アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2023年08月 >>
    1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31    
最新記事
最新コメント

2023年08月31日

H・アルプレヒト・ベーテ
8/31改訂【星の進化を考え、また原子核反応を考えた】

こんにちはコウジです!
「H・ベーテ」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1906年7月2日~2005年3月6日没】



イギリスに逃れたベーテ


ベーテはユダヤ系なのでナチス政権下で


苦労します。国を追われイギリスに逃れ、


マンチェスター大学で職を得ます。


第二次大戦の間はオッペンハイマー招きでUCB
(カリフォルニア大バークレー校)
の特別会議に参加します。
そこでは核兵器の
開発が始められ、ロスアラモス研究所が出来る
とベーテは理論部門の監督を務めます。


戦後はトルーマン大統領が水素爆弾の開発を断行した流れで
ベーテは引き続き開発
において重要な役割を果たします。



ベーテの提唱した星の進化


その他、ベーテの業績としては大きく二点があげられます。
一つは恒星の内部で核融合反応が起きうると指摘をして、
重力と釣り合う内側からの力を考えたことです。


星の進化を考える時に超高圧下で起こりうる現象を予見したのです。
現在考えられている進化過程でベーテの考え方は不可欠です。
大まかに星の進化を考えていくと


@万有引力でガスや、チリが集まっていき、
段々に中心方向に向かって『まとまり』が出来てきて
Aまとまりの質量がどんどん増えていくのですが、
この時にB星の内部で内部で核融合反応が起きて
外側方向に広がる力が働き、
C万有引力で集まる力と内部から核反応で
外側へ広がっていく力がつりあう」


と考えられています。


そして、重量が増えていき星の進化が進むと
恒星として光を発するようになり、
白色矮星、ブラックホールの段階を踏むだろうと考えます。


地球や木星などの光っていない星は現在内部からの
核融合の膨張と、内部への引力でが釣り合っている状態です。
地球の中でもマグマが沢山対流していて
中心の温度は6000度と推定されています。


また星の話とは別に、加速器で実現される様々な現象を
説明していく内に超高圧下・超高温下で起こり得る
原子核の崩壊状態をベーテは理論立てて説明して新たな知見としました。



ベーテとラムシフト


また、ベーテのもう一つの業績は
量子電磁気学に繋がっていくラムシフト
を非相対論的に厳密に突き詰めていって
極めて正確な計算をしていったのです。
この面でファインマンは弟子にあたります。


ベーテは大変な時代を生きた偉大な理論家でした。


「原子核反応理論への貢献、特に星の内部


におけるエネルギー生成に関する発見」で


ノーベル賞を受けています。




【スポンサーリンク】


以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。


nowkouji226@gmail.com


2020/11/23_初版投稿
2023/08/31_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介
ドイツ関係のご紹介へ
イギリス関係のご紹介へ

アメリカ関連のご紹介へ
イェール大学関連のご紹介へ
UCBのご紹介

熱統計関連
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Bethe fled to England


Bethe is of Jewish descent, so he has a hard time under the Nazi regime. He was driven out of the country and fled to England to get a job at the University of Manchester. He attends a special UCB (University of California, Berkeley) conference at the invitation of Oppenheimer during World War II. Bethe will oversee the theory department when the development of nuclear weapons begins there and the Los Alamos National Laboratory is established. After the war, Bethe continued to play an important role in the development of the hydrogen bomb as President Truman decided to develop it.



Bethe's advocated evolution of stars


In addition, I think there are two major achievements of Bethe. One is to point out that a fusion reaction can occur inside a star, and to consider the internal force that balances gravity. When he considered the evolution of stars, he foresaw possible phenomena under ultra-high pressure. Bethe's thinking is indispensable in the evolutionary process currently being considered. Roughly thinking about the evolution of stars,


"(1) gas and dust gather with universal gravitation, and gradually" cohesion "is formed toward the center, and (2) the mass of the cohesiveness increases steadily. At this time, (3) a nuclear fusion reaction occurs inside the star and the force that spreads outward works, and (4) the force that gathers by universal gravitation and the force that spreads from the inside to the outside by the nuclear reaction are balanced. "


Then, as the weight increases and the evolution of the star progresses, it will emit light as a star, and I think that it will go through the stages of white dwarfs and black holes. Non-shining stars such as Earth and Jupiter are currently in a state where the expansion of nuclear fusion from the inside and the attractive force to the inside are in balance. In addition to the story of stars, Bethe theoretically explained the decay state of atomic nuclei that can occur under ultra-high pressure and ultra-high temperature while explaining various phenomena realized by accelerators, and made new knowledge. bottom.



Bethe and Lamb shift


In addition, Bethe's other achievement was to rigorously and non-relativistically scrutinize the Lamb shift that leads to quantum electrodynamics, and to perform extremely accurate calculations. Feynman is his disciple in this respect.


Bethe was a great theorist who lived in difficult times. He has received the Nobel Prize for his "his contributions to his theory of nuclear reactions, especially his discoveries of energy generation inside the stars."


2023年08月30日

朝永 振一郎
8/30改訂【繰りこみ理論を駆使して素粒子間の反応を理論的に解明】

こんにちはコウジです!
「朝永 振一郎」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

2023年08月29日

J・ロバート・オッペンハイマー
8/29改訂【あだ名はオッピーとか原爆の父とか】

こんにちはコウジです!
「オッペンハイマー」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1904年4月22日生まれ~1967年2月18日没】



 原爆の父オッペンハイマー


オッペンハイマーは原爆の父と呼ばれている側面
ありますが、UCB(カリフォルニア大学バークレー校)
では学生からオッピーという愛称で呼ばれていた
側面もありました。オッペンハイマーの人生は
喜怒哀楽に満ちています。


オッペンハイマーの人生を考えるにあたり、
筆者の第一の着眼点は彼もユダヤ系の血を
引いている
という部分です。


ヒットラーが民族としてのユダヤ人達に焦点を当て迫害し、
敵視していた現実は
動かしがたい事実です。
強制収容所に連行
されるような世相の中で
ユダヤ人達は非常な
危機感を感じていたはずです。


ユダヤ人たちが抱く危機感の中で20世紀初頭の歴史は進み、
天才達が育ち・団結して
新しい物を生み出していた
という側面があるのだと言えます。


そんな時代に兵器製造の行為は肯定される話ではないのですが、
当時の論客達はユダヤ人迫害
から話を初めて、
マンハッタン計画に進む流れ
を紹介していき、
大衆に納得し易い話を組み立て
られたでしょう。



ユダヤ系の物理学者達


世界大戦終結後、100年近くがたとうとしています。
ユダヤ人に対しての考えは幾多の人が繰り広げてきた
のではないかと思えますが、再度、私も強調します。


具体的な物理の世界での登場人物はアインシュタイン 、
シュテルンマックス・ボルンネイサン・ローゼン
D・J・ボームE・パウリ 、ランダウファインマン
ハンスベーテ


そして今回ご紹介するオッペンハイマーです。


(今は此処迄しか思い浮かびませんが
後日、思い付くたびに補記します。)


ユダヤ人メンバー中心に居てがもたらした今世紀初頭の
物理学の進展は急速でした。


その進展は物理学に留まらず、工学、産業、
果ては政治体制に繋がっていきました。


1917年ロシア革命に始まった社会体制の変化とも
同期していた、
と言えるのでは無いでしょうか。


20世紀初頭の閉塞感は、それを打ち破る様々な努力によって
大きく様変わりしていたと思えます。そして、昨今コロナで
不満が高まり、米中関係が緊張していく世相は、やもすれば
危ない世界に近づいてるようにも思えます。


各人で理性的な判断・発言をしましょう。
今、方向付けが重要です。



 オッペンハイマーの関心


さて実際、オッパンハイマーは経済的に恵まれた
家庭で育ち、沢山のお小遣いをもらいながら
すくすくと育ちます。そして、
オッペンハイマーは最終的に6つの言葉を操ります。
少年時代には
鉱物学・数学・地質学・化学に関心を示し
ハーバードを三年で終えてケンブリッジに留学します。


そこから理論物理学のゲッティンゲン大学に進み
ボルンと出会います。オッペンハイマーは
ボルンの指導の下で
研究を進め共同で
ボルン・オッペンハイマー近似等の業績を上げます。


若い時代にボルンと近似に関する仕事をする以外に
一度帰国した後に二度目の訪欧でエーレンフェストパウリボーア
等と交流し物理学での知見を育みます。
2023年に別記事にまとめました)。


その後、アメリカに戻りカリフォルニア工科大学やUCBで
教鞭をとりますが、第二次大戦勃発に伴い、
オッペンハイマーは
ロスアラモス国立研究所の
初代所長に任命されます。


ロスアラモス国立研究所で原爆を開発したのです。
この仕事は、世界のパワー・バランスを変え、
後の世界を大きく変えました。



晩年のオッペンハイマー


晩年、オッペンハイマーは成し遂げた仕事の意味を自問し、
後悔の言葉さえ残しています。


戦争時代の原爆開発・使用は国としての
アメリカの中で必要と判断されていましたが、
それ以後の時代では原爆を使わなくても各国が
持つだけで攻撃対象とされたりしますし、
外交で原爆が脅迫の道具として使われていたりします。


そういったことにつながった発明をオッペンハイマーは
「罪」として捉えていて、
水爆の開発には反対していたりもしました。


オッペンハイマーには別の罪(?)もあります。
オッペンハイマーの時代は冷戦時代なので
学生時代からの共産党とのつながりを指摘され、
最終的には赤狩りの標的とされ続けていました。


常時FBI(司法省管轄のアメリカ連邦捜査局)
監視下にあったのです。1965年、
がんの為に
ニュージャージーの自宅で
静かに生涯を終えました。


合掌。


そして、2023/8/19に追記します。
映画宣伝の思惑でこの夏に「バーベンハイマー騒動

が起きました。オッペンハイマーの伝記映画と
バービー人形の映画が同日に放映されていました。
その中で、
米国の配給会社が「忘れられない夏になりそう!
と発言した事に日本法人は遺憾の意を示しています。
米国の商戦主義が終戦記念日を控えた日本人の
感性に「カチン」ときたわけです。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。


nowkouji226@gmail.com


舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介へ
イギリス関係のご紹介
ドイツ関連のご紹介

ケンブリッジ大学のご紹介へ
UCBのご紹介へ
量子力学関係


2020/09/21_初稿投稿
2023/08/29_改定投稿
【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Atomic bomb father Oppenheimer


Oppenheimer was sometimes called the father of the atomic bomb, but at UCB (University of California, Berkeley), he was also nicknamed Oppenheim by students. Oppenheimer's life is full of emotions. When thinking about Oppenheimer's life, the first point to look at is that he also has Jewish blood.


The reality that Hitler focused on and persecuted the Jews as an ethnic group and was hostile to them is an immovable fact. The Jews must have felt a great sense of crisis in the world of being taken to concentration camps. In that sense of crisis, the history of the early 20th century may have been that geniuses grew up and united to create new things. The act of manufacturing weapons is not affirmed in such an era, but the debaters at that time also started talking about the persecution of Jews and introduced the flow to the Manhattan Project, and assembled a story that is easy for the public to understand. Probably.



Jewish physicists


Almost 100 years have passed since then, and I suspect that many people have developed this idea, but I would like to emphasize it again. The characters in the concrete world of physics are Einstein, Stern, Max Born, DJ Baume, E. Pauli, Landau, Feynman,


And this is Oppenheimer. (I can only think of it here now, but I will add it later whenever I come up with it.) The progress of physics at the beginning of this century brought about by such members was rapid. Its progress went beyond physics to engineering, industry, and even the political system.


It can be said that it was in sync with the changes in the social system that began in the Russian Revolution in 1917. It seems that the feeling of obstruction at the beginning of this century was greatly changed by various efforts to overcome it. And it seems that the world, where dissatisfaction with Corona has increased and US-China relations have become tense these days, is approaching a dangerous world. Let's make rational judgments and remarks by each person. Direction is important now.



Oppenheimer's interest


Well, in fact, Oppanheimer finally manipulates six words. As a boy, he became interested in mineralogy, mathematics, geology and chemistry, finishing Harvard in three years and studying abroad in Cambridge. From there he goes to the University of Göttingen in theoretical physics and meets Born.


Oppenheimer conducts research under the guidance of Born and jointly achieves achievements such as the Born-Oppenheimer approximation. He then returned to the United States to teach at the California Institute of Technology and UCB, but with the outbreak of World War II, Oppenheimer was appointed as the first director of the Los Alamos National Laboratory. So he developed the atomic bomb. This work changed the power balance of the world and changed the world later.



Oppenheimer in his later years


In his later years, Oppenheimer asked himself what the work he had accomplished and even left a word of regret. It was judged that the development and use of the atomic bomb during the war was necessary in the United States as a country, but in the subsequent era, even if each country did not use the atomic bomb, it would be the target of attack, and diplomacy. The atomic bomb is used as a threatening tool. Oppenheimer saw the invention that led to that as a "sin," and he even opposed the development of the hydrogen bomb.


Oppenheimer also has another sin (?). Since Oppenheimer's era was the Cold War era, he was pointed out that he had a connection with the Communist Party since he was a student, and eventually continued to be the target of the Red Scare. He was always under the supervision of the FBI (Federal Bureau of Investigation under the Department of Justice). In 1965, he quietly ended his life at his home in New Jersey because of cancer. Gassho.

2023年08月28日

こんにちはコウジです!
「フォン・ノイマン」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1903年12月28日 - 1957年2月8日】



フォン・ノイマンの生い立ち


ノイマンはハンガリー系のドイツ人でアメリカに亡命します。
ハンガリー名ではナイマン・ヤーノシュ:nɒjmɒnˌjɑ̈ːnoʃ、
ドイツ名ではヨハネス・ルートヴィヒ・フォン・ノイマン
:Johannes Ludwig von Neumann,


ノイマンは少年時代から英才教育を受け、ディケンズの小説を
一字一句間違えず暗唱していたと言われます。
また、車を運転しながら読書していたと言われます。


数学・物理学・コンピューター科学で多才な才能を
発揮した人で映画のモデルにもなっています。


冒頭に掲載した映画作品は
フォン・ノイマンをモデルにしたと言われています。




原子爆弾やコンピューターの開発


フォン・ノイマンは1930年にプリンストンに招かれ、
プリンストン高等研究所の所員に選ばれています。


因みに、その時に同時にメンバーとして選ばれた一人が
アルベルト・アインシュタインでした。
戦争へ向かうアメリカで軍事関係の研究を進めます。





特に、フォン・ノイマンはロスアラモス国立研究所で
アメリカ合衆国による原子爆弾開発のための
マンハッタン計画に参加します。アメリカという国家が
多くの才能をアメリカの理想の為に集めていました。
沢山の予算が動きます。


そして、
弾道研究所に関わるENIACのプロジェクトに参加して
ノイマンも電子計算機のプロジェクトを進めていくのです。


ノイマンの別の関心事として衝撃波の伝達の研究分野がありました。
所謂「FAT・MAN」(長崎に投ちたプルトニウム型原子爆弾)
のための爆縮レンズを開発していくのです。


兵器開発に科学者が関わっていく良い例です。
「(効率的に)人を沢山殺そう」という考えと
「科学的探究心」は瞬時に置き換える事が出来るのです。
結果として科学者に殺意がなくても効果的な兵器が作れます。



フォンノイマンの考え方を表す言葉



名言として残されている一つをご紹介します。

「思考こそが一次言語であり、
数学は二次言語である。

数学は、思考の上に作られた、
一つの言語に過ぎない。」


私的に考えてみても
実際に物理モデルを構築する前の「思考」が大事で、
それは掴み様の無い物です。幾何学的な図形で抽象的に
表現してみたり群論を使って整理してみたりします。
数学や物理モデルは思考を形作る道具となります。

見つかった「秩序」を数学的表現で表すのはその後の段階で、
さらには大衆に分かるように色々な言葉で肉付けします。


物理学者はこの作業を無限に繰り返さなければいけません。
そんなノイマンは1955年に骨腫瘍・あるいは、すい臓がん
と診断されました。


放射能に関わる研究を重ねた結果でもあります。
同僚のエンリコ・フェルミも1954年に
骨がんで亡くなっています。


科学の発展の為に晩年を捧げた人生でした、
ご冥福をお祈りいたします。



ワールドトーク|日本人講師とオンライン英会話の無料体験レッスン【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com


2021/10/01_初版投稿
2023/08/28_原稿改定


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介
電磁気関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



The background of von Neumann


Neumann is a Hungarian German who goes into exile in the United States. He is said to have been reciting Dickens' novels word for word, having been educated as a gifted boy in Hungary for Naiman Janos: nɒjmɒnˌjɑ̈ːnoʃ and in Germany for Johannes Ludwig von Neumann. increase.


He is also said to have been reading while driving a car. He is a versatile talent in mathematics, physics and computer science and is also a movie model. The movie work posted at the beginning is
It is said to have been modeled after von Neumann.



Development of atomic bombs and computers


Von Neumann was invited to Princeton in 1930 and was selected as a member of the Princeton Institute for Advanced Study. By the way, one of the members who was selected at the same time was Albert Einstein. He pursues military research in the United States heading for war.


In particular, von Neumann will participate in the United States' Manhattan Project for the development of an atomic bomb at the Los Alamos National Laboratory. And Neumann will also proceed with this computer project by participating in the ENIAC project related to the Ballistic Research Laboratory.


Another concern of Neumann was the field of study of shock wave transmission. He will develop a detonation lens for the so-called FAT MAN (plutonium-type atomic bomb thrown at Nagasaki). It's a good example of how scientists get involved in weapons development. The idea of ​​"killing a lot of people (efficiently)" and "scientific inquiry" can be instantly replaced.



A word that expresses the idea of ​​von Neumann


I would like to introduce one that remains as a saying.
"Thinking is the primary language,
Mathematics is a secondary language.
Mathematics was built on thought,
It's just one language. "


It is important to think before actually building a physical model, which is something that cannot be grasped. Try to express it abstractly with geometric figures or organize it using group theory. The mathematical expression of the found "order" will be expressed later, and will be fleshed out in various words so that the public can understand it.


Physicists have to repeat this task indefinitely. Neumann was diagnosed with bone tumor or pancreatic cancer in 1955. He is also the result of his repeated research on radioactivity. His colleague Enrico Fermi also died of bone cancer in 1954. I pray for the souls of his later life for the development of science.


2023年08月27日

セシル パウエル
8/27改訂【素粒子の軌跡を記録する方法 を改良|アンデス山脈でπ中間子を観測】

こんにちはコウジです!
「セシル パウエル」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1903年12月5日生まれ ~ 1969年8月9日没】



パウエルとハイゼンベルグとゾンマーフェルト


単なる偶然の産物といえば偶然ですが、
今回ご紹介するセシル パウエルと
ハイゼンベルクとゾンマーフェルトは
同じ誕生日でした。また同様に
西川 正治も同じ誕生日でした。


さて、
今回の紹介は英国のセシル パウエルです。

素粒子の軌跡を記録する方法
を改良しました。


つまり、


Photographic Emulsionsの中での粒子軌跡を


直接記録する方法を採用したのです。


当時は未知なる粒子が次々と発見され様々に予想
されていたのですが、
観測手段も試行錯誤が成されていました。
例えば、霧箱で飛んでくる粒子の軌跡を捉えたり、
高い山の上で観測して飛来宇宙線の大気減衰を克服したり
写真技術を活用したりしました。


パウエルの手法は写真のイメージから考えるのでしょうか。
いつか機会があれば更に確認します。


 

 パウエルによるπ中間子の観測


またパウエルは湯川秀樹が予想したパイ中間子の
観測・発見の為に
研究スタッフを派遣しています。


生成後の寿命が短く地表に到達できないパイ中間子観測の為に
ボリビアにあるアンデス山脈の
標高5000mの山から
上記乾板を使って発見
しています。


ダイナミックな観測だったと言えるでしょう。
加えて、気球を使い
高度を確保したりもしています。
観測の為に様々な工夫をこらして結果を得ています。



【スポンサーリンク】


以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。


nowkouji226@gmail.com


2020/12/15_初稿投稿
2023/08/27_改定投稿


舞台別のご紹介
時代別(順)のご紹介

イギリス関連
ケンブリッジのご紹介
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Powell, Heisenberg and Sommerfeld


It's just a coincidence, but C. Powell, Heisenberg, and Sommerfeld have the same birthday. Similarly, Shoji Nishikawa had the same birthday.


