アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2023年07月 >>
            1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31          
最新記事
最新コメント

2023年07月31日

A・アインシュタイン
7/31改訂【考え続けた人|光電効果・ブラウン運動・相対性理論|EPS論文】

こんにちはコウジです!
「アインシュタイン」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1879年3月14日生まれ 〜 1955年4月18日没】



現時点で最も有名な物理学者でしょう。


このアインシュタイン(Albert Einstein)は


様々なパラダイムシフトを起こし


20世紀初頭に


物理学に大きな変化をもたらしました。


本ページでご紹介している集合写真は
ソルベー会議の時の写真とローレンツとのツーショットです。
アインシュタインはド・ブロイディラックボーアらと
語りあい、議論を続け共通認識を形成していきました。



26歳のアインシュタイン


1905年に26歳のアインシュタイン


は3つの歴史的な論文を発します。


「光量子仮説」


「ブラウン運動の理論」


「特殊相対性理論」


です。


光量子化説は光の性質を考え量子化している論文、


ブラウン運動は花粉挙動から分子運動を
解析した論文、


特殊相対性理論は光速度に近い移動体の考察。


こういった考察から空間・時間の概念を変えていき、ミクロの物質の考察を進めています。光量子仮説で物質の二面性を明確にしています。その一方で顕微鏡でしか観察できないサイズの花粉がビリヤードの球と同様に弾性衝突している事実を示し、微小サイズの領域でモデル化が可能出る事を示します。


色々な学者と討議を重ねて、現実に対しての理解を深めていきます。具体的にマリ・キューリーと親交を深めていて、チューリッヒ大学教職に推薦をしてもらっています。



少年時代のアインシュタイン


アインシュタインは少年時代から物理学者として「考える」土壌を育んでいました。そういった話をする際によく語られるのは、居眠りから目覚めた後に考え続けたと言われている思考実験です。


それはすなわち、「光の速さで光を追いかけたらどうなるか」という思考実験です。子供が大人から「光は速い」という事実と「光を使って物が見える」という2つの事実を学んだとしたら、その後に子供ならではの素朴な考えで、「それならば・・・・」と考え続けていったのです。


考えること自体は誰でも出来る事ではありますが、そこから先、解決出来ない疑問を覚えていて、大事だと思い、解決した結果が人類共通の知の財産となったのです。そこには必ず苦労と乗り越えた時の喜びがあります。



苦労人のアインシュタイン


時代的な話としてもアインシュタインはユダヤ系であるので彼は大変苦労しています。当時のドイツはナチスの時代ですからホロコーストが実際にあったのです。また、アインシュタインはドイツの為に原爆の製造をすることに貢献出来た筈です。


実際には崩壊していくドイツ帝国を去り、アメリカでマンハッタン計画に参加します。個人の物理学者として多少の無力感を感じていたのではないでしょうか。


またいつかアルバート・アインシュタインの子供、ハンス・アインシュタイン について記述することが出来ればと思っています。


そして物理に対して考え続けました。ソルベー会議で議論を重ね、量子の実態そのもの(観測問題)に疑問を抱きました。アインシュタインの思考は、いわゆるEPS論文での隠れた変数の議論へと繋がりました。更には現在で言う「エンタングルメント」、ひいては量子コンピューターへと繋がっています。


また因みに、「神はサイコロを振りません!」という有名な言葉をアインシュタインが残したとされていますが、正確にはこの言葉は「ボルンがアインシュタインへの手紙の中で残した言葉」です。「アインシュタインがよく使った言葉」というのが真実でしょう。



アインシュタインの言葉 


苦労人のアインシュタインは数々の名言を残していますが、


私が好きな言葉を最後に残します。


アインシュタインの意志の強さを感じます。


「think and think for months and years.


Ninety-nine times, the conclusion is false.


The hundredth time I am right.」


私は、数ヶ月も何年も考え続けます。


99回まで、その結論は正しくないですが、


100回目に正しい答えを出すことができるのです。




テックアカデミー無料体験
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来ていませんが
問題点には必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/06_初稿投稿
2023/07/31_改定投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
ドイツ関係のご紹介
オランダ関係の紹介へ
ライデン大学のご紹介へ

熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



 famous physicist  Einstein 


Isn't it the most famous physicist at the moment? Introducing Albert Einstein, a paradigm shift that brought about major changes in physics in the early 20th century. In particular, in 1905, 26-year-old Einstein published three historical treatises. "Photon hypothesis," "Brownian motion theory," and "special relativity."



Three paper's


The photonunization theory is a paper that quantizes light properties, the Brownian motion is a paper that analyzes molecular motion from pollen behavior, and the special relativity is a study of moving objects that are close to light velocity.


From these considerations, we are changing the concept of space and time, and are proceeding with the consideration of microscopic matter. He discusses with various scholars and deepens his understanding of reality. He specifically has a close relationship with Mari Curie and has been recommended by the University of Zurich teaching profession.



Einstein in childfood 


Einstein has cultivated a "thinking" soil as a physicist since his childhood. When talking about such things, a thought experiment that is said to have continued to think after waking up from a doze is often talked about. In other words, it is a thought experiment of "what happens if you chase light at the speed of light". If a child learns from an adult the fact that "light is fast" and "you can see things using light", then the simple idea of ​​a child is "If so ..." I kept thinking.

Anyone can think about it, but from that point onward, I remembered the questions that I couldn't solve, thought it was important, and the results of the solutions became a common property of humankind. There is always the hardship and the joy of overcoming it.

Germany at that time


Einstein is of Jewish descent, so he is having a hard time. Germany at that time was in the Nazi era, so the Holocaust actually existed. Einstein could also have contributed to the production of the atomic bomb for Germany. He actually leaves the collapsing German Empire and joins the Manhattan Project in the United States. Perhaps he felt a little helpless as an individual physicist. I also hope to be able to describe Hans Einstein, a child of Albert Einstein, someday.


