問の世界では良い出会い


に恵まれています。ハイゼンベルクの下で博士論文


を書き、ボーアの居たコペンハーゲンで有益な


時間を過ごします。そうした中で原子核物理学


分子物物理で多くの業績を残しました。


ヤーン・テラー効果やBETの吸着等温式は彼の業績です。


アインシュタインと共にエドワード・テラーは


原爆の研究をアメリカ政府に働きかけ、実際に


その計画は進んでいきます。政治的な思想では


ドイツ時代に資本主義の崩壊を目の当たりにした


テラーは共産主義に対して当初は関心を抱いて


いたようです。ところが、友人のランダウ


ソ連政府に逮捕された時期に反共思想を強め


ます。反共思想と新兵器の開発にかける熱意


が結びついていくのです。そしてまた、


その時期以降にエドワード・テラーとオッペンハイマーとの確執の始まります。特に兵器としての原爆の利用に関しては
エドワード・テラーとオッペンハイマーは


対極の立場をとります。
エドワード・テラーは原爆開発の推進派で、
オッペンハイマーは否定派でした。


実際に、
エドワード・テラーは原爆・水爆と


兵器の開発の中心に居ました。水爆を


「My・Baby」と呼んでいた


と言われています。その立場は変わらず、


生涯その事を悔いることはなかったと言われています。
エドワード・テラーはそんな研究人生を歩みました。






以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/22_初稿投稿
2021/08/01_改定投稿


舞台別のご紹介】
時代別(順)のご紹介】
ドイツ関係のご紹介へ】
イギリス関係のご紹介へ】
アメリカ関係のご紹介へ】
UCBのご紹介へ】
デンマーク関係へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】

朝永 振一郎
【1906年生まれ-2021/8/1原稿改定】

「朝永振一郎」の原稿を投稿します。原稿文字数は711文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/30(金)朝の時点でフォロワーは合計【12092】でした。定点記録を残すと、7/23と7/25と7/30でf/f数は、
コウジ改 SyvE.804/3599と826/3625と868/3655.
バンドリ sv2F.810/2666と824/2682と860/2720.
浩司   BLLp.578/2339と585/2340と609/2378.
kouji kouji.1971/3298と1992/3309と2018/3339.
作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1906年3月31日生まれ ~ 1979年7月8日没】


【↑_Credit:Wikipedia】



朝永振一郎は私が使っていた教科書


【Diracの「量子力学」】の訳者でした。


そのご先祖様は大村藩


(現在の長崎県内にありました)の流れをくみます。


そして、そんな朝永振一郎の父は


京都大学哲学科教授でした。


また、朝永振一郎は現在の筑波大学の前身


となった大学、東京教育大学で教鞭をとり、


最終的には学長を務めます。


東京に生まれ京都で育ち、


世界で議論しました。


 

朝永振一郎の研究業績で私が最も偉大


であると思えるのは繰り込み理論です。


ファインマン・ダイアグラムと呼ばれる


不可思議な模式図でも表現される反応がありますが、


そこでの素粒子の反応過程と


数学的矛盾を見事に説明しています。


ファインマンの経路積分にも数学的な


美点を感じますが朝永振一郎の理論の方が


直感に訴える説得力を持っています。


好みといえば好みの問題ですが。


朝永振一郎の理解で量子電磁気学の整理が進み、


素粒子物理学が大きく進歩したのです。


朝永振一郎はまた晩年、大学入学以前の


若者に対し科学的な啓蒙を進めていました


最後に、朝永振一郎は湯川秀樹


京都大学で同期でした。それぞれの形で


当時の物理学で完成形を作り上げたのです。






以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/09/12_初稿投稿
2021/08/01_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
【日本関連のご紹介】
京大関連のご紹介】
力学関係のご紹介へ】
電磁気関係へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】

セシル パウエル
【1903年生まれ-2021/8/1原稿改定】

「セシル・パウエル」の原稿を投稿します。原稿文字数は1310文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/30(金)朝の時点でフォロワーは合計【12092】でした。定点記録を残すと、7/23と7/25と7/30でf/f数は、
コウジ改 SyvE.804/3599と826/3625と868/3655.
バンドリ sv2F.810/2666と824/2682と860/2720.
浩司   BLLp.578/2339と585/2340と609/2378.
kouji kouji.1971/3298と1992/3309と2018/3339.
作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】

【1903年12月5日生まれ ~ 1969年8月9日没】

単なる偶然の産物といえば偶然ですが、
今回ご紹介するセシル パウエルと
ハイゼンベルクとゾンマーフェルトは
同じ誕生日でした。また、また、
西川 正治も同じ誕生日でした。