By the way, this time I would like to introduce you to Cecil Powell in the United Kingdom. The method of recording the trajectory of elementary particles has been improved. In other words, we adopted the method of directly recording the particle trajectory in Photographic Emulsions. At that time, unknown particles were discovered one after another and various expectations were made, but the observation method was also trial and error. For example, we captured the trajectory of particles flying in a cloud chamber, observed them on a high mountain to overcome the atmospheric attenuation of flying cosmic rays, and used photographic technology. Do you think of Powell's method from the image of a photograph? I will check further if there is an opportunity.



Observation of pions by Powell


Powell also dispatches research staff to observe and discover the pions predicted by Hideki Yukawa. It has been discovered using the above-mentioned dry plate from a mountain at an altitude of 5000 m in the Andes Mountains in Bolivia for the purpose of observing pions that have a short life after formation and cannot reach the surface of the earth. It can be said that it was a dynamic observation. In addition, we also use balloons to secure altitude. We have obtained results by making various efforts for observation.


2023年08月26日

ユージン・ポール・ウィグナー
‗8/26改訂【ディラックの義理のお兄さん|バーディンの指導教官】

こんにちはコウジです!
「ユージン・ポール・ウィグナー」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1902年11月17日 ~ 1995年1月1日】



その名を書き下すと


ユージン・ポール・ウィグナー


(Eugene Paul Wigner)。


ハンガリー生まれのユダヤ人です。


後程詳しくご紹介しますが、ウィグナーは


ポール・ディラックの義理のお兄さんで、


BCS理論の作成者3人組の中心人物、


バーディーンの指導教官です。


物凄い人脈を持っている人ですね。


また、「原子核と素粒子の理論における対称性の発見」
に対して1963年のノーベル物理学賞を受賞しています。


対称性に着目した素粒子の整理は有効でその分類方法が
無ければ
進まなかった話が沢山あります。


 

 ドイツでのウィグナー


ユージン・ウィグナーは現在のベルリン工科大学
卒業後にベルリン工科大学で
勤務していましたが
ナチスドイツのユダヤ人迫害に対して研究継続の困難
を感じアメリカに亡命をします。


米国に亡命後はウィスコンシン大学で物理学の教授を務め、
その後にプリンストン大学で数学の教授を務めました。


そんなウィグナーはレオ・シラードエドワード・テラーらと、
ナチスドイツが原子爆弾を開発した時の危険性を
アメリカ政府に対して訴えていきました。


ウィグナーならでは、の表現を使ってユダヤ人として
ナチスの脅威を政府に伝えられたはずです。
実際にベルリンを追われた過去を持つウィグナーは
現実に当時の状況を分析していたのだろうと思います。

つまり、当時のドイツの科学の水準を分かっていて
ナチスが有していた兵器を理解していたから、
ナチスによる原爆開発の危険を強く感じていたのだと思えます。
ただし、
実際の歴史を知っている今の我々にとって見たら取り越し苦労です。


ノルマンディー上陸作戦以降の連合軍の通常兵器での反攻を思えば、
優秀とはいえ、
一国のドイツがヨーロッパ大陸を長期間占領
し続ける
事は出来なかったでしょう。


現在で考えると強大化する中国に対して
欧米諸国
がどういった対応をするか気になる所ですよね。


いずれにせよ、
英米が原爆を所有するきっかけをウィグナー達は作ったのです。



 原爆とウィグナー


ウィグナーはアメリカの原爆開発のきっかけとなった
アインシュタイン名による大統領宛書簡の起草対して
シラードや
テラーと連名で加わりました。


加えて、
原爆を開発するマンハッタン計画
にはメンバーとして加わりました。


晩年にウィグナーは哲学的な傾向を深め、
講演録
「自然科学における数学の理不尽な有効性」
を残しています。
著名なこの著作は多分野に影響を与えています。


また、ウィグナーの妹は食事の席にディラックを招いた縁で、
彼の奥さんになっています。とても意外な取り合わせですね。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をしていきます。


nowkouji226@gmail.com


2021/04/06_初版投稿
2023/08/26_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
ドイツ関連のご紹介

アメリカ関連のご紹介へ
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


 

(2021年11月時点での対応英訳)



If you write down the name


Eugene Paul Wigner.


He is a Hungarian-born Jew. As I will explain in detail later, Wigner is Paul Dirac's brother-in-law and the supervisor of Bardeen, the center of the trio of creators of BCS theory. He has a tremendous network of contacts, isn't he? He also received the 1963 Nobel Prize in Physics for his "discovery of symmetry in the theory of nuclei and elementary particles". There are many stories that the arrangement of elementary particles focusing on symmetry is effective and would not have progressed without the classification method.



Wigner in Germany


Eugene Wigner worked there after graduating from the current Berlin Institute of Technology, but found it difficult to continue his research on the persecution of Jews in Nazi Germany and went into exile in the United States.


After his exile in the United States, he was a professor of physics at the University of Wisconsin and then a professor of mathematics at Princeton University. Wigner, along with Leo Szilard and Edward Teller, appealed to the US government about the dangers of Nazi Germany developing an atomic bomb.


I think Wigner, who had a past of being ousted from Berlin, was actually analyzing the situation at that time. In other words, he knew the level of German science at the time and understood the weapons that the Nazis had, so it seems that he was strongly aware of the danger of the Nazis developing an atomic bomb. However, for those of us who know the actual history, it is a difficult move. Given the counterattack of the Allied forces with conventional weapons since the Invasion of Normandy, Germany would not have been able to continue to occupy the continent for a long time, albeit excellent. When you think about it now, you are wondering how Western countries will respond to the growing power of China. In any case, the Wigners created the opportunity for Britain and the United States to own the atomic bomb.



Atomic bomb and Wigner


Wigner joined Szilard and Teller jointly in drafting a letter to the president in the name of Einstein, which triggered the development of the American atomic bomb. In addition, he joined the Manhattan Project to develop the atomic bomb as a member.


In his later years Wigner deepened his philosophical tendencies, leaving behind his lecture "The Unreasonable Effectiveness of Mathematics in the Natural Sciences". His prominent work has influenced many disciplines. Wigner's sister is also his wife because he invited Dirac to his dining table. It's a very surprising combination.



2023年08月25日

和達清夫
8/25改訂【マグニチュードの概念を考え始めて、気象台長を務めた】

こんにちはコウジです!
「和達清夫」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1902年(明治35年)9月8日 - 1995年1月5日】


愛知県に生まれた和達(わだち)清夫は和達三樹のお父様です。
(和達三樹の名は教科書でおなじみなのではないでしょうか)
和達清夫は地球科学に足跡を残し、特に気象学や地震学で
有名です。いわゆる「マグニチュード」の概念は和達清夫の研究が
ヒントとなったと言われています。


個々の地点で感じられる(観測される)
「震度」に対して地震そのものの大きさ(震源地での大きさ)を
表す指標が「マグニチュード」です。

マグニチュードの概念はその後、地震が起きるたびに活用されて
非常に重宝な概念として使われています。あたり前に使われています。
先進的な研究を続けて震源の深さから範囲も考えてマグニチュード
の概念に至ります。


地震について更に深く考えてみたいと思います。
今では子供でも知っていますが地震は波で震源から
遠ざかれば遠ざかる程に減衰します。


そして具体的には初期微動と本震から構成され(P波とS波から構成され)、
其々が 振動数と振幅を持ちます。
2つの構成波が、それぞれパラメターを持つのです。


そもそも和達清夫の博士論文は
「Shallow and deep earthquakes」
でした。


和達清夫の経歴を振り返れば、


東京帝國大学理学部物理学科を卒業


後に中央気象台に勤務していきます。


気象台では第6代気象台長を務めました。


和達清夫の時代から物理学が


実学として活用されていきます。


地球物理学を実務に適用したのです。


和達清夫は気象観測の黎明期において


指導的な役割を果たしました。


1960年から(第5代)日本学術会議議長


(第17代)日本学士院院長、


埼玉大学学長、日本環境協会会長


などを歴任しました。


和達清夫は1985年には


文化勲章を受勲しています。


そして92歳で亡くなっています。


 



テックアカデミー無料メンター相談
【スポンサーリンク】



〆最後に〆


以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。、


nowkouji226@gmail.com


2022/10/07_初回投稿
2023/08/25_改訂投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


 (2021年10月時点での対応英訳)


Wadachi Kiyoo born in Aichi is father of Miki Wadachi.(whether the name of Miki Wadachi is not familiar with a textbook)
Kiyoo Wadachi leaves a footprint for earth science and is famous for meteorology in particular and seismology.


It is said that a study of Kiyoo Wadachi became the hint as for the concept of so-called "magnitude". Whenever an earthquake gets up afterwards, the concept of the magnitude to express size (size at the epicenter) of the earthquake itself for "the seismic intensity" that is felt to be individual points (is observed) is utilized and is used as a very useful concept. It is used in front of the area.
Wadachi continue an advanced study and think about the range from the depth of the seismic center and lead to a concept of the magnitude.


In the first place the doctoral dissertation of Kiyoo Wadachi
"Shallow and deep earthquakes"
I did it in this.


If look back on a career of Kiyoo Wadachi, Tokyo emperor country University department of science physics subject


After graduating from this, the Central Meteorological Observatory works.


Wadachi acted as Mayor of the sixth meteorological observatory in the meteorological observatory.


Physics is utilized as practical science from the times of Kiyoo Wadachi.


Wadachi applied geophysics to business.


Kiyoo Wadachi played a leading role in the dawn of the weather observation.


In 1960 (the fifth) Chairperson of Science Council of Japan (the 17th) Japan Academy's director,


Wadachi successively held Saitama University's president, Japanese environmental association's chairperson.


As for Kiyoo Wadachi, Conforment of honor is doing the Order of Culture in 1985.


Wadachi die at 92 years old.


 

2023年08月24日

ポール・ディラック
8/24改【数々の数学と逸話を生んだケンブリッジの天才】

こんにちはコウジです!
「ディラック」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1902年8月8日生まれ ~ 1984年10月20日】



無口なディラック


イギリスのディラックは


とても謙虚で無口な人でした。


ノーベル賞が決まった際には、


有名になる事を恐れて受賞の辞退を


考えていた様です。そんな人なのですが、


20世紀初頭の天才達がひしめく中で


エーレンフェストボーアパウリ、 


ファインマンハイゼンベルクシュレディンガーなど


と量子力学を確立します。特にシュレディンガーとは


同じタイミングでノーベル賞を受賞します。


ディラックの人柄を考えるにあたり少し、


その家族について言及します。


ディラックが10代後半の時期にスイスから


家族は国籍を移しています。そしてディラックの


性格形成を語っていく上で家庭環境は大きな要素


だったようです。まず1924年にディラックの


兄が自ら命を断っています。


色々考えた末だったのでしょうか。


ディラック自身も、その父と会話し辛い


場面が多々あったようです。そして、


極端に無口な人になっていったようです。



ディラックと数学


しかしディラックは、闇に沈まずに数学を駆使して
輝かしい成果を残しています。


特にデルタ関数やブラケット記法は素晴らしいのです。
独自の足跡を沢山残しました。


デルタ関数は超関数の仲間で積分を使って定義されます。


多分野で有用である関数ですが、物理の分野では観測に伴い、


波束が収束する様子が表現出来るのです。


数学上ではヘビサイド関数を表現出来ます。
現象は捉え方次第で色々な観測が出来て
周波数軸の観点で物事を考える時と
実座標軸(長さの観点)で考える時と
数式上の表現が異なります。
工学的にこの視点を応用した解析も
実用上で非常に便利に利用されていて
市販品のアナライザーで簡単に
業務解析をする事が出来ます。


ブラケット記法とは日本語で「括弧」
の記号を使った表記です。その定式化では
カギカッコ<>の形の 「<」 の部分
だけを「ブラベクトル」と呼び
カギカッコ<>の形の 「>」 の部分
だけを「ケットベクトル」と呼びます。


非常に分り易い表現でブラの部分がベクトル量
に相当してケットの部分が、
それと作用するベクトル量に相当する定式化です。


作用する前のケットが固有値を持つ場合に
固有状態を持つと表現されます。


そしてなんと、ケット・ブラの順番で並べると
その塊は行列相当の働きをします。
なんとも見事な定式化です。
数学の素養があれば上記文章が味わえます。
そして凄さが伝わるはずです。
あえて言葉にすることで数学の凄さが伝わります。


ここでのベクトルがヒルベルトベクトル(無限次元に対応)
であることが学部時代の私にとって感動的でした。
一瞬にして物理量に対応する状態が記述された気がしました。


一次元が線で、二次元が平面で、三次元が立体空間だ
というくらいしか想像がつかなかった高校時代から
想像は大きく膨らみ、いきなり無限次元に話が拡張したのです。


一つのベクトルが多くの情報を担います。
他方でデルタ関数は観測が一瞬にして
波束の収縮を引き起こす様子を表現していると思います。


こうした定式化をディラックは進め、
理論から提唱される物質を考え出しています。


具体的に反物質と呼ぶ存在がいくつも提唱され、
見つかっています。反物質は寿命が通常の物質より
若干短かったりしますので日常的ではありませんが、
粒子の生成消滅を論じたりする際に大事な要素です。


陽子には反陽子があり中性子には反中性子があります。



ディラック来日


そして、何よりディラックは無口な人です。


多くの成果を出していく中で各国の物理学会で招待する
動きがあって日本にも来ていたようです。


ただ性格が性格でですので余り逸話が残っていません。
「仁科さんとお茶飲んだ時に・・・」みたいな話が
残っていないのです。無論、歳下の朝永さんとか湯川さんは
尚更の事、話しづらかったと思えます。


話しかけても無言だったのでしょう。
多分オランダでも日常会話はほとんどなかったと思われます。
私見では「彼は言葉をとても大事に使いたがります。」
そして出てくる言葉が綺羅星だったり残念だったりします。



ディラックの笑い話


そんなディラックについて伝わっている有名な話があります。
ディラックの無口な性格を表す逸話です。


周りの人々が奇妙に思いながらも尊重していた様子が伺えます。
ケンブリッジでは「1Dirac」という単位を使われていました。
仲間内での意味としては

「1Word/1Hours」が「1Dirac」に相当して
一時間あたりに単語二つを使ったら「2Dirac」消費
されたとして換算されました。


ディラックは一時間に数Dirac程度しか言葉を残さなかったそうです。 



その他、ディラックに対する逸話


ディラックの人柄を感じさせる暖かいやりとりです。
例えば以下。





⓪1928年の春ライデンに居た頃に…すぐに答えが出ない

 ような質問があった。ディラックは黒板に非常に小さい文字で

 それをかくすようにしてすばやく計算した。それを見て 

 エーレンフェストは興奮して「彼が実際にどうやって研究を

 するか垣間見ることが出来る!」といった。しかし、

 みんながそれをよく見ない内にディラックは直ぐにその計算を消して

 何時ものスタイルでエレガントな表式を書き進めた。

(以上、カシミールの経験)


@ディラックは「パウリには一個の砂糖で十分だと思う」と言った。

 しばらくして「誰にも一個の砂糖で十分だと思う。」

 更にしばらくして

「一個で十分なように砂糖は作られていると思う。」

(こればボーアがカシミールに話したことだという。


Aディラックと研究所の図書館の脇で立ち話をしている

 時のことです。仁科はディラックに 貴方の論文には

 符号の誤りがあるのをみつけました。」と言ってから、

 次のような会話が仁科とディラックの間で交わされました。

 ディラック「しかし結果は正しいですよ。」

 それに対して仁科は「では二つあやまりがあるにちがいありません。」

 するとディラック「偶数個の過ちがあるといわなければなりませんね。」


B1933年のボーア・コンファレンスで恐らくディラックだけが

 エーレンフェストの相当なうつ状態に気付いていた。その事を

 心配してボーア夫人に話したが、誰も何もできなかったという

 (後にボーア婦人がカシミールに話したこと。)エーレンフェストが

 命を絶ったのはそのすぐ後であった。



 



 伝統を受け継ぐディラック


しかし、そんなディラックは真面目な性格、心を重んじる性格
もあって周囲から大事にされていた様子が伺われます。


本ブログのTOP画面で使っている集合写真でも
真ん中の列の中央に居ます。若き天才ディラックに
アインシュタインキュリー夫人が気を遣って
「君の研究は素晴らしい。これからも頑張って下さいよ!」
といった気持で尊重しているような気がするのです。


そして、写真の真ん中にニュートンの伝統を受け継ぐ
ケンブリッジで研究をするディラックが居て、共に
時代を重ねていくパウリハイゼンベルクが居るのです。


そして、
ディラックはイギリスの伝統を受け継いだ人でもあります。
ケンブリッジではルーカス教授職を務めました。


この名誉は初代・アイザック・バローから始まり
二代目・アイザック・ニュートンと続き、ディラックが継ぎ、
最近では宇宙論で名を成したS・W・ホーキング博士
が受け継いでいます。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2020/08/17_初稿投稿
2023/08/08_改定投稿
2023/08/23‗改訂投稿


舞台別のご紹介へ
時代別(順)のご紹

イギリスのご紹介へ
ケンブリッジのご紹介へ
オランダ関係の紹介へ
ライデン大学のご紹介へ

アメリカ関連のご紹介へ
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Quiet Dirac


Dirac in England was a very humble and reticent person. When the Nobel Prize was decided, he seemed to be thinking about declining the award for fear of becoming famous. Although he is such a person, he establishes quantum mechanics with Feynman, Heisenberg, Schrodinger, etc. in the midst of the geniuses of the early 20th century. In particular, he won the Nobel Prize at the same time as Schrodinger. In considering Dirac's personality, I would like to mention his family for a moment.


His family transferred nationality from Switzerland when Dirac was in his late teens. And it seems that the family environment was a big factor in talking about Dirac's personality formation. First, in 1924, Dirac's brother died himself. Was he the end of many thoughts? It seems that Dirac himself had many difficult conversations with his father. And he seems to have become an extremely reticent person.



Dirac and math


However, Dirac has achieved brilliant results by making full use of mathematics without sinking into the darkness. Especially the delta function and bracket notation are great. I left a lot of such footprints.


The delta function is a family of generalized functions defined using integrals. It is a useful function in many fields, but in the field of physics, it is possible to express how the wave packet converges with observation. Heaviside functions can be expressed mathematically. Various observations can be made depending on how the phenomenon is perceived, and the mathematical expression differs between when thinking about things from the perspective of the frequency axis and when thinking from the perspective of the actual coordinate axis (from the perspective of length). Analysis that applies this viewpoint engineeringly is also very convenient in practical use, and business analysis can be easily performed with a commercially available analyzer.


Bra-ket notation is a notation that uses the "parentheses" symbol in Japanese. In that formulation
Only the "<" part in the shape of the key bracket <> is called the "bra vector".
Only the ">" part in the shape of the key bracket <> is called the "ket vector".
The bra part is a vector amount in a very easy-to-understand expression
The part of the ket corresponding to is the formulation corresponding to the amount of vector acting on it.



Eigenstate and dirac


It is expressed as having an eigenstate when the pre-acting ket has an eigenvalue. It was impressive to me when I was an undergraduate that the vector here is a Hilbert vector (corresponding to infinite dimensions). I felt that the state corresponding to the physical quantity was described in an instant. From high school, when I could only imagine that one dimension was a line, two dimensions were a plane, and three dimensions were a three-dimensional space, my imagination expanded greatly, and the story suddenly expanded to infinite dimensions. One vector carries a lot of information. On the other hand, I think that the delta function expresses how the observation causes the wave function collapse in an instant.


Dirac is proceeding with this formulation and has come up with substances proposed by theory. A number of specific antimatter entities have been proposed and found. Antimatter is not routine because it has a slightly shorter lifespan than normal matter, but it is an important factor when discussing the formation and annihilation of particles. Protons have antiprotons and neutrons have antineutrons.



Dirac visits Japan


And above all, Dirac is a reticent person. While he has produced many achievements, he seems to have come to Japan as he was invited to the Physical Society of Japan. He just doesn't have much anecdotes because he has a personality. There is no such thing as "when I drank tea with Nishina-san ...". Of course, it seems that Mr. Tomonaga and Mr. Yukawa, who are younger, were even more difficult to talk to.