Einstein, a hard worker, has left a number of quotes, but the last one I like. I feel the strength of Einstein's will.


"Think and think for months and years. Ninety-nine times, the conclusion is false. The hundredth time I am right."


2023年07月30日

大河内正敏
7/30改訂【リケンや日本ピストンリングの創設期に尽力した御曹司|政界でも活躍】

こんにちはコウジです!
「大河内正敏」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1878年12月6日生まれ ~ 1952年8月29日没】



大河内家の御曹司


大河内正敏は旧上総大多喜藩主にして子爵の


大河内正質の息子として生まれました。


正敏は学習院初等科に進み、大正天皇と共に学びます。


また大河内とは珍しい名字だなと思っていたら


奥様も大河内家から娶っていたりして、なんだか


皇族みたいな感じがしました。平民とは違う華麗なる一族


って感じです。鹿鳴館で踊っていても違和感ありません。


政界では子爵議員として貴族院で議員を2期務めます。
そんな中で若かりし無名の田中角栄を可愛がっていたといわれます。


そんな人なので理化学研究所の3代目所長に就任
した時は理研研究員にして、貴族院議員で子爵、
そして東京帝大教授でした。そんな偉人を今回はご紹介します。


大河内正敏の業績


大河内正敏は東大で物理学を学んでましたが時節柄、
寺田寅彦と飛行弾丸の研究をしていたようです。
物理学を駆使すれば流体力学や表面の解析が出来ます。


大河内正敏が進めた具体的な別の活用事例としては、
ピストンの開発があります。ここでもシリンダー内の
熱流体解析や、摂動面の摩擦特性を解析出来ます。


この研究は後の株式会社リケンにつながります。
戦後にリケンのグループは、GHQより
十五大財閥の
一つとして指定を受けます。



そして、眠りに


こうした業績を残して今、
大河内正敏は埼玉県にある
平林寺で永眠しています。


その近くには理化学研究所の研究室があり、
今でも研究者たちが世界に冠たる研究を続けています。
量子の根源を考え続けています。



テックアカデミー無料体験
【スポンサーリンク】



〆最後に〆


以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。


nowkouji226@gmail.com


2020/12/17_初版投稿
2023/07/30_改訂投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Okochi family sergeant


Masatoshi Okochi was born as the son of Masatoshi Okochi, the former lord and viscount of the Otaki feudal lord of Kazusa. Masatoshi goes to Gakushuin Elementary School and studies with Emperor Taisho. Also, when I thought that Okochi was a rare surname, my wife was also a kid from the Okochi family, and I felt like a royal family. It feels like a splendid clan different from the commoners. I'm sure they were dancing at Rokumeikan.


He is a member of the House of Lords for two terms as a Viscount member in politics. Under such circumstances, it is said that he loved the young and unknown Kakuei Tanaka. As such, he was a RIKEN researcher, a member of the House of Lords, a Viscount, and a professor at the University of Tokyo when he became the third director of RIKEN. I would like to introduce such a great man this time.



Achievements of Masatoshi Okouchi


Masatoshi Okouchi studied physics at the University of Tokyo, but he seems to have been studying flying bullets with Torahiko Terada. He can use physics to analyze fluid mechanics and surfaces.


Another specific use case promoted by Masatoshi Okouchi is the development of pistons. Here, too, you can analyze the thermo-fluid inside the cylinder and the friction of the perturbing surface. This research will lead to RIKEN CORPORATION later. After the war, this group was designated by GHQ as one of the 15 major conglomerates.



And to sleep


With these achievements, Masatoshi Okouchi is now sleeping at Heirinji Temple in Saitama Prefecture. There is a branch office of RIKEN nearby, and researchers are still conducting world-class research.


2023年07月29日

寺田寅彦
7/29改訂【夏目漱石の教えを受けた俳人・寒月さん】

こんにちはコウジです!
「寺田寅彦」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1878年11月28日生まれ ~ 1935年12月31日没】

寺田寅彦について


寺田寅彦は物理学者にして文筆家にして俳人です。
文筆家としては牛頓の名を名乗っていたり。
牛頓と書いてニュートンと読ませてました。
明治の時代の人々に、そんな
洒落っ気が伝わったでしょうか。
科学知識の復旧していない時代ですが
新しい時代の啓蒙(けいもう)を進めました。


そんな寺田寅彦は
熊本の高校で英語教師として赴任していた

夏目漱石と出会います。後に文学に関わった
のはこの出会いが大きかったと言われています。
贅沢な人生ですね。夏目漱石の作品
「吾輩は猫である」の中では寒月君として
登場する人物のモデルとなっていて
作品を通じて寺田寅彦の御人柄に
触れた人も多いのでは
ないでしょうか。
因みに、


2021年春の時点で日経新聞で進んでいた
連載小説「伊集院静作、ミチクサ先生」
では、その様子が描かれていました。
その作品のなかで、
寒月さんは淡々と話を進めていた人で、
そのお人柄が伝わってきます。
当時の時代背景や文人達との交流も
感じられて面白かったです。



【スポンサーリンク】



寺田寅彦と研究について


研究の点でも時代の枠にとらわれない
視点を持ち実績を残しています。
その中でも評価が高い
研究業績は
ラウエの業績に刺激を受けた研究で

「X線の結晶透過」についての業績です。


先進的な結晶解析に関して考察ををしてます。
そして、
1913年に「X線と結晶」をNatureに発表してます。


寺田寅彦の研究人生をふりかえると、
田中舘愛橘に教えを受け、
原子の長岡モデルを提唱した長岡半太郎
教えを受けて、学生結婚をして、
その奥様に早く先立たれ、
東京帝国大理科大学で教鞭をとった後に
ベルリン大学で地球物理学を研究し、
理化学研究所、 東京帝大地震研究所
で研究を続けました。
57歳で亡くなられています。



〆最後に〆


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/09/09_初稿投稿
2023/07/29_改訂投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係


【スポンサーリンク】


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



About Torahiko Terada


Torahiko Terada is a physicist and poet. As a writer, he calls himself Ushiton. He wrote Ushiton and read it as Newton.