さて今回の紹介は英国のセシル パウエルです。
素粒子の軌跡を記録する方法
を改良しました。

つまり、

Photographic Emulsionsの中での粒子軌跡を

直接記録する方法を採用したのです。

当時は未知なる粒子が次々と発見され

様々に予想されていたのですが、

観測手段も試行錯誤が成されていました。

霧箱で飛んでくる粒子の軌跡を捉えたり、

高い山の上で観測して飛来宇宙線の大気減衰を

克服したり写真技術を活用したりしました。

パウエルの手法は写真のイメージから考える

のでしょうか。機会があれば更に確認します。




またパウエルは湯川秀樹が予想した
パイ中間子の観測・発見の為に
研究スタッフを派遣しています。生成後の
寿命が短く地表に到達できないパイ中間子
観測の為にボリビアにあるアンデス山脈の
標高5000mの山から上記乾板を使って発見
しています。ダイナミックな観測だった
と言えるでしょう。他、気球を使い
高度を確保したりもしています。
観測の為に様々な工夫をこらして
結果を得ています。








以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。

nowkouji226@gmail.com

2020/12/15_初稿投稿
2021/08/01_改定投稿

【舞台別のご紹介へ】
【時代別(順)のご紹介】
【イギリス関連へ】
【ケンブリッジのご紹介へ】
【熱統計関連のご紹介へ】
【量子力学関係へ】

【このサイトはAmazonアソシエイトに参加しています】

ポール・ランジュヴァン
【1872年生れ-2021/8/01原稿改定】

「ランジュバン」の原稿を投稿します。原稿文字数は1169文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】




【1872年1月23日生れ ~ 1946年12月19日没】

 

20世紀初頭の議論の中でランジュバンは中心に居ました。

本ブログのTOPで使っているソルベイ会議の写真でも

アインシュタインの隣に座っています。

そんなランジュバンは双子のパラドックス

という考え方が有名です。その特殊相対性理論における

矛盾の指摘は、初めはアインシュタインによる相対性理論

での議論で使っている「2つの慣性系での時間差」

から始まる話だったのですが、

ランジュバンが双子の例えに置き換えて

状況を分かりやすくしました。

ランジュバンはそんな時代の人です。






研究者としてはイギリスのキャヴェンディッシュ研究所で

ジョゼフ・ジョン・トムソンのもとで学んだ後に

ソルボンヌ大のピエール・キュリーの下て、学位を得ました。

上述した相対論の議論とは別に磁性に関わる

物性の研究も進めていたのです。

こんな経歴は当時のイギリスとフランスの

物理学会におけるつながりの強さも感じます。

其々の研究者を互いに評価しつつ、

イギリスで理解が進んだ電磁現象を

フランスで深めていって原子遷移に伴う

電磁波の放出を突き詰めていきます。

特にフランスのキューリー夫妻が扉を開いた

放射性物質の研究は目覚ましく、その後の

原子核物理学へと発展していくのです。

一方で固体中の電子運動に起因する

スピンの挙動は帯磁現象に繋がっていきます。

そうした時代にランジュバンは、当時理解が始まった

導体の帯磁特性を研究していったのです。

量子力学以前の物性理解でも原子、電子という

言葉を使いこなして個別物質の帯磁特性を

明らかにしていったのです。

それまで未分類だった特性を整理していったのです。

また、磁性の研究をする一方で水晶振動子を開発して

超音波を発生させるメカを実用化しました。




また、マリ・キューリとの恋仲も知られていたようです。

ゴシップネタで恐縮ですが、ランジュバンには

家庭が上手くいっていなかった時期があり、

そんな時の良き相談相手がマリ・キューリでした。

無論。秘め事は当事者同士の大事な時間であって、

ゴシップ記者達が騒ぎ立てるのは無粋です。

私はこれ以上記載しません。ただ、

何十年か後に御二人の孫同士が結婚してます。




また超音波の研究からの発展で、

ランジュヴァンはソナーの発明でも知られています。

潜水艦の関係者なら多大な恩恵を受けている訳ですね。








以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/31_初版投稿
2021/07/23_改定投稿

【(旧)舞台別のご紹介】
【纏めサイトTOPへ】
【舞台別のご紹介へ】
【時代別(順)のご紹介】
【フランス関連のご紹介へ】
【熱統計関連のご紹介へ】
【量子力学関係へ】
【力学関係のご紹介へ】

【このサイトはAmazonアソシエイトに参加しています】