He would have been silent when he spoke. Perhaps there was little daily conversation in the Netherlands. In Cambridge, the unit "1 Dirac" was used. As for the meaning within the group, "1 Word / 1 Hours" is equivalent to "1 Dirac", and if two words are used per hour, it is converted as "2 Dirac" consumed. Dirac left only a few words per hour.


However, it seems that such Dirac was taken care of by the people around him because of his serious personality and personality that does not deceive people. The group photo used on the TOP screen of this blog is also in the center of the middle row. I feel that Einstein and Mrs. Curie care about the young genius Dirac and respect him with the feeling that "Your research is wonderful. Please continue to do your best!"


And Dirac is also a man who inherited the British tradition.
He was a Lucas professor in Cambridge. This honor begins with the first Isaac Barrow, continues with the second Isaac Newton, and has recently been inherited by Dr. SW Hawking, who has made a name for himself in cosmology.



2023年08月23日

ハイゼンベルク
8/23改訂【白いユダヤ人と呼ばれながら乍らも不確定性関係を構築】

こんにちはコウジです!
「ハイゼンベルク」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。





【スポンサーリンク】
【1901年12月5日生まれ ~ 1976年2月1日没】



 ハイゼンベルグの不確定性関係


ハイゼンベルクは行列形式の導入や、


不確定性関係等の適用で、


量子論を形作った一人です。


バイエルン王国に生まれミュンヘン大学ゾンマーフェルトに学び
マックス・ボルンの下で助手を務め、コペンハーゲン
ニールス・ボーアの下で
修業します。
そうした一線級の
議論の中で理論の形式を整えます。


量子論の本質的な概念である不確定性原理はボルン
ヨルダン、
ハイゼンベルクによって確立されました。
具体的に、
ハイゼンベルグは1925年の
「運動力学及び力学の
関係式の量子論的再解釈について」
において新しい発想を開きます。


 論文を読んだボルンが論文中の「遷移振幅」が
 行列であることに気付いたのです。


そこで、ボルンとヨルダンは「量子力学について」で
座標と運動量の交換関係を考えていきます。
それの続いてボルン、ヨルダン、ハイゼンベルグの3人で
「量子力学についてU」という論文を纏め行列力学が完成しました。
「量子力学は多くの人間で作られている」
と改めて感じさせるストーリーですね。


 


可視化で想像できる世界が
「どこまで細かく
考えていけるか」
という命題に対しての
一つの回答が
不確定性関係を含む量子力学の体系です。



 ハイゼンベルグと同時代の偉人達


加えて、ハイゼンベルクはシュレディンガーポール・ディラック
と同じ時代に生き、積極的に行動すればアインシュタイン
ボースとも議論が出来ました。。そうした天才達がミクロの原理を
一つ一つ解きほぐしたのです。


まだ見えない原子レベルの大きさの事象を推察する
手法が色々と試みられて、その結果を説明する理論が発展したのです。
不確定性関係の発表が1927年なのですが、同時期には数多くの
革新的な発表がされて量子力学の対象の理論と応用技術が
飛躍的に発展した時代でした。


同時に大変な時代背景として(流れとして)、
先ず第一次世界大戦(1914/7/28 - 1918/11/11)
そして
第二次世界大戦(1939-45)があったのです。

ハイゼンベルクはアインシュタインが作った
相対論を駆使したりユダヤ人物理学者を養護
していたので、ナチス党員の物理学者から
「白いユダヤ人」と呼ばれ苦労しています。
プランクからの指摘もあり
戦後の体制を見据えてハイゼンベルクはドイツ
に残りました。



 サイクロトロンとハイゼンベルグ


しかし戦時下ですので物理の知識を
ナチスの為に使う事になり、色々考えたようです。
実際にハイゼンベルクのシンクロトロンが火災を起こし
世界でニュースとなったと聞き、アメリカに亡命していた
アインシュタインは大変驚いたと言われています。


実際にその事件が彼に原爆開発を決意させたとも言われています。
そして、
大戦が深まる中でナチス側も原子力爆弾の実用化を模索していた中で
当時のドイツ内でのハイゼンベルグの立場は極めて苦しくなります。


実際にハイゼンベルグが積極的な態度をとった
としたら恐ろしい事です。歴史には「たら・れば」
はよく語られていて、、仮にナチスが原爆を持っていたら、

連合国との原爆の応酬でとても恐ろしい状況になっていた筈です。


私自身も量子力学の計算を進めていて感じたのですが、
オブザーバブルに対する状態の時間発展を表す表式は
数学的な厳密さを持つ半面で、
状態を表している物理表現として洗練されてます。


ハイゼンベルク等の提唱した行列形式はそこにつながっていきます。
又、いくつかの思考実験で裏打ちされた不確定性関係は
量子力学の現象理解の中では本質的です。


またハイゼンベルクはピアノの名手
だったと言われていています。
聞いてみたかったですね。


 




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。


nowkouji226@gmail.com


2020/08/19_初回投稿
2023/08/23_改訂投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
オランダ関係
ライデン大学

ドイツ関係のご紹介
デンマーク関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】



(2021/10月時点での対応英訳)



Heisenberg's Uncertainty Principle


Heisenberg is one of the people who shaped quantum theory by introducing the matrix form and applying the uncertainty relation. Born in the Kingdom of Bavaria, he studied under Sommerfeld at the University of Munich, worked as an assistant under Max Born, and trained under Niels Bohr in Copenhagen. He formalizes his theory in such first-class discussions. The uncertainty principle, which is an essential concept of quantum theory, was established by Born, Jordan, and Heisenberg. One answer to the proposition of how finely the world that can be imagined by visualization can be considered is the system of quantum mechanics including the uncertainty relation.



Heisenberg and his contemporaries


In addition, Heisenberg lived in the same era as Schrodinger and Paul Dirac, and if he acted positively, he could argue with Einstein and Bose. .. These geniuses unraveled the micro-principles one by one. Various methods have been tried to infer events of atomic level that are not yet visible, and the theory that explains the results has been developed. The Uncertainty Principle was announced in 1927, and at the same time, many innovative announcements were made and the theory and applied technology of the object of quantum mechanics developed dramatically.


At the same time, due to the difficult historical background and World War II, Heisenberg used the relativity created by Einstein and cared for Jewish physicists, so he was called "white Jew" by Nazi physicists. I'm having a hard time. Heisenberg remained in Germany in anticipation of the postwar regime, as pointed out by Planck.



Cyclotron and Heisenberg


However, since it is during the war, knowledge of physics
It was decided to use it for the Nazis, and it seems that he thought about various things.
The Heisenberg synchrotron actually ignited
Einstein, who was in exile in the United States, is very surprised to hear that he has become news in the world.
It is said that the incident actually made him decide to develop the atomic bomb.


And as the war deepened, the Nazi side was also searching for the practical application of nuclear bombs, and Heisenberg's position in Germany at that time became extremely difficult. It would be scary if Heisenberg actually took a positive attitude. "Tara, if" is often spoken in history, and if the Nazis had an atomic bomb, it would have been a very scary situation due to the exchange of the atomic bomb with the Allies.


He felt that he was proceeding with the calculation of quantum mechanics, but the expression that expresses the time evolution of the state with respect to the observable is mathematically rigorous, but it is refined as a physical expression that expresses the state. .. The matrix format proposed by Heisenberg and others will lead to that. Also, the uncertainty relation backed by some thought experiments is essential in understanding the phenomenon of quantum mechanics.


Heisenberg is a master of the piano
It is said that it was.
I want to listen.


2023年08月22日

エンリコ・フェルミ
8/22改訂【マンハッタン計画に参画し排他律に従う原理を構築した一人】

こんにちはコウジです!
「フェルミ」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


↑Credit:Jimmy in unsplash↑



【スポンサーリンク】
【1901年9月29日生まれ ~ 1954年11月28日没】



イタリア生まれのフェルミ


フェルミはイタリアのローマに生まれアメリカで没してます。


アメリカではフェルミの名前を冠した研究所が今でも


シカゴ大学内にあって、そこで議論が交わされています。
「フェルミの講義」について他の方のブログを引用します。
少しでも「臨場感」を味わって下さい。。


フェルミはご紹介しているC.N,Yangをはじめ
多くの物理学者を育て上げました。
その業績は社会的側面が大きいものもある一方で
純理論を突き詰めた後世の多くの
物理学者が使う
原理・概念もあります。


まさにパラダイムシフトを起こした
立役者です。ミクロの世界を切り開きました。


 

そもそも、フェルミは学生時代から抜きん出た優秀さを備えています。
一歩一歩、フェルミは議論を展開して
ノーベル賞を受け、その授賞式
の際にイタリアから
アメリカに亡命しました。


フェルミの時代にはナチスが猛威をふるっていて、
奥様がユダヤ人
だつた為もフェルミは迫害されていたのです。



フェルミとマンハッタン計画


アメリカ移住後にフェルミは有名なマンハッタン計画に参画し、
原子力発電所の創設に携わり社会を大きく変えていきます。


そもそも、計画への参加はオットー・ハーンがドイツで
核分裂実験に成功した事情が大きいです。


フェルミを初めとした物理学者達が時代に危惧感を抱いたのです。
アメリカを中心とする
資本主義圏が自由を謳歌した点で
フェルミの業績は
計り知れないです。


反面でスリーマイル島の事故や福島での原発事故を思い起こすと、
気楽に賞賛ばかりはしていられません。


このブログの中で私が何回か主張しているように
識者が知恵を集結して問いかけなければいけません。


かってのラッセルーアインシュタイン宣言を思い起こしたいです。
一方で我々、大衆も皆で分かる範囲の言葉を使い
意見を交わさねばなりません


可能な範囲で意見を交わして民衆の英知を集結させるべきです。
個人個人が平和に対して
語る時に少しでもしっかりした
考えをもって
話さないといけないのです。


色々な人と語る時に話が繋がっていく様な議論の土壌を、
少しずつ育んでいかないといけないです。その為には
会話をする個人それぞれが、より平和と現実に対して
しっかりした考えを持ってほしいです。
そんな人が話しやすい雰囲気を
出していけるような人になって下さい。
自分が話を広げるだけではなくて、
相手の意見や気分を理解する力も大きいです。

考えを作るうえで政治家には頼れない昨今です。
各人、しっかりした考えを育んで下さい。



 フェルミトとスピン


さてフェルミに話を戻します。フェルミは純理論の中で
スピン角運動量に関して議論を進めました。


別のご紹介でボゾン・アインシュタインの系を紹介しましたが、
フェルミとディラックは別の粒子群に着目します。


後世の理解ではスピン角運動量が半整数(1/2とか3/2とかいった数)
の粒子はフェルミ粒子(フェルミオン)と呼ばれボゾンとは
別の振る舞いを示します。
具体的なフェルミオンとしてはクォークや電子、
ミュー粒子、
ニュートリノ、陽子、中性子もフェルミ粒子の仲間です。
こうした概念は電気伝導率の物性を議論するときには欠かせません。


フェルミの排他律に従う電子の集団を統計的に扱い、
フェルミ統計を確立したのです。
例えばこの理論で金属他の熱伝導が非常によく説明されます。


こうして沢山の業績を世に残し、フェルミは天に召されました。


彼は病床で点滴が落ちるのを眺めて、


その流速を出していたと言われています。


フェルミこそ、生粋の物理学者でした。


謹んでご冥福をお祈り致します。




【スポンサーリンク】


以上、間違いやご意見があれば
以下アドレスまでお願いします。
問題点に会しては適時、
改定・訂正を致します。


nowkouji226@gmail.com


2020/09/13_初回投稿
2023/08/22_改定投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
イタリア関係のご紹介

オランダ関係の紹介へ
ライデン大学のご紹介へ
アメリカ関連のご紹介へ
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Italian-born Fermi


Fermi was born in Rome, Italy and died in the United States. In the United States, there is still a research institute named after Fermi at the University of Chicago, where discussions are held. While some of its achievements have a large social aspect, there are also principles and concepts used by many posterity physicists who have pursued pure theory. He is the driving force behind the paradigm shift. He opened up the micro world.


In the first place, Fermi has outstanding excellence since his school days. Step by step, Fermi developed his discussions, received the Nobel Prize, and went into exile from Italy to the United States at the award ceremony. At his time, his wife was persecuted because he was Jewish.



Fermi and Manhattan Project


After moving to the United States, Fermi participated in the famous Manhattan Project and was involved in the creation of a nuclear power plant, which would significantly change society. In the first place, participation in the project is largely due to Otto Hahn's successful nuclear fission experiment in Germany. Fermi and other physicists were worried about the times. Fermi's achievements are immeasurable in that the capitalist sphere centered on the United States enjoyed freedom. On the other hand, when he recalls the Three Mile Island accident and the nuclear accident at Fukushima, he cannot easily praise him. As I have argued several times in this blog, wisdom must be gathered and questioned. I want to recall the old Russell-Einstein Declaration. On the other hand, we, the general public, must exchange opinions using words that everyone can understand.


We should exchange opinions to the extent possible and bring together the wisdom of the people. When an individual talks about peace, he or she must have a firm idea. We have to gradually nurture the ground for discussions that will connect the conversations when talking to various people. I want each individual who has a conversation to have a firmer idea of ​​peace and reality. Please become a person who can create an atmosphere that makes it easy for such people to talk. Not only do I spread the story, but I also have a great ability to understand the opinions and moods of the other person. Nowadays, we cannot rely on politicians to make ideas. Please nurture a solid idea for each person.



Fermit and spin


Now let's get back to Fermi. Fermi proceeded with the discussion on spin angular momentum in pure theory. He introduced the Boson Einstein system in another introduction, but Fermi and Dirac focus on different particle swarms. In later understanding, particles with a half-integer spin angle momentum (numbers such as 1/2 and 3/2) are called fermions and behave differently from bosons. As specific fermions, quarks, electrons, muons, neutrinos, protons, and neutrons are also fermions. These concepts are indispensable when discussing the physical characteristics of electrical conductivity.


He established the Fermi statistics by statistically treating the group of electrons that obey the Fermi exclusion principle. For example, this theory explains the heat conduction of metals and others very well. .. In this way, Fermi was called to heaven, leaving many achievements in the world.


Fermi is said to have watched the drip drop on the bed and set the flow velocity. Fermi was a true physicist. He humbly prays for his soul.



 

2023年08月21日

E・O・ローレンス
8/21改訂【サイクロトロンを発明し人工放射性元素を実現】

こんにちはコウジです!
「ローレンス」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1901年8月8日~1958年8月27日】



 優れた実験家ローレンス


その名はErnest Orlando Lawrence。


ローレンスは優れた実験家で今でも世界中で


応用されている「サイクロトロン」を発明した事


で広く知られています。


 

米サウスダコタでノルウェー系の両親に生まれ少年時代は
Merle Tuveと
共に簡易無線装置を作成したりしていました。


その後、サウスダコタ大学時代は医学を志望してましたが、
化学の学士号、物理学の修士号を習得します。


Tuveと共にスワン先生の下で学びますローレンスがイェール大学で
博士号をとった時には光電効果に関する研究をしていたようです。


その後、恩師だったスワン先生がイェール大学を去るタイミングで
カリフォルニア大
に移ります。ローレンスは実験家として大変、
有望視されていました。



ローレンスの業績 


サイクロトロンを使った実験で、ローレンスがその装置を
活用
した応用例が人工放射性元素でした。


ローレンスと彼の率いるバークレー国立研究所は自然界に
存在する元素だけでなく、
不安定な元素を作り出したのです。


強い磁場を使い帯電しているイオンをビーム状に出す事が出来るので
ローレンスの作ったサイクロトロンはイオンが
反応する状態を作れるのです。


数メートル・オーダーの装置を使って原子を加速させて
コンマナノ・オーダーの原子の反応を調べていきます。


日本、イギリスが同様な措置を計画していきます。
サイクロトロンを使えば特定金属にイオンビームを
当て続ける事が出来たりする訳です。


こうした装置の開発を通じてローレンスは
人類に新しい知見を
もたらしたのです。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/31_初回原稿
2023/08/21_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関連のご紹介へ
イェール大学関連のご紹介へ
UCBのご紹介

熱統計関連
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Excellent experimenter Lawrence


Its name is Ernest Orlando Lawrence. Lawrence is a well-known experimenter and widely known for inventing the cyclotron, which is still frequently applied.


Born to Norwegian parents, he worked with Merle Tuve as a boy to create simple radios.


Later, Lawrence aspired to medicine when he was at the University of South Dakota, but he earned a bachelor's degree in chemistry and a master's degree in physics. He studies with Tuve under Dr. Swan. When Lawrence got his PhD at Yale University, he seems to have been studying the photoelectric effect.


After that, his teacher, Swan, will move to the University of California when he leaves Yale University. Lawrence was very promising as an experimenter.



Lawrence's achievements


In his cyclotron experiments, Lawrence's application of using the device was an artificial radioactive element. Lawrence and his Berkeley National Laboratory created unstable elements as well as those that exist in nature.


Since it is possible to emit charged ions in the form of a beam using a strong magnetic field, the cyclotron made by Lawrence can create a state in which the ions react. Japan and the United Kingdom will plan similar measures.


If you use a cyclotron, you can keep shining an ion beam on a specific metal.


Through the development of such equipment
Lawrence gives humanity new insights
he brought it.


2023年08月20日

W・E・パウリ
8/20改訂【微細定数 1/137.036...|新たな概念として排他律とスピンを発見】

こんにちはコウジです!
「パウリ」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1900年4月25日生まれ ~ 1958年12月15日没】



その名はWolfgang Ernst Pauli


パウリはオーストリア生まれの


スイスの物理学者。パウリの排他率律で有名です。


排他律を排他率と書いてしまいがちですが


排他律です。その「パウリの排他律」は


「パウリの原理」とも呼ばれています。


1945年にアインシュタインの推薦で


ノーベル物理学賞を受けています。


ミドルネールのエルンストはパウリの名付け親、
パウリが尊敬するマッハに由来します。
父方はユダヤ系で有名な出版社を
経営していたようです。


さて、


排他律の具体的な内容に関してですが、
ナトリウムの分光実験から話が始まります。


再現性の高い事実として
磁場付加時の分光は
電子の自転に由来する」
という仮説をパウリは立て、
後にそれをスピンと名付けます。


新しい量子的自由度です。
後に行列力学を基盤とした定式化が行われ
数学的に表現します。これが絶妙




パウリと著名人の交流


個人的に興味を引くのはミュンヘン大学でパウリが
ゾンマーフェルト_の指導を受けている点です。


私が講義を受けた先生がゾンマーフェルト_を研究していて、
マッハの名前も、その先生から教えてもらいました。


そして、マッハ・ゾンマーフェルト・パウリとつながったのです。
そしてもう一つ個人的な話を続けます。
今使っているドメインへの投稿です。


何故か半歳程、投稿漏れに気づかずにいたのですが、
ある日「パウリ」について気になって
上記ゾンマーフェルトとの関係を思い出したのです。


そして急ぎ作業を続けていて驚いたのは、
その日がパウリの誕生日だったのです。


パウリが生まれてから220年が終わった瞬間でした。
後述するユング達が極めた深層心理の世界では
意識下と無意識下の間に「潜在意識」を想定しますが、
そんなことも少し考えてしまいました。


よもや潜在意識下で決めた投稿日だったのでしょうか。
または深層意識下で「投稿していませんよ!」
と告げてくれた人がいたのでしょうか。
とか色々と考えてしまいました。


まぁ、普通に考えたら単なる偶然ですね。


私の頭の中での奇妙な三角関係はさておき、


パウリは人間的にも面白い人だと思えます。


独自に培った知性で各界の著名人を魅了しているのです。


例えば、博士号を習得した直後、パウリは


ゾンマーフェルトに独逸語での百科事典の記事執筆


を依頼されます。内容は相対性理論に関する記事


でしたが、2か月ほどを使って完成させました。


その結果はアインシュタイン本人の査読にかなう見事なもので、
今日においても読み応えのある
ものとなっているそうです。


アインシュタインはパウリのミドルネームに
気付いていたのでしょうか。
マッハとの関係を知っていたのでしょうか。


機会があれば調べてみたいと思います。
マッハ・アインシュタイン・パウリの三角関係です。


更に妙な繋がりは心理学者C・G・ユングとの関連です。
パウリは離婚後に精神を病んでいた時期がありました。


今や、夢分析の世界で有名なユングに
完璧主義者のパウリが出合ったのです。


先生と生徒という関係を築き、
生徒としてユングにパウリは科学的な批評を加えます。
互いに有益な関係だったのでしょう。


因みにユング関連での兄弟弟子フロイトもユダヤ系です。
アインシュタインもユダヤ系です。


この切り口で考えていっても特有の文化に起因する
思考的な共有点が見いだせると思います。
思考の方法を考えるうえで、少し興味深い対象です。




パウリと1/137


そして、


パウリは最後まで愛した物理学を愛し続けました。


戦争での苦難の時代の後に帰国して、


病床でも完璧主義者として見舞客と議論を続けました。


その中で語り継がれている話があります。


微細定数と呼ばれる無次元量があって、


それはプランク定数に関わる相互作用を


特徴付ける量です。パウリはその値に最後まで、


こだわり抜きました。


もし、パウリが神に謁見したら、
神に微細定数 1/137.036...の
理論的根拠を尋ねたとしたら、
神様は物凄い速度で計算式を
書き連ねるだろう。その後、
きっとパウリは「違う!」
と唱えて、話し続けるであろう。


よもや、神様さえも「あ!」
と唱えるのではないか、
と不遜にも想像してしまいました。



〆 


 



【スポンサーリンク】



以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/19_初稿投稿
2021/04/25_原稿改定
2023/08/20_改定投稿


纏めサイトTOP
舞台別のご紹介へ
時代別(順)のご紹介

スイス関係のご紹介へ
オランダ関係のご紹介へ
ドイツ関係のご紹介へ
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


 

(2021年10月時点での対応英訳)



Its name is Wolfgang Ernst Pauli


Pauli is an Austrian-born Swiss physicist. It is famous for Pauli exclusion principle. It is easy to write the exclusion principle as the exclusion rate, but it is the exclusion principle. The "Pauli exclusion principle" is also called the "Pauli principle". He received the Nobel Prize in Physics in 1945 on the recommendation of Einstein.