He meets Soseki Natsume, who was assigned as an English teacher at a high school in Kumamoto. It is said that it was this encounter that was later involved in literature. It's a luxurious life. In Natsume Soseki's work "I Am a Cat", I think there are many people who have come into contact with their personality through the work as a model of the person who appears as Mr. Kanzuki.


By the way,


The serial novel that was in progress in the Nikkei newspaper as of the spring of 2021 seems to describe the situation. I always read it diagonally, but Mr. Kanzuki is a person who talks in a straightforward manner, and I can feel his personality. It is interesting to feel the historical background of the time and the interaction with the writers.



About Torahiko Terada and research


In terms of his research, he has a track record with a perspective that is not bound by the boundaries of the times. Among them, his research achievement, which is highly evaluated, is a research inspired by Laue's achievement and is an achievement on "X-ray crystal transmission". He considers advanced crystal analysis. Then, in 1913, he published his "X-rays and crystals" in Nature.


Looking back on Torahiko Terada's research life, he was taught by Tanakadate Aikitsu and Hantaro Nagaoka, who advocated the Nagaoka model of atomic atoms. After teaching at, I studied geophysics at the University of Berlin, and continued my research at RIKEN and the Earthquake Research Institute, the University of Tokyo.
He died at the age of 57.


/

2023年07月28日

ヘンリー・ラッセル_
【HR図(Hertzsprung-Russell diagram)で星の進化】

こんにちはコウジです!
「ラッセル」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1877/10/25 〜 1957/2/18】



はじめに


ヘンリー・ノリス・ラッセルは星の進化を考えていたアメリカの天文学者です。
プリンストン大学で学び研究生活を始めます。


私が初めてラッセルの事を知ったのは多読を心がけていた高校時代に、C.セーガンと共に出てきた学者さんでした。当時はマンハッタン計画に関わっていたアインシュタインなどの学者さん達と天文学者の学者さん達が、私の中でごちゃ混ぜになっていました。


高校時代の「理解の浅さ」が懐かしいくらいです。ラッセルと言えば「哲学者のバートランド・ラッセル(1872-1970)と混同してはいけない」とか真面目に考えていました。



ラッセルとHR図 


ラッセルの研究で有名なものは
HR図(Hertzsprung-Russell diagram)です。


HR図は所謂「星の進化」に関しての理解に


不可欠な研究となっています。


概説すると以下の概念です。


(本稿は星の進化に関しての記述が主です)


宇宙の無数の石ころが万有引力で(自重の為に)


他の物体と一緒になっていき段々に


大きな重心を持つ物体になっていきます。


宇宙空間で星の流れを考えた時に流れが速い部分や


渦が出来たりする時には流れの中で


重力が沢山集まる場所や、


その効果が薄い場所が出来てきます。


重力の効果が集まる部分にはより重心の集まっている物体が蓄積してきてお月様のクラスの塊が宇宙で無数に出来ていくと想像されます。


未だお月様の内部構造は正確に観測されていませんが、宇宙を飛び交う岩石クラスの大きさであれば実際にサンプルを持ち帰り内部を調べることが出来ます。


大気圏に入ってきた岩石もまたサンプルとなり研究材料と出来ます。こうした類の大きさスケールが分かりやすい物体が宇宙には無数にあります。その物体自体は暗い寒い宇宙の中で(真空中に)沢山漂っています。


そうした物体が様々な要因で更に集まってくると地球や火星、木星のような内部に地殻を持った衛星になってきます。内部に地殻を持つ事情は万有引力で地球内部の物体が中心方向に集まってくる事情からです。


例えば地球の場合にはすべての物体が地球の重心に落ちていこうとするから重心近くには物凄い圧力がかかってきて地球内部では核反応が起きています。


圧力の大きさに個々の原子核が耐えられないで崩壊するのです。地球表面は比較的冷えていますが地球の内部は物凄い高熱です。


更に重力で重量物が集まってくると重力によって集まってくる物質の表面が冷えている状態が壊れます。地球の表面は人間が暮らせる程度の暖かさに保たれていて冷たい宇宙空間で冷やされている状態と地球内部からマグマで温められている状態に均衡がとれています。


地球が奇跡の星と呼ばれる理由の一つで温度での均衡で水が沸騰せず、かつ凍らない温度域でタンパク質、その他の物質が出来ていて肉体を持つ様々な動植物が存在出来ています。


もしも地球が100度以上の温度下であったら今の生命はほとんど生活が出来ないでしょう。生命の誕生、その後の進化には好ましい条件だったわけです。


近くを構成しているようなバランスが崩れると太陽のようにいつも光り続ける星となります。大きくなり、もはや地殻が維持できなくなって、その上で生き物が生活できる状態ではありません。


内部での核反応が非常に活発になり、外部に絶えず光を放射して輝き続けます。光だけではなく各種素粒子やあらゆる波長の電磁波を放出します。


そうした活動として全体の重量が減っていく恒星(太陽のように光る)もあれば、ほかの星を取り込んで更に重量を増していく恒星もあります。


そうした膨張や減衰を恒星はしていきますが、全体重量がもっともっと大きくなってくると白色矮星、ブラックホールへと変化していくだろうと言われています。


最終的には全体の重力が大きくなり、光の素子である光子さえもブラックホールから脱出できなくなるのです。当然。ブラックホールは見えません。



最後に


1947年に引退するまで30余年の間、プリンストン大学天文台の所長として研究を続けラッセルは余生を過ごしました。今もその研究成果は受け継がれ発展し続けています。



テックアカデミー無料体験
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com


2022/10/03_初版投稿
2023/07/28_改訂投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介
電磁気関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2022年10月の時点の英訳)



Preface


Henry Norris Russel is an American astronomer thinking about the evolution of the star.
I learn in Princeton University and begin study life.