Middlener Ernst comes from Pauli's godfather, Pauli's respected Mach. His father seems to have run a well-known Jewish publisher.


Now, regarding the specific content of the exclusion principle, the story begins with a spectroscopic experiment of sodium.


As a highly reproducible fact, Pauli hypothesized that spectroscopy when a magnetic field was applied was derived from the rotation of electrons, which he later named spin. A new quantum degree of freedom. He later formulates based on matrix mechanics and expresses it mathematically. Twice



Exchange between Pauli and celebrities


Personally, I'm interested in Pauli's guidance at Sommerfeld at the University of Munich. The teacher I was giving a lecture on was studying Sommerfeld, and he also told me the name of Mach. And he was connected to Mach Sommerfeld Pauli. And I will continue with another personal story. This is a post to the domain you are currently using. For some reason, I was about half a year old and didn't notice the omission of posts, but one day I was worried about "Pauli" and remembered the relationship with Sommerfeld.


And what surprised me as I continued to work in a hurry was that day was Pauli's birthday. It was the moment when 220 years had passed since Pauli was born. In the world of deep psychology, which Jung and his colleagues have mastered, we assume a "subconscious" between consciousness and unconsciousness, but I have thought about that for a moment. Was it the posting date decided under the subconscious? I have thought about it.
Well, if you think about it normally, it's just a coincidence.


Aside from the strange love triangle in my mind, Pauli seems to be a humanly interesting person. His unique intelligence attracts celebrities from all walks of life.


For example, shortly after completing his PhD, Pauzo was asked by Nmarfeld to write an encyclopedia article in German. The content was an article about the theory of relativity, but it took about two months to complete. The result is excellent enough to be peer-reviewed by Einstein himself, and it seems to be readable even today. Did Einstein notice Pauli's middle name? Did he know his relationship with Mach? I would like to find out if I have the opportunity. It is a love triangle of Mach Einstein Pauli.


A more strange connection is with the psychologist CG Jung. Pauli had a period of mental illness after his divorce. Now, the perfectionist Pauli meets Jung, who is famous in the world of dream analysis. He builds a teacher-student relationship, and Pauli gives Jung a scientific critique as a student. It must have been a mutually beneficial relationship. By the way, Jung's brother and disciple Freud are also Jewish. Einstein is also Jewish. Even if you think from this perspective, you can find a thoughtful shared point due to the unique culture. It's a little interesting when thinking about how to think.



Pauli and 1/137


And Pauli continued to love his beloved physics until the end. He returned home after a period of hardship in the war and continued to discuss with visitors as a perfectionist in bed. There is a story that has been handed down in it.


There is a dimensionless quantity called the fine constant, which is the quantity that characterizes the interactions involved in Planck's constant. Pauli was particular about that value until the end. If Pauli had an audience with God and he asked God for the rationale for the fine constant 1 / 137.036 ..., God would write the formulas at a tremendous speed. After that, Pauli will surely say "No!" And continue talking.


I have imagined that even God would say "Ah!".

2023年08月19日

J・F・ジョリオ=キューリー
8/19改訂【アルファ線を使いリン30を実現】

こんにちはコウジです!
「J・F・ジョリオ=キューリー」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1900年3月19日 〜 1958年8月14日】


今回のご紹介はジャン・フレデリック・ジョリオ=キューリーです。


、J-F・ジョリオ=キューリーはフランスパリに生まれ、
亡くなるまでパリで暮らしました。
そんな人の58年の人生のご紹介です。


名前の綴りはJean Frédéric Joliot-Curieとなります。
著名なキューリー夫妻の娘婿としてご紹介するとわかりやすいでしょうか。


つまり、義理の父はピエール・キュリー、
義理の母はマリー・キュリー。
義理の妹はエーヴ・キュリーとなります。


このご紹介の中でフレデリックとご紹介していきますが、
フレデリックはラジウム研究所でマリ・キューリーの助手となりました。


その研究所でマリの娘イレーヌを知り交際を深め。
まもなく2人は結婚しました。


その時点で姓を「ジョリオ=キューリー」としたのです。
ジョリオはフレデリックの血筋の名前でキューリーは
イレーヌの血筋の名前でした。
二人は後に一緒にノーベル賞を受けます。


フレデリックとイレーヌの夫婦は同位体元素への反応過程を
研究して新しい物質を作り上げたのです。


具体的にはアルミニウムに対してアルファ線を照射したときに
人工放射性同位元素である30P(リン30)が発生したのです。


その後、フレデリックはフランス原子力庁の長官として
フランス初の原子炉を1947年に建設するプロジェクトに加わります。


原子力の平和的な利用と環境に及ぼす影響については
各論があると思えますが、今のフランスの電源構成に
大きな影響を与えた人だと言えます。


政治的な活動としてフレデリックは第二次世界大戦時には
ナチスドイツに対抗するレジスタンス運動に参加しました。


そして終戦後は先述したフランス原子力庁の仕事をしながら
フランス国立科学研究センター総裁、
コレージュ・ド・フランスの教授も務めていました。


他、パグウォッシュ会議(核兵器と戦争の廃絶を訴える国際会議)
の創始、世界平和評議会の初代議長、
フランス共産党の党員と多方面で尽力し活躍をしました。


教育者としてフレデリックは日本初の女性物理学者である
湯浅年子に物理学を指導しています。


その実績も我々日本人には新鮮なのではないでしょうか。
本当に多彩な魅力を持っていた人だと言えます。


更に意外な側面は柔道との関わりです。
フレデリックはフランス柔術クラブの名誉会長でした。
柔道創始者の嘉納治五郎も就いていた役職です。
フレデリックがいかにフランス国民から敬愛されていたかがわかりますね。


 

〆最後に〆


TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2022/04/05_初回投稿
2023/08/19_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介

力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】




 

(対応英訳)


Introducing this time is Jean Frederick Jorio-Curie, but JF Jorio-Curie was born in Paris, France and lived in Paris until his death. This is an introduction to such a person's 58-year life. His name is spelled Jean Frédéric Joliot-Curie. Is it easy to introduce as the son-in-law of the famous Mr. and Mrs. Curie? That is, his father-in-law is Pierre Curie and his mother-in-law is Marie Curie. His sister-in-law will be Ave Curie.


In this introduction, I will introduce you to Frederick, who became an assistant to Marie Curie at the Radium Institute. He got to know Mali's daughter Irene at the institute and deepened his relationship. Soon the two got married. At that point he changed his surname to "Jorio-Curie". Jorio was the name of Frederick's lineage and Curie was the name of Irene's lineage. The two will later receive the Nobel Prize together.


The couple of Frederick and Irene studied the process of reaction to isotopes and created a new substance. Specifically, when aluminum was irradiated with alpha rays, the artificial radioisotope 30P (phosphorus 30) was generated.


Frederick then joined the project to build France's first nuclear reactor in 1947 as Secretary of the French Atomic Energy Agency. There seems to be some debate about the peaceful use of nuclear energy and its impact on the environment, but he is one of the most influential people in France's current power mix.


As a political activity, Frederick participated in the resistance movement against Nazi Germany during World War II. And after the end of the war, he was also the president of the French National Center for Scientific Research and a professor at Collège de France, while working for the French Atomic Energy Agency mentioned above. H


e and others have worked extensively with the founding of the Pugwash Conference (an international conference calling for the abolition of nuclear weapons and war), the first chairman of the World Peace Council, and members of the French Communist Party.


As an educator, Frederick teaches physics to Toshiko Yuasa, Japan's first female physicist. I think that achievement is also fresh for us Japanese. It can be said that he really had a variety of charms.


A more surprising aspect is the relationship with judo. Frederick was the Honorary Chairman of the French Jiu-Jitsu Club. He was also in the position of Judo founder Jigoro Kano. You can see how Frederick was loved by the French people.

2023年08月18日

S・ナート・ボース
8/18改訂【インド独自の理解体系で学びボーズ粒子を定式化】

こんにちはコウジです!
「チャドウィック」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1894年1月1日生まれ ~ 1974年2月4日没】



BOSEという名前の読み方


ボーズ(BOSE)は珍しいインド人物理学者です。


フルネームで名前を書き下すと、


 サティエンドラ・ナートボース


:Satyendra Nath Bose となります。


以下、ボーズの名前に濁音がついていますがご了承下さい。


名前の最後の「ズ」の所です。BEC(ボーズアインシュタイン凝縮)、
ボゾンといった用語で学生時代に議論して、
その感覚がどうしても消えません。


そもそも実際の綴りはBOSEでしすし、
正式にはボースと発音するようで、
Wikipediaの記載もボースです。しかし、そもそも、


ここに拘っている人は少ない印象です故、特に訂正しません。



BOSEの物理学での業績


さて、インドは独自の数学体系を持ち計算(暗算)方式も
独自の形式を持ちます。


そんな学問体系で素粒子の世界に挑んだボーズは
統計力学で今世紀初頭にEinsteinと共に今でいう
BOSE粒子群(BOSON)の
振る舞いを定式化するのです。


1924年にアインシュタインへ論文を送った時点が始まりです。


その論題は「プランクの放射法則と光量子仮説」でした。
アインシュタインはその仕事を
高く評価して後にそれを発展させますが、
学会で討議する以上の交流は未だ私には調べきれていません。


インド独自の学問体系の中でボーズ粒子は育っていったと考えています。
後に英国の王立協会からフェローに任命されていますので
本ブログ内での最後のリンクにイギリスは含めました。



BOSNとFERMION


前段の知識として後世の理解で整理すると
「素粒子はスピン角運動量の数で
BOSONとFERMIONの
二種類に分かれます。」


いわゆる凝縮系の世界でもBOSONは特異な振る舞い
を示します。位相空間で一点に集まったり、
超流動現象で壁を上る液体として振舞います。
関連動画「5分30秒頃」の画像に注目してください)


具体的にBOSONとは光子、音子、
ウィークボソン、
グルーオン、π中間子やK中間子、
D中間子、
B中間子、ρ中間子、等でスピンの奇遇性から
ボゾンに分類されて、
BOSE−EINSTEIN統計に従います。



BOSEの人物像


ただ残念な事に西洋の学者と異なり、
インド系のボーズは「人となり」が伝わっていません。


何よりボーズの業績である、BOSONで名を残しています。
私がインドに行って調べたいくらいですがあいにく機会ができません。
いつか調べてみたいと思っています。


その時は関係者と話す時に「ボース」と心がけながら
話そうと思います。人の名前は間違えると
違和感を与えますからね。


いや、ひょっとしたら関係者も
「ボーズ」を多用するかもしれません。
その確認も小さな楽しみです。



【スポンサーリンク】


以上、間違いやご意見があれば
以下アドレスまでお願いします。
問題点には適時、
返信・改定を行います。


nowkouji226@gmail.com


2020/09/12_初回投稿
2023/08/18_改訂投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
イギリス関係
熱統計力学関係

量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



How to read BOSE(iN jAPAN)


BOSE is a rare Indian physicist. If you write down the name with the full name,


Satyendra Nath Bose


: It will be Satyendra Nath Bose. Please note that the name of Bose has a voiced sound below. This is the last "Z" in the name. When I was a student, I argued with terms such as BEC (Bose-Einstein Condensation) and Boson, and that feeling never disappeared.


In the first place, the actual spelling is BOSE, and it seems to be officially pronounced as Bose, and the description on Wikipedia is also Bose. However, in the first place, I have the impression that few people are concerned about this, so I will not make any corrections.



BOSE's achievements


By the way, India has its own mathematical system and its own calculation (mental arithmetic) method. Bose, who challenged the world of elementary particles with such an academic system, uses statistical mechanics to formulate the behavior of what is now called the BOSE particle group (BOSON) with Einstein at the beginning of this century.


He began when he sent a treatise to Einstein in 1924. The subject was "Planck's law of radiation and the photon hypothesis." Einstein appreciates his work and develops it later, but I haven't been able to find out more than the discussions at the conference. I believe that bosons grew up in India's unique academic system. I was later appointed as a Fellow by the Royal Society of England, so I included the United Kingdom in the last link.



BOSN and FERMION


Elementary particles can be divided into two types, BOSON and FERMION, according to the number of spin angular momentums. Even in the so-called condensed world, BOSON behaves peculiarly.
Specifically, BOSON is classified into bosons based on the oddity of spins such as photons, phons, weak bosons, glueons, π mesons, K mesons, D mesons, B mesons, and ρ mesons, and follows BOSE-EINSTEIN statistics.



BOSE portrait


Unfortunately, unlike Western scholars, Bose of Indian descent does not convey "becoming a person". Above all, he has left his name in BOSON, which is the achievement of Bose. I would like to go to India to find out, but unfortunately I can't get the chance. I would like to find out someday. At that time, when I talk to the people concerned, I will try to talk with "Bose" in mind. If you make a mistake in a person's name, it will make you feel uncomfortable. No, maybe the people involved may also use "Bose" a lot. The confirmation is also a little fun.


2023年08月17日

アーサー・コンプトン
8/17改訂【ガンマ線の散乱・吸収を研究|粒子の波動性と粒子性を研究】

こんにちはコウジです!
「コンプトン」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1892年9月10日 ~ 1962年3月15日】



コンプトン効果


アメリカのコンプトンは波動の粒子性を示した実績と


マンハッタン計画で指導的役割を果たしたこと


知られています。コンプトンは1919年に英国の


キャンデビッシュ研究所に留学しました。


キャンでビッシュ研究所でガンマ線の散乱・吸収を研究します。
「波動のコンプトン効果」を発見するのです。


コンプトンの考えは今では量子力学の基幹をなしていますが、
大まかには以下の理解を
していれば良いと思います。つまり、


「微視的に物事を考え始めた時に粒子性と


波動性が同時に具現化する」


ということです。


コンプトンの考えで話を進めると自由電子により散乱された
X線量子がより長い波長となるという事実に対して


「波長が長くなる状態」つまり


「光線のエネルギーが落ちる状態」で


子性に着目して弾性散乱の視点で考えていくのです。



コンプトンの微視的な視点 


具体的に量子力学では不確定関係という枠組みで
物事を考えますので2つの値が同時に確定しません。


例えば位置と運動量を同時に確定しません。また、
時間とエネルギーを同時に確定しません。但し、
時間×エネルギーや位置×運動量といった値を
物理量として確定出来るのです。


これは作用と呼ばれる次元の物理量です。
時間という物理量やエネルギーという物理量と
関連していますが異なります。


以上は量子力学を理解した人々には納得出来ても
一般の人々には中々説明がし辛い部分です。


誤解無く伝わっているかいつも不安になります。
そんな意識改革をコンプトンが進めていたのですね。
波動として考えていたガンマ線やX線に粒子性を見出したのです。



コンプトンとマンハッタン計画 


また、コンプトンはマンハッタン計画を進めた主要メンバーでもあります。
そもそも原子爆弾は
原子炉の製造から計画しなければいけません。
計画の中
でウランをプルトニウムに変換して、
プルトニウムと
ウランの混合物からプルトニウムを分離するプロセス
が必要です。コンプトンはこのプロセスをSEとして設計してプロジェクトが
進んでいく現場で働きました。


また、原子爆弾を兵器として使用するには敵国で使用時に、
出来るだけ早くに最大限の攻撃力を
発揮しなといけませんが、
そうした損傷兵器
の仕組みをを設計する方法についても
コンプトンは計画をしていきました。


なお同計画はオッペンハイマーの設計もあり、
フェルミローレンスとの議論も経ています。
全米の知能を集め計画を進めていたのです。


 

そしてコンプトンの業績はノーベル賞を初めとする
々たる栄誉で称えられています。それと同時に、
マンハッタン計画の主導者として計画自体の是非を論じる際に
何度もコンプトンの名があがります。


もともとは、コンプトンはもともと星の好きな少年でした。
そんな所からガンマ線の究明に話が進みましたが、
彼の名はガンマ線検出の為のNASAの衛星に残されています。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/11/07_初稿投稿
2023/08/17_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ
イギリス関係
ケンブリッジ関連

熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Compton effect


Compton in the United States is known for its track record of wave particle nature and for its leadership role in the Manhattan Project. Compton studied abroad at the Candevisch Institute in the United Kingdom in 1919, where he studied gamma-ray scattering and absorption.


There he discovers the "Compton effect of waves".
This idea is now the basis of quantum mechanics, but I think it is good to have the following general understanding. In other words, "when you start thinking microscopically, particle nature and wave nature are realized at the same time." If we proceed with that idea, we will focus on the particle nature in the "state where the wavelength becomes longer", that is, the "state where the energy of light rays falls", in contrast to the fact that the X-ray quantum scattered by free electrons has a longer wavelength. Think from the perspective of elastic scattering.



Compton's microscopic perspective


Specifically, in quantum mechanics, things are considered in the framework of an uncertain relationship, so two values ​​may not be fixed at the same time. For example, the position and momentum are not fixed at the same time. Also, time and energy are not fixed at the same time. However, values ​​such as time x energy and position x momentum can be determined as physical quantities. This is a physical quantity of a dimension called action. It is related to but different from the physical quantity of time and the physical quantity of energy.


The above is a part that is difficult to explain to the general public even if it is convincing to those who understand quantum mechanics. I'm always worried if it's transmitted without any misunderstandings. Compton was promoting such a change in consciousness. He found particle nature in gamma rays and X-rays, which he thought of as waves.



Compton and Manhattan Project


Compton is also a key member of the Manhattan Project. In the first place, the atomic bomb must be planned from the production of the reactor. Therefore, a process is required to convert uranium to plutonium and separate plutonium from the mixture of plutonium and uranium. Compton designed this process as an SE and worked in the field where the project progressed.


In addition, in order to use an atomic bomb as a weapon, it is necessary to exert maximum attack power as soon as possible when using it in an enemy country, and Compton also plans how to design the mechanism of such a damaged weapon. I went on. The plan was also designed by Oppenheimer and has been discussed with Fermi and Lawrence. He was gathering intelligence from all over the United States and working on a plan.


And Compton's achievements are praised for its lush honors, including the Nobel Prize. At the same time, as the leader of the Manhattan Project, he is often mentioned when discussing the pros and cons of the plan itself.


Originally, Compton was originally a star-loving boy. From that point on, we went on to investigate gamma rays, but his name remains on NASA's satellite for gamma ray detection.


2023年08月16日

ルイ・ド・ブロイ
8/16改訂【電子の仮説を極め、新概念の物質波を生んだフランス貴族】

こんにちはコウジです!
「ド・ブロイ」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1892年8月15日生まれ~1987年3月19日没】



名門家に生まれたド・ブロイ


ルイ・ド・ブロイはフランス貴族、公爵の血を引いてます。


その血筋は由緒正しいのです。そもそも、


フランス国王ルイ14世により授爵頂いていた


名門貴族・ブロイ家の血筋であって、ルイ・ド・ブロイは


直系子孫です。兄の没後は兄に子供が居なかった


事情もあって、正式に侯爵家の当主を務めています。


ルイ・ド・ブロイはフランスの首相を二期務めた第4代の当主である
アルベール・ド・ブロイの孫です。それだから、
ルイの生誕時に、その父は当時公子でした。
こんな逸話が沢山あるのですね。


そんなルイ・ド・ブロイは独自に優れた仮説を進め、


ド・ブロイ波(物質波)の考えにたどり着くのです。



ドブロイの物質波 


そのルイ・ド・ブロイの考えは初めは中々
理解されませんでした。
関連して
超有名なエピソードがあります。


ルイ・ドブロイの博士論文の審査過程で教授達が
ド・ブロイの考えを理解出来ず、
かのアインシュタインに意見を求めたのです。


すると、
「ド・ブロイの考えは博士論文よりも
ノーベル賞に値する」
とアインシュタインから評価され、
絶賛され、更に物質波の考えを進めていく事が出来たのです。


その考えはパラダイムシフトでした。
粒子の二面性の考えは
現代量子力学の根幹をなしていて、
とても大事な考えです。
ドブロイを含めた学者達が議論を重ね、
当時の物理学の常識を変えていったのです。



物質の二面性


波が粒子性を持つのと同時に、
粒子である
と考えられていた電子も、
実際には波動性を持つだろう
という考え
がドブロイ波の本質です。


現代量子力学の理解ではこの二面性は当たり前ですが、
波動性を持つ故に特定元素の周りを周期的に
運動する
と考えた時に電子は
特定波長の整数倍のみ許された
軌道を描いている
と考えられるのです。


実際に我々は原子の周りを運動する電子を
直接の観測にかける事は出来ません。


しかし、水素、ヘリウム、リチウム、、と色々な原子を
考えていった時に、それらを構成する
陽子と中性子の
結合条件を詳細に吟味した結果として
電子の軌道半径
は規則があり、
ド・ブロイ波の理論が理に叶うのです。


逆に考えれば特定波長の整数倍の運動しか、
その電子が取る状態は許されないのです。


特定原子核の周りを回る電子は特徴的な波長の整数倍
を定常状態として周期運動を続け、
定常状態間の遷移が
起きる際に放射線が生じる事実は、
ドブロイを初めとする
考えがあってこそ
成立する概念なのです。


それこそが電子の存在なのです。


実際に数年後にルイ・ド・ブロイは
ノーベル賞
を受賞します。


いつの時代も中々、斬新な新しい考えは
理解出来されないものですね。




以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。


nowkouji226@gmail.com


2020/08/19_初回投稿
2023/08/16_改定投稿


TechAcademy [テックアカデミー]
【スポンサーリンク】


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
力学関係のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】



(2021年10月時点での対応英訳)



De Broglie was born into a prestigious family


Louis de Broglie is of the duke's blood, a French aristocrat. The lineage is venerable. In the first place, Louis de Broglie is a direct descendant of the prestigious nobleman, the Broy family, who was conferred by King Louis XIV of France. He is officially the head of the Marquis family, partly because his brother had no children after his brother's death.


Louis de Broglie is the grandson of Albert de Broglie, the fourth head of the French Prime Minister for two terms. So, at the time of Louis' birth, his father was a prince at the time. There are many such anecdotes. Such Louis de Broglie advances his own excellent hypothesis and arrives at the idea of ​​de Broglie wave (material wave).



Matter wave of debroi


The idea of ​​Louis de Broglie was not well understood at first. There is a related super famous episode. During the process of reviewing Louis de Broglie's dissertation, the professors could not understand De Broglie's ideas and asked Einstein for his opinion.


Then, "De Broglie's idea deserves the Nobel Prize more than his dissertation," was evaluated and praised by Einstein, and he was able to further advance the idea of ​​material waves. The idea was a paradigm shift. The idea of ​​two-sidedness of particles forms the basis of modern quantum mechanics and is a very important idea. Scholars, including Matter Wave, had many discussions and changed the common sense of physics at that time.



Two-sidedness of matter


The essence of de Broglie waves is the idea that at the same time that waves have particle nature, electrons that were thought to be particles will actually have wave nature. This duality is natural in the understanding of modern quantum mechanics, but when we think that it moves periodically around a specific element because it has wave nature, it is said that the electron draws an orbit that is allowed only an integral multiple of the specific wavelength. You can think of it. In fact, we cannot directly observe the electrons moving around an atom.


However, when considering various atoms such as hydrogen, helium, and lithium, as a result of detailed examination of the bonding conditions of the protons and neutrons that compose them, there is a rule in the orbital radius of the electron, and de Broglie. The theory of waves makes sense. Conversely, the electron is only allowed to move an integral multiple of a specific wavelength.


The fact that electrons orbiting around a specific nucleus continue to move periodically with an integral multiple of the characteristic wavelength as a steady state, and radiation is generated when a transition between steady states occurs is only possible with the idea of ​​de Broglie. It is a concept to do. That is the existence of electrons.


In fact, a few years later Louis de Broglie will win the Nobel Prize. It's hard to understand new ideas in all ages.


2023年08月15日

J・チャドウィック
8/15改訂【中性子を発見しガン治療に応用|マンハッタン計画でのリーダー】

こんにちはコウジです!
「チャドウィック」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1891年10月20日 ~ 1974年7月24日】



ラザフォードの弟子チャドウィック


ジェームズ・チャドウィックは研究環境で恵まれていました。


マンチェスター大学の時代からラザフォードの指導を受け、
海外修業時代にはガイガーの下で放射線計測の知見を積み上げました。


開発されたばかりのガイガーカウンターを使い
放射線特性での実績をあげます。第一次大戦終了後は
ケンブリッジ大学のキャベンディッシュ研究所で
再び
ラザフォードの下で研究を続けます。


ドクター修了後も10年以上、
ラザフォードの助手を務めていました。


キャンデビッシュ研究所での討論や助言は
多分に
有益だったであろうと思われます。


チャドウィック以外にも有能な研究者達が集まっていました。
その中で
議論を交わしたのです。そんな中で
チャドウィックは
中性子を発見していきます。



チャドウィックと中性子


ベリリウムにアルファ粒子を衝突させたボーテ【Walther Bothe(独)】
1950年代の実験でチャドウィックは知見を得て、
電荷をもたない理論的な粒子である
「中性子」
を予感し考察を進め、キューリ夫妻の息子である
イレーヌ・ジョリオ=キュリーによるポロニウムとベリリウムで行った
1932年の実験検証を進めます。実験装置を工夫し、
理論を完成させます。


原子核の理解にとって大きな前進です。
中性子が説明されたのです。


ハイゼンベルク が中性子とは陽子と電子の組ではなく
新たな核子であると
考察していましたが質量は未確定でした。


その時点では実態の完全把握が未完でした。
そうした
中性に対してチャドウィックは明確に質量を示し、
重陽子の光壊変によって中性子質量を確定します。


質量の発見で原子構造をまた一つ明らかにしたのです。
更にチャドウィックは中性子がガン治療に有益であろうと考えます。




 軍需産業と物理学者


ただ残念な事に、チャドウィックの時代は世界大戦の時代と重なります。
マンハッタン計画では
イギリスチームのリーダーとして計画を進めて
いました。
トリニティー実験も目の当たりにしたようです。


自身が心血を注いで作り上げた概念が政治的に
利用されていく有り様をチャドウィックは、
どう感じていたのでしょうか。
不満だった筈です。


その他、パウリとの議論の発展、
サイクルトロンの導入、
ノーベル賞の賞金の
使い道については
追って、きちんと整理して再投稿したいです。


本稿はひとまず筆を納めます。


チャドウィックはキーズ・カレッジの学寮長として
晩年を過ごしています。そして、リヴァプール大学
には
彼の名を冠した研究所が残っています。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/29_初回投稿
2023/08/15‗改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係
ケンブリッジ関連

熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Rutherford's disciple Chadwick


James Chadwick was blessed with a research environment. He has been under the guidance of Rutherford since the days of the University of Manchester, and during his overseas studies he accumulated his knowledge of radiation measurement under Geiger. He uses the newly developed Geiger counter to achieve a proven track record in radiation characteristics.


After the end of World War I, he continued his work under Rutherford again at the Cavendish Laboratory at the University of Cambridge. After graduating from his doctor, he was an assistant to Rutherford for more than 10 years. The discussions and advice at the Candebish Institute were probably helpful. In addition to Chadwick, talented researchers were gathered. We had a discussion in that. Meanwhile, Chadwick discovers neutrons.



Chadwick and neutrons


In the 1950s experiment of Beaute [Walther Bothe (Germany)] in which alpha particles collided with berylium, Chadwick gained knowledge and foresaw "neutrons", which are theoretical particles without electric charges, and proceeded with consideration. We will proceed with the 1932 experimental verification of polonium and berylium by Irene Joliot-Curie, the son of Mr. and Mrs. Curie.


He devises experimental equipment and completes the theory. It's a big step forward in understanding the nucleus. Neutrons were explained. Heisenberg considered that neutrons are new nucleons rather than proton-electron pairs, but their masses are uncertain. At that time, a complete grasp of the actual situation was incomplete.


Chadwick clearly indicates the mass for such neutrality, and the neutron mass is determined by the photodestruction of deuterons. The discovery revealed another atomic structure. In addition, Chadwick believes that neutrons may be beneficial in treating cancer.



Munitions industry and physicist


Unfortunately, the era of Chadwick overlaps with the era of World War. He was the leader of the British team in the Manhattan Project. He also seems to have witnessed the Trinity experiment. How did Chadwick feel that the concept he had created with all his heart and soul was being used politically? He must have been dissatisfied.


In addition, I would like to keep track of the development of discussions with Pauli, the introduction of Cycletron, and the use of the Nobel Prize money, and repost it properly. This article will be written for the time being. Chadwick spends his later years as a dorm director at Keys College. And the University of Liverpool still has a laboratory bearing his name.


2023年08月14日

仁科 芳雄
8/14改訂【サイクロトロンを開発し素粒子を研究宇した「人たらし」】

こんにちはコウジです!
「仁科 芳雄」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1890年12月6日生まれ ~ 1951年1月10日没】



人を育てた仁科さん


仁科芳雄は稀代の「人たらし」だったと言われています。
仁科さんは人に惚れ込む性格でした。


仁科さんが人に入れあげる性格で、
その人の良い所を見つけて、それを伸ばす。
そんな仁科さんの元に人が集まる。


そんな風にして仁科さんの下に集まった沢山の人達を
育てあげていった凄さが仁科さんにはあるんです。


仁科さん本人はオランダ・コペンハーゲンの
ニールス・ボーアのもとで育ち、その自由闊達な
コペンハーゲンの学風を日本に持ち込み、
多くの学者を育てました。


1928年にオスカル・クラインとコンプトン散乱の
有効断面積を議論しています。


また帰国後にはハイゼンベルクディラック
日本に招待して日本の中での物理学への
理解を深め啓蒙活動を続けています。


更には、師であるボーアを日本に呼び寄せています。



仁科さんとサイクロン 


研究内容として仁科さんはサイクロンの建設を進めて、
様々な成果をあげてます。そのサイクロトロンは
国内初、世界で二番目の開発でした。
以後理化学研究所を拠点として開発は進み
「サイクロトロン建造技術はまさに理研のお家芸」
となっていくのです。【理化学件HPより抜粋】
そして、現在でもサイクロトロンを使った
素粒子の研究は続いています。


そのサイクロンを大型化する際には仁科さんは
大変苦労しています。
先行する
カリフォルニア大学のローレンスとは日米関係の悪化に伴い
関係が悪くなっていったのです。実際、サイクロトロン関係の
情報交換は
軍事的な側面を持つので出来なります。


そして終戦と共に、
仁科さんが
苦心して作り上げたサイクロンは
GHQにより東京湾に破棄されてしまいます。



仁科さんの晩年 


戦後には仁科さんは理化学研究所の所長を務め、
科研製薬の前身となる会社で社長を務めましたが、
肝臓ガンを患い61歳で亡なってしまいます。


放射線被ばくの影響もあったであろうと言われていて、
残念です。多くの人材育成に捧げた人生だったと感じています。


TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違い・ご意見は
次のアドレスまでお願いします。
適時、返信・改定を致します。


nowkouji226@gmail.com


2020/12/13_初版投稿
2023/08/14_改定投稿


(旧)舞台別のご紹介
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Nishina who raised people


Yoshio Nishina is said to have been a rare "human being". Nishina-san had a personality that fell in love with people. He has the personality that Nishina puts into a person, and he finds the good points of that person and develops them. People gather under Mr. Nishina. In that way, many people gathered under Mr. Nishina, and Mr. Nishina has the awesomeness of raising them.


Mr. Nishina himself grew up under Niels Bohr in Copenhagen, the Netherlands, and brought his free-spirited Copenhagen academic style to Japan and raised many scholars. He discusses the effective cross-sectional area of ​​Compton scattering with Oskar Klein in 1928. After returning to Japan, he invited Heisenberg and Dirac to Japan to deepen his understanding of physics in Japan and continue his enlightenment activities. In addition, he is calling his teacher, Bohr, to Japan.



Nishina-san and Cyclone


As a research content, Mr. Nishina is proceeding with the construction of a cyclone and has achieved various results. Mr. Nishina is having a great deal of trouble in enlarging the cyclone. His relationship with the University of California, Berkeley, which preceded him, became worse as the relationship between Japan and the United States deteriorated. In fact, exchanging information related to cyclotrons is possible because it has a military aspect. And at the end of the war, the cyclone that was painstakingly created will be destroyed by GHQ in Tokyo Bay.



Nishina's later years


After the war, Mr. Nishina was the director of RIKEN and the predecessor of Kaken Pharmaceutical, but he suffered from liver cancer and died at the age of 61. It is a pity that he was said to have been affected by radiation exposure. He feels that he was a life dedicated to a lot of human resources development.


2023年08月13日

エドウィン・パウエル・ハッブル
_8/13改訂【赤方偏移を示し膨張宇宙論を論じました】

こんにちはコウジです!
「ハッブル」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1889年11月20日 ~ 1953年9月28日】



ハッブルの意外な側面


ハッブルは近代の天文学者で、


膨張宇宙論を特徴づける


ハッブルの法則等が有名です。


そんな大天文学者ですが、高校時代は陸上で
イリノイ州の
記録を更新したりしていました。


そんな少年時代は後の人生と全く違いますね。
そして、
大学時代はボクシングでならし、
とあるプロモーターから世界チャンピオン
との一戦を
持ちかけられた程の強さでした。


これまた意外ですね。



ハッブルの業績


ハッブルの業績で大きいのは赤方偏移の発見でしょう。
1929年にセファイド変光星の観測から
明るさと変光周期の関係観測していく事で
赤方偏移の考え方を導きました。


赤方偏移とはドップラー効果を考慮した考えで
観測可能な大部分の銀河の光が波長の短い方向
(赤い色の方向)へ変化している現象です。


遠ざかっていく救急車の音が鈍くなっていくと
思い出してください。


ハッブルが考える宇宙論では、無論、直接の実験は出来ません。
使える理論も検証の為に理論が必要となる学問体系でした。


反面ハッブル提唱の赤方偏移は宇宙理論に明快な方向性を与え、
次の考えに繋がっていくのです



の後のハッブルの軌跡


赤方偏移の考えから
膨張宇宙論の考えが裏付けられ、ひいては
ビックバーン理論へとつながっていったのです。


また、我々が暮らす銀河と
別の銀河を見つけた業績も特筆するべきです。




 

【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/11/08_初稿投稿
2023/08/13_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係へ
力学関係
電磁気関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)


The surprising side of Hubble


Hubble is a modern astronomer who is famous for Hubble's law, which characterizes the theory of expanding cosmology. Although he is such a great astronomer, he used to break records in Illinois on land when he was in high school. Such a boyhood is completely different from later life. And when I was in college, I was so strong that I was able to get used to boxing and a promoter offered me a fight against a world champion. This is also surprising.


Hubble's achievements


Hubble's achievements will be the discovery of a redshift. He derived the idea of ​​redshift by observing the relationship between brightness and variable period from the observation of Cepheid variable stars in 1929. Redshift is a phenomenon in which the light of most galaxies that can be observed is biased toward a shorter wavelength (red direction) in consideration of the Doppler effect. Recall that the sound of an ambulance moving away is slowing down. Twice


Hubble's cosmology, of course, does not allow direct experiments. The theory that can be used was also an academic system that required theory for verification. On the other hand, Hubble's redshift gives a clear direction to the theory of the universe and leads to the next idea.


Hubble's trajectory after that


The idea of ​​redshift supported the idea of ​​expanding cosmology, which in turn led to the Big Burn theory.


Also noteworthy is his achievement in finding a galaxy different from the one we live in.


2023年08月12日

ヴァルター・ゲルラッハ
8/12改訂【シュテルンと銀粒子の縮退解放の実験を実現】

こんにちはコウジです!
「ゲルラッハ」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1889年8月1日生まれ ~ 1979年8月10日没】



 実験家ゲルラッハ


ゲルラッハはシュテルンと共に行った


実験で有名です。


本ブログの中ではシュテルンのご紹介は関連人物を中心としており、
実験内容が伝えられていませんでした。
対照的に
ゲルラッハと実験内容について語りたいと思います。


その実験はゼーマンとローレンツによる実験と通じる部分があります。
古典的な考えだけでは説明出来ない量子力学的な
状態の縮退を考慮する
必要があるという結論に繋がります。


ゼーマン効果ではナトリム原子からの電磁波が対象で
波動的側面から現象が理解できます。一方で
ゲルラッハの実験では加熱して蒸発した銀粒子が対象
ですので粒子的側面から現象が理解できます。


其々の実験対象において磁場をかけた時に縮退が
解けていく様子が観察されます。


古典的な予測では輝点に幅が出ると予想されます。
二つの輝点に分かれる現象は古典的に説明が出来ません。



実験の歴史的意義 


具体的にゲルラッハとシュテルンが行った実験では、
磁場で銀粒子の中の
電子スピンが分離されています。


加熱された銀粒子がビーム状に放射されている時に
ビーム経路
に対して垂直に磁場をかけます。


壁に当てたビームの輝点を見てみた時に古典論では輝点は一つです。
所が、
ゲルラッハとシュテルンの実験では
「縮退の解けた」2点が
はっきりと見てとれたのです。


量子力学的な考えに従うと、電子はスピンを持ち、
磁場に対して
同じ方向のスピンと逆の方向のスピンが存在します。
だから、磁場に対する軌跡が異なるのです。


この実験はゲルラッハが実現したようですが
シュテルンがドイツから亡命していた事情と、
政治絡みの判断、が相まって当初は
ゲルラッハの名は表に出ませんでした。



後日談 


さて、話を現代に近づけると、
2012年に日本で半導体内部で
同じ原理を使い同じ結果を得てます。


アイディアの種は色々な所にありますね。


強磁性体外部磁場を用いずに電子のスピン
揃えることに世界で初めて成功_2012年12月


https://www.ntt.co.jp/journal/1212/files/jn201212058.pdf




TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/31_初稿投稿
2023/08/12_改定投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
ドイツ関係のご紹介へ
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Famous experimenter Gerlach


Gerlach is famous for his experiments with Stern. The introduction of Stern was centered around related people, and the content of the experiment was not communicated. I would like to talk about Gerlach and his experiments. The experiment has some similarities to the experiment by Zeeman and Lorenz. It leads to the conclusion that it is necessary to consider the degeneracy of quantum mechanical states that cannot be explained by classical ideas alone.