It was the scholar who came out with Carl Sagan in the high school days when I kept a multi-reading in mind that I knew Russel for the first time.


Scholars and the scholars such as Einstein concerned with Manhattan Project of the astronomer became mixed-up among me in those days. I feel nostalgic for "shallowness of the very beginning understanding" at that time. Speaking of raschel, I thought, "you must not confuse it with the raschel of the philosopher" seriously.



Raschel and figure of HR


The thing which is famous for a study of the raschel
It is a figure of HR (Hertzsprung-Russell diagram).


The figure of HR for understanding about so-called "evolution of the star"


It becomes the essential study.


It is the following concepts when I give an outline.


(as for this report, a description about the evolution of the star is important)


Innumerable stones of the space are universal gravitation; (for self-respect)


Meet other objects; to steps


It becomes the object with a big center of gravity.


The part which is fast in a flow when I thought about the flow of the star in outer space


When there is a vortex; in a flow


The place where a lot of gravity gathers,


There is the place where the effect is light.


When the object that a part attracting gravitational effects attracts centers of gravity more accumulates, and there is the lump of the of class innumerably in space in a month, I am imagined.


The internal structure of moon is not yet observed exactly, but I actually take a sample home with me and can check the inside if it is the size of the rock class flying about the space.


The rock which entered the atmosphere also becomes the sample, and there is it with study materials. There are innumerable objects that the size scale of such a kind is plain in the space. Object itself drifts a lot (during a vacuum) in dark cold space.


When such objects gather in various factors more, it becomes the satellite with the earth crust in the earth and Mars, the inside such as the Jupiter. Circumstances having the earth crust are from the circumstances that objects in the earth gather in the central direction by universal gravitation inside.


For example, because all objects are going to fall into the center of gravity of the earth in the case of the earth, it comes under frightful pressure near the center of gravity, and nuclear reaction is taking place in the inside of the earth.


I collapse without individual atomic nucleuses being able to tolerate volume of pressure. The earth surface relatively gets cold, but the inside of the earth is terrible high heat.


Furthermore, the state that the surface of the material which gathers by gravity when heavy goods gather gets cold with gravity is broken. I am balanced in a state warmed with magma from a state and the inside of the earth that the appearance of the earth is kept by the warmth of the degree that a human being can spend, and are cooled in cold outer space.


Various animals and plants which the earth is one of the reasons called the miraculous star, there are protein, other materials in temperature area water does not boil and not to freeze, and have the body can exist. The present life may hardly live a life if there is the earth under the temperature more than 100 degrees. It was a favorable condition for birth of the life, the later evolution.


It becomes the star which continues always shining like the sun when balance constituting neighborhood collapses. It grows big and cannot maintain the earth crust anymore, and, after that, a creature is not in condition to be able to live. Nuclear reaction in the inside becomes very active and it emits light consistently outside and continues shining.


I release the electromagnetic wave of various elementary particles and every wavelength as well as light. If such an activity includes the fixed star (I shine like the sun) where overall weight decreases, there is the fixed star which takes other stars, and adds to weight more.


The fixed star does such expansion and decrement, but it is said that I will change into a white dwarf, a black hole when the whole weight grows big more and yet more. Overall gravity finally grows big, and even the photon that is an element of the light cannot escape from a black hole. Naturally. I do not see the black hole.



Finally


I continued studying it as a director of the Princeton University astronomical observatory,


and, during 30 rest of life, Russel reached the rest of life until I retired in 1947.


The results of research are inherited, and they continue still developing.


Close


 

2023年07月27日

高木 貞治
7/27改訂【ヒルベルトの弟子|長く日本で使われてきた名著である「解析概論」の著者】

こんにちはコウジです!
「高木 貞治」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


↑Credit:Wikipedia↑



【スポンサーリンク】
【1875年4月21日生まれ ~ 1960年2月28日没】



日本人数学者をご紹介します。


そのお名前は


高木貞治と書いて名前を「ていじ」と読ませます。


高木貞治は岐阜に生まれ現在の京都大学を卒業した後


東京大学に進みます。現在の学校制度と


異なる印象も受けます。今時の表現をすると


京大で学位をとって東大でマスターをとった感じでしょうか。


その後、高木貞治はドイツへ留学してヒルベルト


教え受けます。現代日本での代数幾何学の原型を


体系立てていったのでしょう。当時の日本で使われていた


数学は所謂「和算」の発展形だったと思われます。


数学的には実数が扱われていますが、


少数が一般に使われていた形跡は見受けられません。


もっとも、一円・七銭といった感覚はあるので


「三分の一(1/3)」が
0.33333・・・と考え続けていける筈です。


小数点の概念はあったと考えても切断の概念や


作図を使った証明等には発展していなかったでしょう。


【現代では空間を考えていく際にヒルベルト空間


という概念があり、量子力学で多用されます。】



そもそも、


個人的に高木貞治の名を知ったのはムツゴロウさんの著作でした。たしか「ムツゴロウの青春期」。その中で彼が高校時代に地元九州の先生に紹介された本が高木貞治の「解析概論」でした。


解析概論が明快であると言われ、高校の教科書とは別に数学のエッセンスを学んでいきます。その後、バンカラな青春時代を過ごしたムツゴロウさんは東大の物理学科に進み、最後はどうぶつ王国を作ります。


話戻って解析概論ですが、岩波文庫から出ていた解析概論を私も買って、面白く読んだ思い出があります。色々な本屋さんに置いてました。


尚、2011年の時点で日本国内における著作権の


保護期間満了に伴いネットで著作が公開され始めています。


【Wikisourceや青空文庫を見てみて下さい】



【スポンサーリンク】


 

以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/11/08_初回投稿
2023/07/27_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



In this time,


I would like to introduce a Japanese mathematician. The name is written as Teiji Takagi and his name is read as "Teiji".