In the Zeeman effect, electromagnetic waves from Natrim atoms are targeted, and the phenomenon can be understood from the wave side. On the other hand, in the Gerlach experiment, the target is silver particles that have been heated and evaporated, and the phenomenon can be understood from the particle side. It is observed that the degeneracy is released when a magnetic field is applied to each experimental object. The classical prediction is that the bright spots will be wider. The phenomenon of splitting into two bright spots cannot be explained classically.



Historical significance of the experiment


Specifically, in the experiments conducted by Gerlach and Stern, the electron spins in the silver particles are separated by a magnetic field. When the heated silver particles are radiated in a beam shape, a magnetic field is applied perpendicular to the beam path. When you look at the bright spots of the beam that hits the wall, there is only one bright spot in classical theory. However, in the experiments of Gerlach and Stern, two points that were "degenerate" were clearly visible.


According to quantum mechanics, electrons have spins, and there are spins in the same direction and spins in the opposite direction to the magnetic field. Therefore, the trajectory with respect to the magnetic field is different. This experiment seems to have been realized by Gerlach, but the name of Gerlach was not revealed at the beginning due to the combination of Stern's exile from Germany and political judgment.



Later talk


Now, let's get closer to the present age. In 2012, we used the same principle inside semiconductors in Japan and obtained the same results. There are many seeds of ideas.


World's first success in aligning electron spins without using ferromagnets or external magnetic fields_December 2012

https://www.ntt.co.jp/journal/1212/files/jn201212058.pdf



2023年08月11日

ハリー・ナイキスト
_8/11改訂【微視的な揺らぎと熱を考察したアメリカの物理学者】

こんにちはコウジです!
「ナイキスト」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1889年2月7日 ~ 1976年4月4日】



アメリカに帰化したナイキストの生まれ


ナイキストはスウェーデンに生まれました。


1907年に家族がアメリカ合衆国に移り住み
その後、帰化しています。


その時点でナイキストはハイスクール修了くらいでしょう。
アメリカの名門、
イェール大学を卒業した後に
1917年からAT&T研究所
で研究します。


その後にナイキストはベル研究所で研究します。アインシュタインがブラウン運動で考えた様に、
ナイキストは微視的な分子の運動と
巨視的に観測
される物理量の間の応答関係を考えています。


ベル研究所でナイキストは研究を進め1926年に
ジョンソンが発見した熱雑音に対して、
「揺動散逸定理」を駆使して理論的な根拠を与えます。


ナイキストの熱雑音とは揺らぎという言葉
でも表現
される新しい概念です。


例えば交流電流が流れる時の熱雑音を考えてみると、
流れる交流の周波数に関わらずに
回路の設計とも
無関係に電流が流れる時点で熱雑音が生じます。


熱雑音とはそうした性質を持つ物理量なのです。



 ナイキストの様々な業績


また、
ナイキストは一方でFB(フィードバック)増幅器の
安定性を研究します。別途、特筆すべきは
離散化された信号の「サンプリング」に関する
処理手法でしょう。そのナイキストが提唱した周波数は
ナイキスト周波数と呼ばれ信号処理の世界では
今や基礎的な理念となっています。


実用的には2の8乗である256から考えて、
2.56倍のサンプリング周波数を使い計測する事で
(現代主流となっている回路設計では)
ナイキスト周波数を保証しています。


また、彼の考案した「ナイキスト線図」は
極座標を使い対象系の安定性を議論します。


ナイキスト線図も系の安定性を考える為に
現代の信号処理の世界で使われていて、
今でも市販のアナライザーに一つの機能として搭載されています。
そうした数々の成果をナイキストは残しました。




TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ
イェール大学関連のご紹介へ
熱統計関連のご紹介


2020/11/10_初稿投稿
2023/08/11_改定投稿


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Nyquist naturalized in the United States


Nyquist was born in Sweden. He has been naturalized since his family moved to the United States in 1907. At that point, Nyquist will have completed high school. He has been studying at the AT & T Institute since 1917 after graduating from the prestigious Yale University in the United States. Nyquist then studies at Bell Labs.


As Einstein thought in Brownian motion, Nyquist considers the response relationship between microscopic molecular motion and macroscopically observed physical quantities. At Nokia Bell Labs, Nyquist pursues his research and uses the "fluctuation-dissipation theorem" to provide a rationale for the thermal noise discovered by Johnson in 1926. The thermal noise there is also expressed by the word fluctuation. For example, considering the thermal noise when an alternating current flows, it occurs when the current flows regardless of the frequency of the flowing alternating current and regardless of the circuit design. Thermal noise is a physical quantity that has such properties.


Various achievements of Nyquist


Nyquist also studies the stability of FB amplifiers, on the other hand. Separately, what should be noted is the processing method related to sampling of discretized signals. The frequency advocated by Nyquist is called the Nyquist frequency and is now a basic idea in the world of signal processing. Practically, considering from 256, which is 2 to the 8th power, the Nyquist frequency is guaranteed (in the mainstream circuit design) by measuring using a sampling frequency of 2.56 times.


In addition, his "Nyquist diagram" uses polar coordinates to discuss the stability of the target system. The Nyquist diagram is also used in the modern signal processing world to consider the stability of the system, and is still installed as a function in commercially available analyzers.

オットー・シュテルン
【アインシュタインと同じくドイツを逃れた実験家】

こんにちはコウジです!
「シュテルン」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1888年2月17日生まれ ~ 1969年8月17日没】



 戦時下の物理学者シュテルン


シュテルンはドイツ生まれの物理学者でナチスに追われ


アメリカへ移ります。シュテルンは先ず、ポーランドの


プラハ大学でアインシュタインに会い、


共にチューリッヒ工科大学に移ります。


きっと気の合う議論相手だったのでしょう。


調べていくと共にユダヤ系である事情が大きい気がしてきました。
何より、
ホロコーストが実際に行われていた時代です。


同じ恐怖と憤りを感じて反体制の話もしていたことでしょう。


シュテルンはドイツ本国で当時の感心事であった
原子線の研究をします。実験の様子としては、
温度をどんどんあげていって金属が光り出して
からもさらに温度をあげていきます。


例えば、具体的に金属を恒温槽の中にいれて
小さな窓から出てくる様子を見るのです。



シュテルンの実験の様子 


その窓から連続して特定の粒子を放出する事で
粒子の性質を明らかにしていきます。


結果としてヴァルター・ゲルラッハと共に
歴史的な実験を完成させました。


この実験で注目したのは「個別粒子の磁気的性質」です。
加熱して蒸発させた銀の粒子をビーム状に放出した時に
その粒子線に対して磁界をかけたのです。


すると、
粒子は二つに分かれて
一点だった輝点
(粒子の当たった場所)が
二点の輝点となります。
この事実は
粒子にスピンがある事で説明が出来るのです。
つまり、粒子自体が磁気的な性質を
初めから持っているのです。


戦争に伴い、ナチスにハンブルグ大学の
地位を追われたシュテルンはアインシュタインと共に
1933年アメリカに亡命します。


戦後ナチス政権下で教授を続けたゲルラッハと対照的ですね。
最終的にはUCB(カリフォルニア大学バークレー校)
名誉教授を務めます。81歳の生涯でした。



〆 


TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には返信・改定をします。


nowkouji226@gmail.com


2020/10/31_初版投稿
2023/08/11_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関連のご紹介へ
カリフォルニア大学関連のご紹介へ
ドイツ関連のご紹介

量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Wartime physicist Stern


Stern is a German-born physicist who is chased by the Nazis and moves to the United States. Stern first met Einstein at the University of Prague in Poland and moved to the ETH Zurich together. Was he a friendly debate? As he proceeded with his investigation, I felt that he was of Jewish descent. Above all, it was the time when the Holocaust was actually taking place. He would have felt the same fear and resentment and talked about the dissident.


Stern will study atomic beams in Germany, which was a sensation at the time. In his experiment, he keeps raising the temperature even after the metal shines. For example, he specifically puts metal in a constant temperature bath and sees it coming out of a small window.



Stern's experiment


We will clarify the properties of particles by continuously emitting specific particles from the window. As a result, he completed his historic experiment with Walther Gerlach. The focus of this experiment is on the "magnetic properties of individual particles." When the heated and evaporated silver particles are emitted in the form of a beam, a magnetic field is applied to the particle beams. Then, the particle is divided into two and the bright spot (the place where the particle hits), which was one point, becomes two bright spots. This fact can be explained by the fact that the particles have spin.


Stern, who was displaced by the Nazis from the University of Hamburg due to the war, went into exile in the United States in 1933 with Einstein. This is in contrast to Gerlach, who continued to teach under the Nazi regime after the war.


He will eventually be an emeritus professor at UCB (University of California, Berkeley). He was 81 years old.


 


 

2023年08月10日

エルヴィン・シュレディンガー
【仮想の猫を使った思考実験で量子的に実在を考察】

こんにちはコウジです!
「シュレディンガー」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1887年8月12日生まれ ~ 1961年1月4日没】



シュレディンガーの生い立ち


その名は Erwin Rudolf Josef Alexander Schrödinger 。
シュレディンガーはオーストリア=ハンガリー帝国
に生まれました。個人的に注目している人物です。
20世紀初頭での議論の中で議論の中心に居た
という印象があります。確率波としての
「波動関数」を提唱し、2035年の論文では
「エンタングルメント」を言語化しています。


コペンハーゲン学派とは一定の距離を置きながら
概念形成で重要な役割を果たしました。
シュレディンガーの猫として例えられる話
や、エンタングルメントの議論でも
シュレディンガーは本質に
ぐんぐん迫っていきます。


目で見えないものに対して議論する時に
必要とされる大事なものを
シュレディンガーは考え続けました。


シュレディンガーはその父に影響を受けた
言われていますが、その父とはバイエルン王国
に生まれ広い教養をもった人だったようです。その点が、
シュレディンガーの性格に影響しているかと思われます。

色々調べるにつけ分かってくるのですが、
シュレディンガーの考えは物理学の枠囚われない所があります。
未知の事象を捕まえていく際に、
また対象を色々な視野から
洗い出していく際に、
活用できるような「考え方のモデル」
沢山作られていったのでしょう。


他の人が作りえないような独自のモデルを作るという
大きな目標が物理学にはあります。



シュレディンガーの猫


シュレディンガーは猫の例えで有名です。
具体的には「量子力学的現象」と連動して
「猫を毒殺する仮想実験」を議論しました。


議論の帰結としてミクロな物理現象が確率的な実在として
表現出来るという
シュレディンガーの解釈が完成したのです。


具体的には空間的に広がる確率波を数学的に考えていきます。
確率波の時間発展はシュレディンガー方程式と呼ばれ
量子力学の基礎方程式となるのです。


私は大学院時代にそこから考え始めて超伝導現象に挑みました。
新しい現象理解に繋がっていったのです。
今もその枠組みで議論がされています。
世界中で議論がされています。



シュディンガ―音頭


こぼれ話となりますが、
若手の物理学者の
勉強会である「物性若手夏の学校」では
シュレディンガー音頭という歌があり
Ψ(ぷさい)とφ(ふぁぃ)
を取り入れて
楽しげに、形の違いを確認出来ます。


英文で表記したりする時にこの二つは似ていて混同しがち
なのですが、直ぐに思い出せます。


シュレディンガー音頭で手のひらを上にあげる方がΨです。
一度踊ると
踊った人は一生忘れません。 



シュレディンガー形式 


そうした量子力学の表現形式としては、
ハイゼンベルク形式(描像)とシュレディンガー形式があり、
その2つは完全に等価です。


数学の側面から大まかに表現すると、
ハイゼンベルク形式は
ヒルベルト空間上の行列とベクトルを使い、
シュレディンガー形式では同空間での演算子と波動関数を使います。


共に直感に響く側面を持ち相補して全体を補い合うのですが、
私には「粒子の二面性を感じる時などに初学者がイメージを
「作る段階」ではシュレディンガー形式が適していると思われました。
そんな記述を
シュレディンガーは纏めたのです。



ボルツマンとシュレディンガー


最後に、もう一度シュレディンガーの人となりに話を戻したいと思います。
シュレディンガー
はウィーン大学でボルツマンの後任である
ハゼノール
の教えを受けていて、ボルツマンと関わりが出来たのです。


彼はボルツマンの示した道筋を受け継いでいた人でした
彼はボルツマンに対して
い想いを持っていました。曰く、


「ボルツマンの考えた道こそ
科学に於ける
私の初恋
と言っても良い亅_


【万有百科大事典 16 物理・数学の章より引用しました。】


いわば、ボルツマンが完全に確立出来なかった原子論を


シュレディンガーは彼らしい表現方法で具現化したのです。


また、ボルツマンを中心に考えると、もう一人の弟子である
エーレンフェストが思い浮かびます。
彼は統計力学の切り口から
原子の表現に挑みました。


エーレンフェストの定理は個別粒子の運動を分かり易い形で記述する
と思えます。それまでの物理学と量子力学を上手くつなげています。
他方でシュレディンガーは波動的側面から
原子の表現に挑みました。


量子力学の初学者がこの二人のどちらを先に知るかといえば
シュレディンガーでしょう。
量子力学の議論の範囲で説明出来るからです。


大学ごとの教育カリキュラムで別途統計関係の講義との兼ね合い
も考えなければいけません。ただ、
歴史的にはシュレディンガーの理解が後なのです。


そして二人ともボルツマンの考えを受け継いでいるのです。


 

〆最後に〆


TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。


nowkouji226@gmail.com


2020/08/16_初稿投稿
2023/08/10‗原稿改定


舞台別のご紹介
時代別(順)のご紹介

オーストリア関連のご紹介
ウィーン大関連のご紹介
量子力学関係
グラーツ大学関連へ


【このサイトはAmazonアソシエイトに参加しています】



(2021年10月時点での対応英訳)



Schrodinger's upbringing


Schrodinger was born in the Austro-Hungarian Empire. He is said to have been influenced by his father, who seems to have been born in the Kingdom of Bavaria and well-educated. It seems that this influences Schrodinger's personality. As you can see from various investigations, Schrodinger's idea is not bound by the framework of physics. It seems that many "models of thinking" have been created that can be used when capturing unknown events and when identifying objects from various perspectives. Physics has the big goal of creating unique models that no one else can.



Schrodinger's cat


Schrodinger is famous for the analogy of cats. Specifically, we discussed "a virtual experiment to poison cats" in conjunction with "quantum mechanical phenomena". As a result of the argument, Schrodinger's interpretation that microscopic physical phenomena can be expressed as stochastic reality has been completed. Specifically, he mathematically considers the probability waves that spread spatially. The time evolution of stochastic waves is called the Schrodinger equation and becomes the basic equation of quantum mechanics. When I was in graduate school, I started thinking about it and challenged the superconducting phenomenon. It led to a new understanding of the phenomenon. Discussions are still being held within that framework. There is debate all over the world.



Shudinger Ondo


It's a spillover story, but at the study session for young physicists in Japan, "Schrödinger Young Summer School," there is a song called Schrodinger Dance, and Ψ (Psi) and φ (Phi) are incorporated to happily confirm the difference in shape. can. When writing in English, the two are similar and often confused, but I can easily remember them. It is Ψ to raise the palm up with Schrodinger dance. Once you dance, you will never forget the person who danced. Twice



Schrodinger format


There are two forms of expression of such quantum mechanics, the Heisenberg form (picture) and the Schrodinger form, and the two are completely equivalent. Roughly speaking from a mathematical point of view, the Heisenberg form uses matrices and vectors in Hilbert space, and the Schrodinger form uses operators and wavefunctions in the same space. Both have intuitive aspects and complement each other to complement each other, but I think that the Schrodinger format is suitable for "the stage where beginners create images when they feel the duality of particles". rice field. Schrodinger put together such a description.



Boltzmann and Schrodinger


Finally, I would like to return to Schrodinger's personality. Schrodinger was taught by Hazenor, Boltzmann's successor, at the University of Vienna, and was able to get involved with Boltzmann. He was the one who inherited the path Boltzmann showed. He had a passion for Boltzmann. He says


"The way Boltzmann thought
In science
My first love
You can say that _


[Encyclopedia of Banyu 16 Quoted from the chapter on physics and mathematics. ]


So to speak, Schrodinger embodied the atomism that Boltzmann could not completely establish in his own way of expression. Also, when we think about Boltzmann, I think of another disciple, Ehrenfest. He challenged the expression of atoms from the perspective of statistical mechanics. Ehrenfest's theorem seems to describe the motion of individual particles in an easy-to-understand manner. Schrodinger, on the other hand, challenged the expression of atoms from the wave side.


Schrödinger is the first to know which of these two scholars of quantum mechanics knows first. This is because it can be explained within the scope of the discussion of quantum mechanics. In the educational curriculum of each university, it is necessary to consider the balance with the lectures related to statistics. However, historically, Schrodinger's understanding was later. And both of them inherit the idea of ​​Boltzmann.

2023年08月09日

ニールス・ボーア
8/9原稿改訂【概念構築|新たな原子模型の提唱を通じて原子モデルを洗練化】

こんにちはコウジです!
「ボーア」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1885年10月7日生まれ ~ 1962年11月18日没】



ボーアの生い立ち


ボーアは量子力学の発展で需要な役割を果たしました。


ソルベー会議でも議論の中心に居て、TOP画で


使っている写真では中列右端に立っています。


そんなボーアは北海に面したユトランド半島および、
その近辺の
多くの島々からなる立憲君主制国家である、
デンマーク王国にボーアは生まれました。


若い時代にはアマチュアサッカー選手リーグの
ABコペンハーゲンでゴールキーパーを務めていた
という一面もあります。
ボーアはそんな人でもあるのです。



ボーアと原子論


そしてボーアは前期量子論形成に於いて
先駆的な理論
を提供し続けました。
ボーアは当時、不完全であった
原子像を洗練させて
独自の原子模型を提唱します。議論の渦中に飛び込んで
色々な人々と切磋琢磨して新しい「かたち」
を作り上げたのです。


先ず1911年にイギリスへ留学し、J・J・トムソン
ラザフォード_の元で原子核に対する基礎知識を吸収
して
先進的な考察の土台を作っていきます。


そもそも光学顕微鏡で見えないほど
小さい領域にまで議論が進んでいくのですが、
その世界に対して考察を止めることなく
幾多の議論を重ね、
量子力学を確立していきます。


例えば今でも原子の大きさを議論する時に
「ボーア半径」という言葉を使います。


この言葉はボーアの時代に確立されていった概念です。


その後、ボーアはイギリスから帰国後に
幾多の仲間を
コペンハーゲンに集め、
コペンハーゲン学派と呼ばれた
仲間を形成します。


コペンハーゲンでまとまった解釈は
コペンハーゲン解釈と呼ばれるようになり、
それまでの物理学でのスタイルを変えていきます。



ボーアとコペンハーゲン解釈 


コペンハーゲン解釈は微視的世界での


「観測に対する考え方」です。


光学顕微鏡で微細な世界を覗いても分解能の問題で
どうしても
画像がぼやけてしまう「限界」にいきつきます。


アルファー線やベータ―線といった粒子線を
純度の高い物質に当てて光路から
内部構造を予想しようとする試みも
色々な形で繰り広げられました。


日本では寺田寅彦の時代にそうした解析が
行われています。解析の蓄積を辻褄(つじつま)の合う
総合理論で結びつける体系が必要とされていたのです。


目で見てとれる現象は顕微鏡の分解能の範囲で
終わってしまいます。実際にはそれ以下の大きさで
繰り広げられる現象が存在していて、
観測しようとして光を当てると(光子を作用させると)、
「観測する事情」で「状態をかき乱してしまう」のです。


位置と運動量の微視的分解能の限界をA・アインシュタイン
ボーアが論じた話などが今に残っています。


また段々に分かってくるのですが、後にパウリが示す
スピンの自由度も電子は持っていて「軌道半径だけを
イメージして議論すれば話が終わる」訳ではないのです。


その中でボーアは本質的な「ボーアの量子化条件」を用いて
様々な現象を新しい議論の枠組みで説明してみせます。


長さスケールで10の‐23乗メートルのスケールでの議論では
「位置等の観測値」が「とびとびの値」を示すのですが、
その事象を現実世界での本質的な性質であると提唱したのです。


原子半径、磁気的性質も現代では、その形式で考えるが方が
わかりやすい訳です。師であるラザフォードの原子モデルに
改良を加えてボーアモデルを作りあげます。



そして晩年


ボーアはデンマーク最高の勲章である
エレファント勲章を受けています。
その際には東洋密教で使う陰陽のマーク
を模してボーア家の紋章を
デザインしたと言われています。


また、英国の王立協会では
外国人会員の栄誉を受けていました。



TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/08/31_初版投稿
2023/08/09_改定投稿


纏めサイトTOP
舞台別のご紹介
舞台別のご紹介
時代別(順)のご紹介
デンマーク関係
イギリス関係

ケンブリッジ関連
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Bohr's upbringing


Bohr played a demanding role in the development of quantum mechanics. He was also at the center of the discussion at the Solvay Conferences, standing at the right end of the middle row in the photo used in the TOP picture.


Bohr was born in the Kingdom of Denmark, a constitutional monarchy of the Jutland Peninsula facing the North Sea and many of its surrounding islands. On the one hand, he was a goalkeeper in the amateur soccer player league, AB Copenhagen, when he was young. Bohr is also such a person.



Bohr and Atomism


And Bohr continued to provide pioneering theories in old quantum theory. Bohr refines the imperfect atomic image at the time and proposes his own atomic model.


He first studied abroad in England in 1911, and under the guidance of JJ Thomson and Rutherford, he absorbed basic knowledge about atomic nuclei and proceeded with advanced consideration. In the first place, the discussion goes to a level that is too small to be seen with an optical microscope.


He continues to discuss the world with many discussions and establish quantum mechanics. For example, he still uses the term "Bohr radius" when discussing the size of an atom. This word is a concept established in this era.


After returning from England, Bohr gathered many friends in Copenhagen to form a group called the Copenhagen School. The collective interpretation came to be called the Copenhagen interpretation, changing the style of physics up to that point.



Bohr and Copenhagen Interpretation


The Copenhagen Interpretation is the "thinking about observation" in the microscopic world. Even if you look into the minute world with an optical microscope, you will reach the "limit" where the image will be blurred due to the problem of resolution.


Attempts to predict the internal structure from the optical path by applying particle beams such as alpha rays and beta rays to high-purity substances have also been made in various forms. In Japan, such an analysis was carried out during the time of Torahiko Terada. There was a need for a system that would connect such accumulations with a theory that fits Tsujitsuma.


Phenomena that are visible to the eye end up within the resolution of the microscope. Actually, there is a phenomenon that unfolds in a size smaller than that, and when light is applied to observe it (when photons act), it "disturbs the state" due to "observation circumstances". There is a story that discusses the limit of microscopic resolution of position and momentum with A. Einstein.


Also, as we gradually understand, electrons also have the degree of freedom of spin that Pauli shows later, and the discussion does not end if we discuss only by imagining the orbital radius.


In it, Bohr explains various phenomena using the essential "Bohr's quantization condition". In the discussion on the scale of 10-23 meters on the length scale, "observed values ​​such as position" indicate "staggered values", but we propose that the phenomenon is an essential property in the real world. I did.


In modern times, it is easier to understand the atomic radius and magnetic properties in that format. He will improve the atomic model of his teacher, Rutherford, to create the Bohr model.



And his later years


Bohr has received the Order of the Elephant, Denmark's highest medal. At that time, he is said to have designed the coat of arms of the Bohr family, imitating the Yin-Yang mark used in Oriental esoteric Buddhism. He also received the honor of a foreign member at the Royal Society of England.



2023年08月08日

西川 正治
8/8改訂【植物由来の構造体|X線解析で現象論を確立し後進を育てた偉人】

こんにちはコウジです!
「西川 正治」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



 【スポンサーリンク】
【1884年12月5日生まれ ~ 1952年1月5日没】



食物繊維と西川


西川 正治は寺田寅彦の指導を受け


物理学を学んでいきます。特に、


彼は竹や麻等の植物由来の構造体


に着目して繊維構造物質に対して


電磁波がどう作用するか考えました。


手法としてはX線回折を駆使して


スピネル群結晶内の電子配置を


決定しています。



X線解析での問題


そもそも、電子は不可視の存在ですが、
電磁波に対して作用して結果を残すので
その結果を画像で解析できます。


解析をすることで、
結晶内での微視的な電子配置の情報が得られるのです。


初学者は単純なモデルから学ぶので電子が個々の性質を見せる
と思いがちです。実際はそんな事は無くて電子単体で
「観測にかかる」事象はなかなか見当たりません。


たとえば相互作用を考えていって「輝点」の議論をしている時でも、
話の中には色々な要素があって、どこまでが観測事実か、
はたまた勝手な想像であるか、判断に迷うことがあります。


万人に説得力を持つ議論を進めるのはとても大変な作業です。
加えて、当時の時点での知識で原子からの寄与と、
電子からの寄与を明確にしていくには
多くの知見が必要だったと思われます。


X線情報の精度を考えるだけで大変で、
一つ一つ推論を裏付けていった筈です。


そうした「新しい計測手法」を手掛かりに


西川正治は解析していったのです。


西川正治はそうした業績を残しながら


二人のお子様を育て、其々が学者として


名を残しています。また、同時に


幾人もの弟子を育て日本物理学会に


今も続く、大きな足跡を残しています。




【スポンサーリンク】


以上、間違い・ご意見は
次のアドレスまでお願いします。
適時、返信・改定を致します。


nowkouji226@gmail.com


2020/12/13_初稿投稿
2023/08/08_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
熱統計関連のご紹介へ
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点他の対応英訳)



Dietary fiber and Nishikawa


Shoji Nishikawa will study physics under the guidance of Torahiko Terada. In particular, he focused on plant-derived structures such as bamboo and hemp and considered how electromagnetic waves act on fibrous structural materials. As a method, the electron configuration in the spinel group crystal is determined by making full use of X-ray diffraction.



Problems with X-ray analysis


In the first place, electrons are invisible, but they act on electromagnetic waves and leave results, so if you analyze the results with images, you can obtain information on the microscopic electron configuration in the crystal. Beginners tend to think that electrons show individual properties because they learn from simple models. Actually, there is no such thing, and it is difficult to find an event that "observes" an electron alone. For example, even when thinking about interaction and discussing "bright spots", there are various elements in the story, and it is judged how far the observation facts are, or whether it is a selfish imagination.


You may get lost. Proceeding with a convincing discussion for everyone is a daunting task. In addition, it seems that a lot of knowledge was needed to clarify the contribution from atoms and the contribution from electrons with the knowledge at that time. It was difficult just to think about the accuracy of X-ray information, and it should have supported the inference one by one.


Shoji Nishikawa analyzed using such a "new measurement method" as a clue. Shoji Nishikawa raised two children while leaving such achievements, and each of them has left his name as a scholar. At the same time, he raised a number of disciples and left a large footprint that continues to the Physical Society of Japan.


2023年08月07日

ピーター・デバイ
8/7改訂【比熱のデバイモデル|比熱の定式化で新しい物理モデルを提案】

こんにちはコウジです!
「デバイ<」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1884年3月24日生まれ ~ 1966年11月2日没】



オランダ生まれのデバイ


デバイはオランダに生まれていて、


物理学者にして化学者です。


ドイツで教授を務めていたりもしました。


第二次大戦の時には渡米してコーネル大学で


教授を務めていました。そんなデバイは、


比熱の定式化で名を残しています。



デバイの業績@


また、電子の双極子モーメントを使って誘電率の説明をしました。


自由電子が内部に存在しない誘電体を考えた時に、
その物質内部で電場付加時に電子と原子核は
反対方向に移動して双極子を作ります。


双極子の考えで「双極子モーメント」が定義され、
その単位体積当たりの値を吟味することで
電場と誘電率の関係が示せたのです。


高度な物理モデルの構築と物性への適用です。


誘電率は真空中を基準とした時に


アルミナ、雲母、NaCl、水晶、ダイヤモンドで
5から9の値をとり、水(純水)で80の値をとり、
メチルアルコールで33の値をとります。
【理科年表2021より】_


こうした業績からデバイは


分子モーメントの単位として名を残しています。



デバイの別の業績A


また、


デバイの別の業績としては比熱に対しての物もあります。


一般的に比熱のモデルですが、今日では一般的に


アインシュタイン・モデルと


デバイ・モデルが使われます。


アインシュタインの比熱モデルは拘束された原子核が
バネでつながれたイメージです。


二次元で例えてみると碁盤の線の交点に原子があって、
交点間の線にバネがあって隣の交点に熱を伝えます。
交点に足る特定の原子が激しく動くと
隣接する上下左右4点の原子がバネを介して
エネルギーを受けるイメージのモデルです。


対してデバイ・モデルは音子(フォノン)が
箱の中を動き回るモデルであって
理想気体が
運動する様子に近いです。


デバイモデルでは長波長の弾性波を
モデルに
取り入れる事が出来るうえに、
外界とのリンクも勘定しやすいです。


現代の我々は夫々のモデルが当てはめられる場合の考察が出来るのです。


具体的にデバイモデルでは外界とのリンクを
取り入れていて、
それは箱の出口となるドアで表されています。


こういった概念を纏めているサイトを見つけました。
最後に以下にURLを記します。
ご参考にして下さい。



(ときわ台学さん)
(別リンク)




TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/25_初稿投稿
2023/08/07_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
オランダ関係
ドイツ関係
アメリカ関係
力学関係
電磁気関係
熱統計力学関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Dutch-born debye


Debye was born in the Netherlands and is a physicist and chemist. He was also a professor in Germany. He traveled to the United States during the war and was a professor at Cornell University. Such Debye has made a name for himself in the formulation of his specific heat.



Debye's achievements @


I also explained the permittivity using the dipole moment of electrons. When considering a dielectric in which free electrons do not exist inside, the electrons and nuclei move in opposite directions when an electric field is applied inside the material to form a dipole. Based on this idea, the "dipole moment" was defined, and the relationship between the electric field and the permittivity was shown by examining the value per unit volume. The permittivity takes a value of 5 to 9 for alumina, mica, NaCl, crystal, and diamond, 80 for water (pure water), and 33 for methyl alcohol, based on vacuum. [From the Chronological Scientific Tables] _ From these achievements, Debye has left its name as a unit of molecular moment.



Another achievement of DebyeA


Another achievement of Debye is for specific heat. Although it is generally a specific heat model, the Einstein model and the Debye model are commonly used today. Einstein's specific heat model is an image of constrained nuclei connected by springs. If you compare it in two dimensions, there is an atom at the intersection of the lines on the board, and there is a spring in the line between the intersections to transfer heat to the next intersection.


This is a model of the image that when a specific atom sufficient for an intersection moves violently, four adjacent atoms on the top, bottom, left, and right next to it receive energy via a spring. On the other hand, the Debye model is a model in which a phonon moves around in a box, which is similar to the movement of an ideal gas. In the Debye model, long-wavelength elastic waves can be incorporated into the model, and it is easy to count links with the outside world. Specifically, the Debye model incorporates a link to the outside world, which is represented by the door that exits the box.

2023年08月06日

アウグスト・ピカール
8/6改訂【深海と成層圏に挑んだ物理学者にして冒険家】

こんにちはコウジです!
「ピカール」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1884年1月28日生まれ 〜 1962年3月24日没】



ピカールの関心


アウグスト・ピカールは宇宙と深海に


大いなる関心を持っていた人でした。


 

アウグスト・ピカールはスイスのフランス系家庭に生まれ


少年時代から科学に興味を示し、


チューリッヒ工科大学で物理学を学び宇宙線、


オゾンといった研究をしていくのですが


その探究心は冒険に繋がっていく


ダナミックなものでした。



成層圏へ挑んだピカール


まず、


アウグスト・ピカールは成層圏に挑みます。
フランス国立基金から資金援助を得て、
自らが設計した気球に水素を詰めて
上空16,000 mの
成層圏に達します。


これは気球による世界初の高度達成でした。
空の果てに人類が初めて
辿り着いたのです。
その先は遥かなる宇宙です。



深海へ挑むピカール


その後、ピカールはバチスカーフと名付けた深海潜水艇で
深海に挑みます。この行動
のダイナミックさは「冒険家」
という
キーワードで考えると理解できます。
成層圏の次は深海です。


気球を作ったりする実業的な側面と
未知なる世界への挑戦をする側面が
ピカールの行動を進めていったのです。 


上空の果ての次は深海の果てを目指します。
バチスカーフは鉄の錘を抱いて沈んでいき
浮き上がる時には錘を切り離すという仕組みで探検をします。
浮力はガソリンでした。



ピカールの系譜


そして、冒険家ピカールの血は代々受け継がれていきます。
息子であるジャック・ピカールを伴ってバチスカーフに搭乗し、
マリアナ海溝のチャレンジャー海淵到達を達成しています。
更には孫のベルトラン・ピカールが世界で初めて、
気球による無着陸世界一周を達成しています。
おじいさんの冒険を思い起こしながら飛んでいたのでしょう。


思いは空のかなたへ。素敵な一族ですね。



フロントエンドコース
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。
nowkouji226@gmail.com


2021/01/19_初稿投稿
2023/08/06_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
スイス関係のご紹介
力学関係


【このサイトはAmazonアソシエイトに参加しています】



【スポンサーリンク】


(2021年10月時点での対応英訳)



Picard's interest


August Picard was a man of great interest in space and the deep sea. August Picard was born in a French family in Switzerland and has been interested in science since he was a boy. He studied physics at the ETH Zurich and studied cosmic rays and ozone. It was dynamic.



Picard who challenged the stratosphere


First, August Picard challenges the stratosphere. With financial support from the French National Fund, he fills a balloon he designed with hydrogen to reach the stratosphere 16,000 m above the ground. This was the world's first achievement with a balloon. Mankind has reached the end of the sky for the first time. Beyond that is the distant universe.



Picard challenges the deep sea


After that, Picard challenges the deep sea with a deep-sea submersible named Bathyscaphe. Next to the end of the sky, we aim for the end of the deep sea. Bathyscaphe explores by holding an iron weight and separating it when it sinks and rises. The buoyancy was gasoline.



Picard's genealogy


And the blood of adventurer Picard will be passed down from generation to generation. He boarded a bathyscaphe with his son Jacques Piccard and achieved the Challenger Deep in the Mariana Trench.


In addition, his grandson Bertrand Piccard is the first in the world to complete a balloon-free round-the-world. I think he was flying while remembering his grandfather's adventure. My thoughts go beyond the sky. It's a nice clan.

2023年08月05日

F・W・マイスナー
8/5改訂【ベルリン生まれの物理学者|磁性を使って超電導現象を説明】

こんにちはコウジです!
「マイスナー」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1882年12月16日生まれ ~ 1974年11月16日没】



その名は正確には


フリッツ・ヴァルター・マイスナー_


Fritz Walther Meißner (Meissner)。


  ドイツ・ベルリン生まれの物理学者です。


ミュンヘン工科大学でプランクの師事を
受けた後に物理工学院で研究を進めます。


マイスナーが関心を持っていたのは
超伝導でした。1920年頃に色々な物質で
転移が起きる事を確認しています。



タンタル、化学記号はTa、転移温度4.47K。
ニオブ、化学記号はNb、転移温度は9.25K。
チタン、化学記号はTi、転移温度は0.4K。
トリウム、化学記号はTh、転移温度は1.38K。
に対して相転移を確認した後に化合物に
着目してNbCにおいて10ケルビンを超える
転移温度を確認しています。
念のために記載しておきますがケルビン(K)は一つの単位で、
よく使われている摂氏℃との関係は−273℃=0K程度、
0℃=273K程度です。

摂氏温度℃が一度上昇すると同じ変化として
ケルビンも一度上がります。それぞれの単位での
基準である
「0」の場所がが異なるのです。



マイスナー効果


その後、マイスナーはいわゆるマイスナー効果
を発見していてます。この現象は協同研究者の
オクセンフェルトの名前と合わせて
マイスナー―オクセンフェルト効果と呼ばれる
こともあります。


よく、超電導の説明で不自然な磁力線の図が見られますが、実際の計測結果としても通常の磁力線と全く異なる形が現れるのです。


また性質の側面から完全反磁性
とも呼ばれます。磁性を使って超電導現象を特徴
づけているとも言えます。
マイスナーの業績は大きな成果でした。




TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。


nowkouji226@gmail.com


2020/12/19_初回投稿
2023/08/05_改定投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介

ドイツ関係のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



The name is exactly


Fritz Walther Meißner (Meissner).
He is a physicist born in Berlin, Germany.


After studying Planck at the Technische Universität München, he goes on to study at the Institute of Applied Physics. Meissner had  interested in superconductivity . Meissner has confirmed that various supplies will cause metastasis around 1920.
Tantalum ,and chemical symbol is Ta, transition temperature 4.47K.
Niobium ,chemical symbol is Nb, transition temperature is 9.25K.
Titanium , and it's symbol is Ti, transition temperature is 0.4K.
Thorium ,it's symbol is Th, transition temperature is 1.38K.
After confirming the phase transition, we focused on the compound and confirmed the transition temperature exceeding 10 Kelvin in NbC.
[As a reminder, Kelvin (K) has a relationship with -273 ° C = 0K and 0 ° C = 273K, which are often used in one unit system.]



Meissner effect


Since then, Meissner has discovered the so-called Meissner effect. This phenomenon is sometimes referred to as the Meissner-Ochsenfeld effect, in conjunction with the name of his collaborator Ochsenfeld.


Often, in the explanation of superconductivity, you can see a figure of an unnatural field line, but even in the actual measurement result, a shape completely different from the normal field line appears.


Some people called completely anti-magnetic because of its nature. It can be said that it uses magnetism to characterize the superconducting phenomenon. It was a big achievement.

2023年08月04日

マックス・ボルン
8/4改定【アインシュタインに「神はサイコロを振らない」と言わせた男】

こんにちはコウジです!
「ボルン」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】


【1882年12月11日 ~1970年1月5日】



マックスボルンと確率解釈


M・ボルンはユダヤ系ドイツ人なので、


第二次世界大戦時は大変苦労しています。


そんな中でボルンは形成時の量子論において本質的な


概念である「確率解釈」を提唱しています。


私なりに確率解釈を考えてみると、
微視的な現象の観測では一意的に全ての値が定まる事実は無く、
観測する行為は
一定の確率で観測値を得る統計的な行為である
とする
解釈です。
【古典物理学での観測値に対応する物理量は量子論では期待値です。】


特定の観測値を持つ場合は確率で表現されます。
1930年に初版が書かれた教科書
【dirac「量子力学」】から一文を引用します。
「観測結果の計算には避けられない不定さがあり、そして理論のなしうることは、一般には我々が観測をする時にある特定の結果が得られる事の確率を計算するだけである」




ボルンの人間関係


ボルンはドイツ本国で教授職を解雇されたりしていて、
反戦の姿勢、非核の姿勢を貫き
ラッセル=アインシュタイン宣言にも参加しています。


この点ではドイツに残り、原爆開発に参加
していたハイゼンベルクとは全く別の人生を歩んでいます。


ちなみに、


ハイゼンベルクはボルンの門下生です。
オッペンハイマーもまた弟子にあたります。
オッペンハイマーとは
「ボルン・オッペンハイマー近似」と呼ばれる業績を残し、
共に研究していた時代があります。


共にユダヤ系でしたのでボルンはイギリス、
オッペンハイマーはアメリカへと追われていきます。
ユダヤ人排斥運動の中でボルンは教授職を奪われたのです。
戦時下でのどうしようもない事情でした。


彼の解釈で有名なやり取りがあります。


ボルンの考え方である確率解釈に対して反論した


アインシュタインが量子力学の解釈を


サイコロ遊びに例えたのです。


【Wikipedeaより引用:アインシュタインの有名な言葉
「彼(神)はサイコロを遊びをしない」は1926年
にボルンに当てた手紙の中で述べられたものである。】


さいころ遊びに例えた手紙が交わされた翌年の
1927年に
ハイゼンベルグが不確定性関係を定め、
このサイトTOPで写真を使っている
第五回ソルベー会議が開かれます。【於10月】


量子の本質に対して真剣な議論が交わされるのです。
人類の理解が大きく変化していった時代でした。


確率解釈は人類の思想にとって大きなパラダイムシフトです。


ボルンの考え方は、それまでの発想を大きく変えました。



最後にトリビア話


ボルンの孫の一人に歌手であるオリヴィア・ニュートン・ジョン
が居ました。私も初稿を書く際に分かったのですが意外ですね。


勝手に想像するとボルンは如何にもドイツ人らしい人
だったのでしょうね。アインシュタインとのやり取りは、
そんな彼を偲ばせます。


イギリスに亡命後にドイツへ帰国しており、
プランクと同じゲッティンゲン市立墓地に眠っているそうです。
母国の土に帰りたい想いもあったのでしょう。
そしてきっと、
お孫さんのオリビア・ニュートンジョンも
墓参りに来ていたのでしょう。
原稿の改定が進む中で2022年の8月に
オリビアも亡くなり国葬が行われました。


関連URL(YouTubeへ:)
https://www.youtube.com/watch?v=E-JGTk_WM1k


関連URL(私の別ブログ:ダイエット日記)
https://ameblo.jp/nowkouji226/entry-12813195931.html



TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/08/30_初版投稿
2023/08/04_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
ドイツ関連のご紹介

量子力学関係


【このサイトはAmazonアソシエイト参加しています】


(2021年10月時点での対応英訳)



Max Born and Probabilistic Interpretation


Since M. Born is a Jewish German, he had a lot of trouble during World War II. Under such circumstances, he advocates "probabilistic interpretation", which is an essential understanding of phenomena in the early quantum theory. To express the probability interpretation simply, it is an interpretation that the phenomenon related to the observation includes not only the uniquely obtained object but also the event observed with a certain probability. In other words, the observed value is multiplied by the certain probability. It is permissible if it is a match.