Teiji Takagi was born in Gifu and went on to the University of Tokyo after graduating from the current Kyoto University. He also gets the impression that it is different from the current school system. In terms of today's expression, it seems like I got a bachelor's degree at Kyoto University and a master's degree at the University of Tokyo. After that, Teiji Takagi went to Germany to study abroad and was taught by Hilbert. He would have systematized the prototype of modern algebraic geometry. Mathematics used in Japan at that time seems to have been a development of so-called "Wasan". Mathematically, real numbers are treated, but there is no evidence that a small number were commonly used. However, there is a feeling of 1 yen and 7 coins, so you should be able to keep thinking that 1/3 is 0.33333. Even if you think that there was a concept of a decimal point, it would not have developed into a concept of cutting or a proof using drawing. Also, when thinking about space, there is the concept of Hilbert space, which is often used in quantum mechanics.



In the first place,


it was Mr. Mutsugoro's work that I personally knew the name of Teiji Takagi. Certainly "Mutsugoro's adolescence". Among them, the book he was introduced to by a local teacher in Kyushu when he was in high school was Teiji Takagi's "Introduction to Analysis". It is said that the introduction to analysis is clear, and you will learn the essence of mathematics separately from high school textbooks. After that, Mr. Mutsugoro, who spent his youth in a bunkara, proceeded to the Department of Physics at the University of Tokyo, and finally created the Animal Kingdom. Returning to the story, I would like to give you an introduction to analysis, but I also bought the book from Iwanami Bunko and read it in a fun way.


As of 2011, with the expiration of the copyright protection period in Japan, works have begun to be published online. [Please see Wikisource and Aozora Bunko]


 

2023年07月26日

ハーゼノール
7/26改訂【E=MC^2をアインシュタインと別の考えで導出】

こんにちはコウジです!
「ハーゼノール」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。




【スポンサーリンク】



【1874年11月30日 - 1915年10月7日】

人脈に恵まれたハゼノール


ウィーンに生まれたハーゼノールは非常に人脈に恵まれていました。

まず、ウィーン大学でボルツマンに理論を学びます。

その後、ライデン大学のローレンツの下で研究をします。

そして、シュレディンガーらに物理学を伝えます。この話を知るまでは、

シュレディンガーは独自に考えるタイプの物理学者だと思っていたのですが、

その前に、理論の土台をハーゼノールが与えていたと知り、

個人的には何となく納得してしまった部分がありました。

定式化の方法で通じる部分があると思えたのです。

特筆すべきハーゼノールの
E=MC^2という業績


ハーゼノールの研究の上で特筆すべきはE=mc2と同じ形の式を1904年に発表していた事です。興味深い話なので後程、とりあげます。第一次世界大戦が始まると、オーストリア・ハンガリー帝国陸軍に志願し、南チロルでイタリア軍と戦って40歳で戦死します。残念な事ですが運命に対峙した結果だったのでしょう。

ハーゼノールは空洞で生じている放射現象の中で「輻射(放射)を担う波」に着目して、その慣性についての論文を1904年と1905年に発表しました。この理論では電磁質量によって物質の慣性が大きくなると論じたのです。 この話を整理して考えた、ラウエはアインシュタインと比較して様々な形態の「エネルギー」に対して「慣性」の確立をアインシュタインに帰し、彼が相対性理論との関連でその等価性の深い意味合いを初めて理解したと考えています。

実際の所は現代の視点で考えてみた時に、質量エネルギーの等価性はハーゼノールのように電磁気学的側面から整理理解していった方が実感できてくるものだと思えます。例えば、ボルツマンも考えています。「熱が伝わる性質をエネルギーが伝わる現象ととらえる事」は万人に分かり易い定式化でしょう。

エネルギーを基軸に考えて「熱」、「電磁波」、「静止質量」、「慣性質量」、、、、といった概念を分かり易くつなげていった結果がE=mC^2という定式化だと考えられるわけです。

科学史の観点から考えて明らかに言い切れることはハーゼノールもアインシュタインも20世紀初頭に同じ頂点(理論的帰結)を乗り越えていたという事実です。全く違う人生を歩んだ二人が同時期に同じ材料を使って考察して其々に結果を出していた事実を知る事はある意味心地よいです。そして、その二人に其々何らかの示唆を与えていたローレンツの力量にも改めて敬意を払います。人を育てる事は素晴らしいですね。



テックアカデミー無料体験
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2022/01/02_初稿投稿
2023/07/26_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介
電磁気関係

熱統計関連のご紹介


【このサイトはAmazonアソシエイトに参加しています】


【2022年時点での対応英訳】



Hazenor blessed with personal connections


Born in Vienna, Hasenöl was very blessed with connections.


He first learns theory from Boltzmann at the University of Vienna.


After that, he does his research under Lorenz at Leiden University.


And he tells Schrodinger and others about physics. Until I knew this story


Schrodinger thought he was the type of physicist he thought of himself,


Before that, he learned that Hazenor had provided the basis for his theory.


There was something he was personally convinced of.


He seemed to have many similarities in the formulation method.



Notable Hazenor achievements


Of particular note in Hasenöl's research was the publication of an equation of the same form as E = mc2 in 1904. It's an interesting story, so I'll cover it later. At the beginning of World War I, he volunteered for the Austro-Hungarian Imperial Army, fighting the Italian army in South Tyrol and dying at the age of 40. Unfortunately, it was probably the result of confronting fate.


Hazenol published a paper on its inertia in 1904 and 1905, focusing on "waves responsible for radiation" in the radiation phenomenon occurring in cavities. In this theory, he argued that the electromagnetic mass increases the inertia of matter. Arranging this story, Laue attributed the establishment of "inertia" to various forms of "energy" to Einstein, and for the first time he understood the deep implications of its equivalence in the context of the theory of relativity. I think.


Actually, when thinking from a modern point of view, it seems that the equivalence of mass energy can be realized by organizing and understanding from the electromagnetic aspect like Hasenöl. For example, as Boltzmann clarified, it would be an easy-to-understand formulation for everyone to regard the property of heat transfer as a phenomenon of energy transfer. It is thought that the formulation of E = mC ^ 2 is the result of connecting the concepts such as "heat", "electromagnetic wave", "static mass", "inertial mass", etc. in an easy-to-understand manner with energy as the basis. That's why. From the perspective of the history of science, what can be clearly stated is the fact that both Hasenöl and Einstein overcame the same peak (theoretical consequences) in the early 20th century. It is in a sense comfortable to know the fact that two people who lived completely different lives considered using the same material at the same time and produced results for each. And I would like to pay tribute to Lorenz's ability, which gave some suggestions to each of them. Raising people is wonderful.

2023年07月25日

鈴木 梅太郎
7/25改訂【「理研の三太郎」と呼ばれた中の一人は合成酒を作成、商品化、そして販売していた|ビタミンを発見】

こんにちはコウジです!
「鈴木 梅太郎」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

 
【スポンサーリンク】


【1874年4月7日 〜 1943年9月20日】



理研の三太郎


理研の三太郎と言われた鈴木梅太郎をご紹介致します。
他の二人は既にご紹介している長岡半太郎本多光太郎です。



筆者の思い出話


筆者が個人的に親近感を覚えたのは、
鈴木梅太郎が農学部とつながりが強い点です。
東大の工学部と農学部の間の通りがあります。
坂道があって古本屋がある通りを、
私はよく散歩で使います。


地名で言うと文京区弥生町。
弥生式土器の「弥生」だったかと。
(地下鉄の南北線を使う時に登っていく場合が多いです)


私の祖母は農学部からほど近い動坂の辺りで暮らしていて、
そこそこ別嬪さんだったので「動坂小町」と呼ばれていました。
また、私の母は不忍池の方にある東大病院で生まれました。
私の父は農学部の方にある根津神社の池でおぼれたそうです。


そんな街に私は何となく、
親近感を覚えてしまいます。
そんな街での物語。



鈴木梅太郎とビタミン


話戻って鈴木梅太郎ですが大きな業績としてビタミンを発見しました。
具体的には先ずビタミンBをみつけてドイツの学会で発表しています。
ただし、時節柄を感じされる話なのか「発見者」としての明記
が無かったので梅太郎の発見だと伝わらなかったようです。


日本人は知っていても外人から見たら「それ何?」って
話なのでしょうね。今ではあり得ない低評価みたいです。



鈴木梅太郎と合成酒


理研のホームページから記載すると、(太字部が引用部)
「鈴木梅太郎(1874-1943)は、米騒動をきっかけに、
原料に米を使わない合成清酒の開発に着手。
独自の製造法を発明し、“理研酒”として
「利久(りきゅう)」などのブランド名で販売した。」
その後、理研の収入で大きな割合を占めていく酒造事業は
理学と生活の大きな繋がりへと発展していくのです。


なお、現在は利休のブランドは別会社が運営しており、
事業売却したのだと思われます。現在の理研関連のお酒は
「仁科誉」と名付けたイオンビーム技術を活用した銘柄があります。


お酒を楽しく飲める「機会」を鈴木梅太郎は拡げたのですね。
残念ながら鈴木梅太郎の「人となり」は
今日あまり伝わっていませんが
お酒を造ってくれていたお爺さん、なのだと
考えるだけで少し楽し気な気分にさせてくれます。
東大も色々な人物を作り上げてきていますね。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2023/04/01‗初稿投稿
2023/07/25_改訂投稿


旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2023年4月時点での対応英訳)


Santaro in RIKEN


I would like to introduce Umetaro Suzuki, who is said to be the one of Santaro in RIKEN.
The other two are Hantaro Nagaoka and Kotaro Honda, who have already been introduced.


Memories of the writer


I personally felt a sense of closeness to
Umetaro Suzuki has a strong connection with the Faculty of Agriculture.
There is a street between the University of Tokyo's Faculty of Engineering and Faculty of Agriculture.
A street with slopes and used bookstores,
I often use it for walking.


The place name is Yayoi-cho, Bunkyo-ku.
I think it was "Yayoi" of Yayoi-style earthenware.
(It is often climbed when using the subway Namboku Line)


My grandmother lives near Dozaka, which is close to the Faculty of Agriculture.
She was called "Douzaka Komachi" because she was a decent bessama.
Also, my mother was born at the University of Tokyo Hospital near Shinobazu Pond.
I heard that my father drowned in the pond of Nezu Shrine near the Faculty of Agriculture.


In such a town, I somehow
I feel a sense of familiarity.
A story in such a city.


Umetaro Suzuki and vitamins


Going back to the story, Umetaro Suzuki discovered vitamins as a major achievement.
Specifically, I first discovered vitamin B and made a presentation at a German conference.
However, whether it is a story that feels seasonal
It seems that Umetaro's discovery was not conveyed because there was no such thing.
Even if Japanese people know about it, when they look at it from a foreigner's point of view, "What is that?"
I bet it's a story. It seems to be a low evaluation that can not be now.


Umetaro Suzuki and Synthetic Sake


From the RIKEN website, (quoted parts are in bold)
“Suzuki Umetaro (1874-1943), triggered by the rice riot,
He started developing a synthetic sake that does not use rice as an ingredient.
He invented his own production method and called it "Riken Sake".
It was sold under brand names such as Rikyu. ”


After that, the sake brewing business, which accounted for a large proportion of RIKEN's income,
It develops into a great connection between science and life.


In addition, the Rikyu brand is currently operated by a separate company.
I think they sold the business. Current RIKEN-related sake
There is a brand named "Nishina Homare" that utilizes ion beam technology.


Umetaro Suzuki has expanded the “opportunity” to enjoy drinking alcohol.
Unfortunately, Umetaro Suzuki's "personality"
I don't know much about it today
The old man who made the sake
Just thinking about him puts me in a good mood.
The University of Tokyo has also created various characters.