Born Relationships


Born has been dismissed as a professor in Germany, and he has been involved in the Russell-Einstein Declaration with an anti-war and non-nuclear stance. In this respect, he remains in Germany and lives a completely different life from Heisenberg, who participated in the development of the atomic bomb. By the way, Heisenberg is a student of Born. Oppenheimer is also a disciple. There was a time when Oppenheimer left a work called "Born-Oppenheimer approximation" and studied together. Both were of Jewish descent, so Born was chased by England and


Oppenheimer was chased by the United States. Born was deprived of his professorship during the Jewish exclusion movement. It was a terrible situation during the war. There is a well-known exchange in his interpretation. Einstein, who argued against Born's idea of ​​stochastic interpretation, likened the interpretation of quantum mechanics to dice play.


[Quoted from Wikipedea: Einstein's famous words
"He (God) does not play dice" is 1926
It was stated in a letter to Born. ]


In 1927, the year after this letter was exchanged, Heisenberg established an uncertainty relationship, and the 5th Solvay Conference using photographs will be held on the top of this site. [October] There is a serious discussion about the essence. It was an era when human understanding changed drastically. Probabilistic interpretation is a major paradigm shift for human thought. Born's thinking changed his way of thinking.



Finally the trivia story


One of Born's grandchildren was the singer Olivia Newton-John. I also found out when writing the first draft, but it's surprising. Imagine that Born was a German person. The interaction with Einstein is reminiscent of him. He returned to Germany after his exile in England and is sleeping in the same Göttingen Cemetery as Planck. Perhaps he also wanted to return to his homeland. And I'm sure his grandson Olivia Newton-John will come to visit the grave.

2023年08月03日

ハンス・ガイガー
‗8/3改訂【不活性ガスを利用し放射線量を計測|ドイツ生まれ】

こんにちはコウジです!
「ガイガー」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】


【1882年9月30日 ~ 1945年9月24日】


ガイガーはドイツ生まれです、研究機関としては
ニュルンベルク大学やマンチェスター大学で研究してます。
修行時代に英国のラザフォード卿のもとで研究者として育っていきます。
新しい知見である放射能に関して、
法則を確立して、計測器を作っていきます。


ガイガーは、弟子のミュラーと開発した放射線量を測定する
「ガイガー=ミュラー」計数管で有名です。
別名「ガイガーカウンター」としても知られていて、
パソコン入力時に一発で出てきました。
最早ありふれた言葉です。原理としては
不活性ガスを封入した筒の軸部分に
電極を取付け+極と−極の間に高電圧
を印加します。電子機器で言う無通電の状態です。
ところが不活性ガスの電離により、陰極と陽極の間に
パルス電流が流れるのです。この特徴的な
通電回数を数える訳です。


また、原子構造の検証実験も有名です。
実験当時は原子の中に電子がバラバラに
(葡萄パンの中での葡萄のように)
存在するモデルも想定されていました。


現在の知見である原子核の発見は重要です。
ガイガー=マースデンの実験と呼ばれます。
具体的にはラザフォードの指導下で、
ガイガーとマースデンはアルファ粒子の
ビームを金属の薄い箔に当て、更に蛍光板
を使って散乱を測定しました。


また、ガイガーの業績としてα線の
半減期に関する法則があげられます。
法則は


「ガイガー・ヌッタルの法則」


(英: Geiger–Nuttall law


と呼ばれます。放出されるアルファ粒子のエネルギーが大きいと早く減衰します。
経験的に得られた関係です。




フリーランス
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2023/04/03‗初稿投稿
2023/08/03_改訂投稿


旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2023/4月時点での対応英訳)


Geiger was born in Germany, as a research institute
He has studied at the Universities of Nuremberg and Manchester.
During his apprenticeship, he grew up as a researcher under Lord Rutherford in England.
Regarding his new knowledge of radioactivity,
He establishes various laws and makes measuring instruments.


Geiger developed with his protégé Müller a measure of radiation dose
Famous for the "Geiger-Muller" counter tube.
Also known as a "Geiger counter"
It came out in one shot when I entered the computer.
It's the first common word. as a principle
At the shaft part of the cylinder filled with inert gas
Attach the electrode and apply a high voltage between the + and - poles.
is applied. This is the state of no electricity in electronic equipment.
However, due to the ionization of the inert gas, a
A pulse current flows. this characteristic
It counts the number of calls made.


It is also famous for its atomic structure verification experiments.
At the time of the experiment, the electrons were scattered in the atom
(Like grapes in grape bread)
Existing models were also assumed.


The discovery of the atomic nucleus, which is the current knowledge, is important.
It's called the Geiger-Marsden experiment.
Specifically, under the guidance of Rutherford,
Geiger and Marsden are alpha particles
The beam is applied to a thin metal foil, and a fluorescent screen
was used to measure scattering.


In addition, Geiger's achievements of alpha rays
There is a law about half-life.
the law is


"The Geiger-Nuttal Law"


(English: Geiger–Nuttall law)


called. The higher the energy of the emitted alpha particles, the faster they decay.
It is an empirical relationship.



2023年08月02日

石原純
 8/2改訂(あつし・じゅん)【アインシュタイン来日時の通訳|俳人|結晶学者】

こんにちはコウジです!
「石原純」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


【1881年1月15日生まれ ~ 1947年1月19日没】



【スポンサーリンク】
【1881年1月15日生まれ】


日本の物理学史の中から一人ご紹介します。


2021年の時点で同性同名の方が現存されますが、


これは19世紀の物理学者の記事です。



石原さんの業績


物理学者として石原さんには


大きな二つの業績があると思います。


先ず、黎明期の日本において外国で進んでいた
最新の物理学を成果を
いち早く紹介して広めたことです。


そして、2つ目は結晶解析に対する考察です。
この後者の業績は国内に留まらずに
最先端の学者達に色々な刺激を与えたことでしょう。
日本でもそうした「共感」が始まりだしたのです。



多彩な活躍をした石原さん


山川健次郎田中館愛橘長岡半太郎


本多光太郎寺田寅彦、、、、


と続く黎明期の中で異色の人生を歩みました。
アインシュタイン来日時に
通訳を務め、
西田幾多郎に不確定関係
を伝えたパイオニアです。
日本物理学界に多大な貢献を残しつつ、
女性関係で帝大を去ります。あーぁあ。


そもそも石原さん、歌人の伊藤左千夫の弟子なので
斉藤茂吉に「家庭を
大事にするよう」に説得されたり
していますが、
聞く耳を持たずに
女にのめり込んでいたようです。
アララギの発刊に携わったメンバーでしたが、
この事件でアララギ脱会に至ります。
と、ここまでは
wikipedia等に載っている
範疇の話です。


 

語り継がれた石原さん


私的な思い出としては、大学の恩師が彼を評価


していて、講義の中で情熱を込めて語ってくれて


いた時間です。日本の科学の為に多大な功績を


残しながらも学会と距離を置き、交通事故による


不慮の最後を遂げた人生を思いを込めて暖かい


語り口で講じていました。


Javaコース
【スポンサーリンク】



〆最後に〆


以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。、


nowkouji226@gmail.com


2020/11/11_初回投稿
2023/08/02_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


 (2021年10月時点での対応英訳)


I would like to introduce one person from the history of physics in Japan. As of 2021, the same-sex name still exists, but this is an article by a 19th-century physicist.



Mr. Ishihara who played a variety of roles


I lived a unique life in the early days of Kenjiro Yamakawa, Aikitsu Tanakadate, Hantaro Nagaoka, Kotaro Honda, Torahiko Terada, and so on.


He was a pioneer who acted as an interpreter when he came to Einstein and conveyed the uncertain relationship to Kitaro Nishida. He leaves the imperial university in relation to women, leaving a great contribution to the Japanese physics world. Ahhhh.


In the first place, Mr. Ishihara, a disciple of the poet Sachio Ito, was persuaded by Mokichi Saito to take good care of his family, but he seemed to be absorbed in it without listening. She was a member involved in the publication of Araragi, but this incident led to her withdrawal from Araragi. So far, it is a story of the category listed in wikipedia etc.


Mr. Ishihara's achievements


As a physicist, I think Mr. Ishihara has two major achievements. First of all, I was the first to introduce and disseminate the latest physics that was advancing abroad in Japan in the early days. And the second is consideration for crystal analysis. This latter achievement would have inspired cutting-edge scholars not only in Japan. Such sympathy began in Japan as well.



Mr. Ishihara handed down


My personal memory is the time when my college teacher was praising him and talking passionately in his lectures. Although he made great achievements for Japanese science, he kept a distance from the academic society and gave a warm talk about his life, which had ended unexpectedly due to a traffic accident.

2023年08月01日

P・エーレンフェスト
8/1改訂【波動関数を統計的な手法で解釈・定理化し|後進を輩出】

こんにちはコウジです!
「エーレンフェスト」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


【←ローレンツとアインシュタイン_
エーレンフェストの自宅前で
Crediit;:_ pinterest.com_】



【スポンサーリンク】


【1880年1月18日生まれ ~ 1933年9月25日没】



エーレンファストと期待値と波動関数
【現象をつなげたエーレンファスト】


ポール・エーレンフェストは


統計力学量子力学


洗練された形で結びつけたと言えるでしょう。


それぞれの分野での2つの指標である


期待値波動関数を結びつけたのです。


また、本稿の中で使っている写真も意義深いです。アインシュタインローレンツという2人の偉人をより強く結びつけているのがエーレンフェストだからです。エーレンフェストの家で沢山の考えが進んでいったのです 。

オーストリアに生まれウィーンで育ったエーレンフェストは
研究生活において
非常に恵まれていたと思います。


まず、ボルツマンの講義を受ける環境をもち、
熱力学の考えや気体分子の運動論に大変、感銘を受けます。
柔らか頭の時期にボルツマンの熱意に触れることが出来たのです。


ミクロの世界と可視下で想像できる質点モデルの世界を
繋げる事が出来たのです。更に小旅行でローレンツに出合い、
互いに刺激を受け、その後、
アインシュタインと交友関係を結びます。
アインシュタインとエーレンフェストは共に
ユダヤ系でしたので多くの
「思想」・「話題」を共有したことでしょう。



より詳細な期待値の解説


冒頭に、エーレンフェストは2つの指標、期待値と波動関数を
関連付けたと記載しましたが
「期待値」とは簡単に言えば
「平均値」の事です。


例えば、距離で考えてみると
精度を上げるほど実測値には幅が出てきます。
4.155oだったり4.154oだったりします。


そこで数回の測定の平均値をとって確からしい
と思われる数値を決めます。期待値です。


期待値という言葉を使う時には分散値とか誤差とか併記され
統計的な処理がなされていると思って下さい。
【より細かい話としては離散値だけでなく連続値
に対して
期待値・分散値を考えていきます。】



より詳細な波動関数の解説


また、エーレンフェストが考えていたもう一つの概念である波動関数は、
細かい世界を表現するにあたり、当時は観測にかからない、とも
考えられたミクロな対象に対する物理量を表現する数学的手段です。


ヒルベルト空間で議論される関数で、無限次元の基底をとります。
ミクロの物質には粒子性と波動性が混在する事情もあり、
双方を具現化する波動関数が登場します。


エーレンフェストの定式化した定理によると
波動性が顕著に表れていると思える現象でも
その運動量や速度が求まり粒子と比較して
議論する事が可能です。2つの手法が繋がるのです。



 エーレンファストの定理の時代背景
【人々をつなげたエーレンファスト】


フランスのド・ブロイが提唱した物質波という概念は
論文審査の時点で独逸のアインシュタインが高く評価して、
オランダのエーレンフェストが定量的な議論を深めたのです。


その概念形成の達成は国を超えて人々が求め続けた疑問の解決でした。
そして今では大学生であっても共有できている人類の知識なのです。


また、ボルツマンの没後にエーレンフェストは
その大きな業績をいくつも纏めて発表しました。


そうした活動を知った人々は当然、エレンフェストに期待を寄せます。
ボルツマンが執筆中だった未完の仕事にエーレンフェストは着手します。


数学者が統計力学を考える仕事だったそうですが、
形になっていないモデルの検証に対して鋭い考察がありました。


また、棚上げになっていた問題を洗い出して整理していました。
その作業には数学者であったエーレンフェストの奥様が協力していて、
共に数学モデルを駆使して未解決の物理での問題に挑んでいました。


また、
エーレンフェストは優れた教育者でした。
1912年にドイツ語圏の大学訪問の中で
プランクに会い、
ゾンマーフェルトに会い、
アインシュタインに会います。

そしてオランダのライデン大学での
ローレンツの地位を引き継ぎます。


ライデン大学の教授を務めた彼のもとには
多彩な人材が集まり育っていきました。
彼は弟子達をヨーロッパの研究機関で修行
する事を勧め、海外の違った環境で研究を
する事を奨励しました。
ヘンリク・クラマース、
ジェラルド・カイパー
などが学生として所属、
グンナー・ノルドシュトルム、
エンリコ・フェルミ
イーゴリ・タム、オスカル・クライン、
ロバート・オッペンハイマー
ハイゼンベルク
ポール・ディラック
_が外国人研究者として

長期間研究をしました。


ボルツマンを思い返すとエーレンフェストという人が点であって、
その点がオーストリアという糸で
ボルツマンと結ばれていったような気がします。
そして、
ボルツマンの考えを受け継いだエーレンフェストが
他国の糸と絡み合っていく気がします。


た、


ボルツマンの考えを受け継いだシュレディンガー
エーレンフェストの研究室で議論したディラックと同時に
1933年のノーベル物理学賞を受賞します。


人を育てるという大変さと重要さを感じます。大きな仕事です。



そして晩年


そして晩年なのですが、エーレンフェストは
重度のうつ病に苦しんでいたようです。
アインシュタインが仕事量を減らすように職場に
働きかけたたようです。しかし友情も空しく終わり、
最後はダウン症だった末っ子Wassikを
打ち殺し自らも命を絶ちます。
ご冥福をお祈りするしか出来ません。
彼が考え抜いた末の結論だったのです。


そして、エーレンフェストが始めた
ライデン大学での夜間・物理学コロキウムは、
今でも「Colloquium Ehrenfestii」と呼ばれ、
続いているそうです。
今晩も議論しているかも知れません。




TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/21_初版投稿
2023/08/01_改定投稿


舞台別のご紹介
時代別(順)のご紹介

オーストリア関連のご紹介
ウィーン大関連のご紹介
オランダ関係の紹介へ
ライデン大学のご紹介

熱統計関連のご紹介へ
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Ehrenfast, expected value and wavefunction


Paul Ehrenfest can be said to be a sophisticated combination of statistical mechanics and quantum mechanics. He combined two indicators in each field, the expected value and the wave function.


The photos used in this article are also significant. It is Ehrenfest that more strongly connects the two great men, Einstein and Lorenz. A lot of thoughts should have gone on at Ehrenfest's house. Born in Austria and raised in Vienna, Ehrenfest in his research life


I think he was very fortunate.


First of all, he has an environment where he receives Boltzmann's lectures, and he is very impressed with the idea of ​​thermodynamics and the kinetic theory of gas molecules. He was able to connect the micro world with the world of mass model that can be imagined under the visible. He also met Lorenz on a short trip, inspired each other, and then made friends with Einstein. Since Einstein and Ehrenfest were both Jewish, they probably shared many "thoughts" and "topics."



More detailed explanation of expected value


At the beginning, Ehrenfest stated that he associated two indicators, the expected value and the wave function, but the "expected value" is simply the "average value". For example, when considering the distance, the higher the accuracy, the wider the measured value. It can be 4.155 mm or 4.154 mm. So he takes the average of several measurements to determine what he thinks is likely. Expected value. When you use the word expected value, please think that the variance value and the error are written together and statistically processed.
[As a more detailed story, not only discrete values ​​but continuous values
We will consider the expected value and variance value for. ]



More detailed wave function explanation


In addition, Ehrenfest's other concept, the wave function, is a mathematical means for expressing physical quantities for microscopic objects that were thought to be unobservable at the time when expressing the fine world. A function discussed in Hilbert space, which takes an infinite dimensional definition. There is also a situation where microscopic substances have both particle and wave properties, and a wave function that embodies both will appear.


According to Ehrenfest's formalized theorem, it is possible to find the momentum and velocity of a phenomenon in which wave nature appears prominently and to discuss it in comparison with particles. The two methods are connected.


 

Background of the era of Ehrenfast's theorem


The concept of matter waves advocated by France's de Broglie was highly evaluated by Einstein, who was unique at the time of the dissertation review, and Ehrenfest of the Netherlands deepened the quantitative discussion. Achieving that concept formation was the solution to the questions that people continued to seek across countries. And now it is the knowledge of humankind that even university students can share.


Also, after Boltzmann's death, Ehrenfest summarized and announced a number of his great achievements. People who know about such activities naturally have high expectations for Ehrenfest. Ehrenfest embarks on an unfinished work that Boltzmann was writing. He was said to have been a mathematician's job of thinking about statistical mechanics, but he had a keen eye for the verification of unformed models. In addition, the problems that had been shelved were identified and sorted out. Ehrenfest's wife, who was a mathematician, cooperated in the work, and both worked on unsolved physics problems by making full use of mathematical models.



Ehrenfest was also an excellent educator.


He met Planck, Sommerfeld, and Einstein during a visit to a German-speaking university in 1912. And he will take over Lorenz's position at Leiden University. He was a professor at Leiden University, and a diverse group of human resources grew up under him. He encouraged his disciples to practice at European research institutes and to study in different environments abroad.
Hans Kramers,
Gerard Kuiper
Etc. belong as a student,
Gunnar Nordström,
Enrico Fermi,
Igor Tamm, Oskar Klein,
Robert Oppenheimer,
Heisenberg,
Paul Dirac
_ Has studied for a long time as a foreign researcher.


Looking back on Boltzmann, I think that the point was Ehrenfest, and that point was tied to Boltzmann with a thread called Austria. And I feel that Ehrenfest, who inherited Boltzmann's ideas, is intertwined with threads from other countries. In addition, Schrodinger, who inherited Boltzmann's ideas, won the 1933 Nobel Prize in Physics at the same time as Dirac discussed in Ehrenfest's laboratory. He feels the difficulty and importance of raising people. It's a big job.



And his later years


And in his later years, Ehrenfest seems to have suffered from severe depression. Einstein seems to have worked on the workplace to reduce his workload. In the end, he kills his youngest child, Wassik, who had Down Syndrome, and kills himself. You can only pray for your soul. It was the final conclusion he had thought out.


And the night and physics colloquium at Leiden University, which Ehrenfest started, is still called "Colloquium Ehrenfestii" and it seems to continue. I may be discussing it tonight as well.