2023年07月24日

カール・シュヴァルツシルト
‗7/24改訂【相対性理論から 重力場を記述したドイツ人|シュヴァルツシルト半径】

こんにちはコウジです!
「シュヴァルツシルト」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】
【1873年10月9日 ~ 1916年5月11日】


シュヴァルツシルトの名はドイツ語表記をすると
: Karl Schwarzschild。
19世紀生まれの物理学者で従軍に伴い研究を断念した方です。
シュヴァルツシルトはドイツに生まれました。
フランクフルト生まれのユダヤ系でミュンヘン大学へ進みます。


関連書籍の関連リンクを使おうとしましたが
ゲーム関係の書籍ばかりが出てきてしまいます。
もはや「シュバルツシツト半径」という言葉だけで
現実の世界とつながる人になっています。
シュバルツシルトの人生を伝える人も
どんどん、少なくなってくるのでしょう。 


シュヴァルツシルトは1901年に28歳でゲッティンゲン大学準教授
および同天文台長を務めるのですが、
1914年には第一次世界大戦に伴い
(シュヴァルツシルトは40歳以上だったにもかかわらず)
軍に入隊しました。当時のドイツでシュヴァルツシルトは
西部戦線と東部戦線のどちらでも前線で戦い、
中尉にまで昇進しました。


思えばハーゼノールもまた、戦場で命を落としています。
ケプラーの父も戦争で命を落としています。
時代が変われども大事なものを戦争で
失っている事実を思い返してみて下さい。


ケプラーが天文学を進め、ハゼノールの弟子たち4人が
ノーベル賞をとっているのです。戦争が無ければ更に
有益な活動が出来たのではないでしょうか。
戦没した物理学者と語り合えた筈の時間が
隣人たちの「大きな損失」です。


シュヴァルツシルトは1915年にドイツ軍の砲兵技術将校
としてロシアで従軍します。そんな中、
天疱瘡と呼ばれる痛くて稀な皮膚病に苦しみました。


そうした闘病の最中で、シュヴァルツシルトは
アインシュタインの一般相対性理論から
重力場を記述する関係を導き出しました。
重力方程式から導き出された最初の特殊解は
シュヴァルツシルトの解と呼ばれ非常に有益なものです。


解を見出した直後にシュヴァルツシルトは
アインシュタインに手紙を送っています。

そんな思いを受けて
戦場で過ごすシュヴァルツシルトの為に

アインシュタインはドイツ・アカデミーに
論文を提出しました。

シュヴァルツシルトの論文で明確にされているのは
距離の性質です。特定の空間に極めて高い質量
存在する時に、空間自体が重力で歪むのです。
空間が歪むという表現は説明が難しいのですが、
相対性理論での結果として歪むのです。


その時に「シュヴァルツシルト半径」と呼ばれる
特殊な球形の場所が出来ます。シュヴァルツシルト半径の
境界面に近い場所ではその重力で光(光子)でさえもが
吸い寄せられ、球の内側では光の速度でも
抜け出せないという論文です。
シュヴァルツシルトの考えは今で言う
ブラックホールの存在を示唆していました。


そして、
残念なことに論文発表から4ヶ月後に病は進行、
シュヴァルツシルトは死に至ります。人類の損失です。
戦争はゲームの中で沢山です。
現実に起これば人が死にます。


話を進めてみました。同様の対応で私は考えました。
反戦を徹底できないと
@人が生む出す英知が外に向かう前に、
A内向きの欲望で人類は死滅に向かいます。


@物凄く早く進む光は魅力的です。 反して
Aブラックホールの引力は欲望のようです。


人は冷静な考察をしながらも前向きに進む
熱い思いを持っていないといけないと思います。
私論まで。






【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2023/04/05‗初稿投稿
2023/07/24‗改訂投稿


旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています


(2023年4月時点での対応英訳)


His full name in German is: Karl Schwarzschild.
He was a physicist born in the 19th century who gave up
his research when he served in the military.
Born in Frankfurt, he was Jewish
and went on to the University of Munich.


I tried to search the related link of the related book but
Only PC game-related books will come out.
No longer just the word "Schwarzschitz radius"
He has become a person who connects with the real world.
Some people tell the life of Schwarzschild
It will become less and less.  


Schwarzschild was appointed associate professor
at the University of Göttingen in 1901 at the age of 28.

And he will serve as the director of the observatory,
but in 1914 he was over 40.

(Even though Schwarzschild )
he enlisted in the army. Schwarzschild in Germanyat the time
He fought on the front lines on both the Western
and Eastern fronts,
He was promoted to lieutenant.


Come to think of it, Hazenor also lost his life on the battlefield.
Kepler's father also lost his life in the war.
Even if the times change, what is important is war
Remind yourself of what you have lost.

Kepler advances astronomy, and four of Hazenor's disciples
He would have a Nobel Prize. even more without war
I hope he had done something useful activity.
The time I should have been able to talk with a physicist
who died in battle,
A "great loss" for his neighbors.


Schwarzschild was appointed an artillery technical officer
in the German Army in 1915.

served in Russia as a Meanwhile,
He suffered from a rare and painful skin disease called pemphigus.


In the midst of such a struggle, Schwarzschild
From Einstein's General Theory of Relativity
He derived a relationship that describes the gravitational field.
The first special solution derived from the gravitational equation is
It is called Schwarzschild's solution and is very useful.


Shortly after finding his solution, Schwarzschild
He is sending a letter to Einstein.
he felt that
For Schwarzschild spending time on the battlefield
Einstein at the German Academy
submitted his thesis.


Schwarzschild's paper makes it clear that
It's the nature of distance. Extremely high mass in a specific space
As it exists, space itself is distorted by gravity.
The expression that the space is distorted is difficult to explain,
It is distorted as a result of the theory of relativity.


then called the "Schwarzschild radius"
A special spherical place is created. of the Schwarzschild radius
Even light (photons) is forced by the gravity near the boundary surface.

Attracted, inside the sphere even at the speed of light
It's a thesis that you can't get out of it.
Schwarzschild's thoughts now say
He suggested the existence of black holes.


and,
Unfortunately, the disease progressed four months
after his paper was published,

Schwarzschild dies. He is humanity's loss.
War is a lot in the game.
People die if it happens.


He tried to speak. I thought of a similar response.
If you can't thoroughly oppose the war
@ Before the wisdom that people create goes outside,
(2) Mankind is heading for extinction due to inward desires.


@The light that travels very fast is attractive. Contrary
AThe gravitational pull of a black hole is like desire.


People move forward while thinking calmly
I think you have to have a passion for it.
up to my point.



2023年07月23日

アイナー・ヘルツシュプルング
‗7/23改訂【H‐R図で恒星を整理して星の明るさ(絶対等級)と表面温度を考察】

こんにちはコウジです!
「ヘルツシュプルング」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】


【1873/10/8 ~ 1967/10/21】


天文学者をご紹介します。アイナー・ヘルツシュプルング
(Ejnar Hertzsprung)。デンマーク生まれの天文学者です。
ヘルツシュブルングの業績として特に有名なものはH-R図です。


ヘルツシュプルングはヘンリー・ノリス・ラッセルと独立に
提案していますので今では二人の名前を使ってH−R図と呼ばれます。
フェアーな考え方ですね。


H−R図は星の明るさに対して表面温度を考えてます。
H−R図での縦軸には恒星の明るさを考えています。対して
横軸では恒星の表面温度を考えています。
縦横の関係で星の進化などを考えるのです。


@H-R図での縦軸では明るさがが絶対等級としてあらわされています。
図上で上に行くほど絶対等級が小さい(明るい)恒星であると言えるのです。


AH−R図での横軸では、特定の恒星の表面温度が表現されています。
左が高温で、右側が低温です。(多くのH−R図での単位はK:ケルビンです)


H−R図が有益な背景として「恒星の表面温度がその色と関係している」
という話を思い出してください。表面温度が高い恒星は青白く、
温度の低い恒星は赤色に近くなるという傾向があるのです。
(上記Aの判断材料です)
また、ある恒星の観測時の
明るさが分かればその恒星までの距離が推定できます。
(上記@の判断基準です)


ヘルツシュプルングの略歴を最後にご紹介します。
ヘルツシュプルングはデンマークのフレデリックスベアに生まれました。
フレデリックスベア工科大学卒業後に数年の期間サンクトペテルブルク
(現在のロシアの都市)で働き、ライプツィヒで写真化学を学んだ後に、
コペンハーゲンで天文学の研究を始めます。


こうした背景を考えると、
当時の学者肌の人々の交流が感じられますね。
ヘルツシュプルングは各国で関心を追い求めています。


私がヘルツシュプルングの名を垣間見るのはその後です。
1909年にゲッティンゲン天文台の天文学助教授、
1919年ライデン大学の教授にして天文台の台長となりましたた。


話戻って業績の話です。ヘルツシュプルングは1905年に
恒星に巨星と矮星などの種類のあることを見出しました。
恒星の「絶対等級」と「スペクトル型の分布図」に
一定の関係があることを示したのです。


「その後ヘルツシュプルングは1913年にはヘンリエッタ・スワン・リービットの
発見したセファイド変光星に着目します。その変光周期と明度の相関から
小マゼラン雲までの距離を計算したのです。


ヘルツシュプルングは星間物質による吸収によ
り距離を小さく見積もったようですが、
初めての「測定」でした。
そしてヘルツシュプルングは2つの小惑星である
(1627)イバールと(1702)カラハリを発見しています。」
(ウィキペディア情報)




フリーランスの貴方へエンジニア案件紹介
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2023/04/04‗初稿投稿
2023/07/23_改訂投稿


旧舞台別まとめへ
舞台別のご紹介へ
デンマーク関連のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2023年4月時点での対応英訳)


I'll introduce an astronomer, Einar Hertzsprung, Danish astronomer.
Hertzschbruung's most famous achievement is the H-R diagram.
Hertzsprung becomes independent with Henry Norris Russell
Since I proposed it, it is now called an H-R diagram using their names.
That's a fair idea.


The vertical axis in the H-R diagram is considered to be the brightness of the fixed star. for
The horizontal axis is the surface temperature of the star.
Think about the evolution of stars in terms of vertical and horizontal relationships.


@Brightness is expressed as an absolute magnitude on the vertical axis of the H-R diagram.
It can be said that stars with smaller (brighter) absolute magnitudes go up on the map.


AThe horizontal axis of the H-R diagram represents the surface temperature of a specific star.
High temperature on the left and low temperature on the right. (Units in many H-R diagrams are K: Kelvin)


``The surface temperature of a star is related to its color'' as a useful background for the H-R diagram
Please remember the story. A star with a high surface temperature is pale,
on the other hand, cooler stars tend to be redder.
(This is the judgment material for A above.)
Also, when observing a certain star
If the brightness is known, the distance to the star can be estimated.
(This is the judgment criteria for @ above.)


Finally, I would like to introduce a short biography of Herzsprung.
Hertzsprung was born in Frederiksberg, Denmark.
St. Petersburg for several years after graduating from Fredericksberg University of Technology


After working in (now a Russian city) and studying photographic chemistry in Leipzig,
He begins his astronomical studies in Copenhagen. Given this background,
You can feel the interaction between the scholarly people of that time.
Herzsprung pursues interest in each country.


It is only after that that I catch a glimpse of the Hertzsprung name.
In 1909 he became Assistant Professor of Astronomy at the Göttingen Observatory.
In 1919 he became a professor at the University of Leiden and director of the Observatory.


Let's go back to his achievements. Hertzsprung in 1905
He discovered that there are different types of stars, such as giant stars and dwarf stars.
Stellar ``absolute magnitude'' and ``spectral type distribution map''
It shows that there is a certain relationship.


"Then Hertzsprung was in 1913 Henrietta Swann Leavitt's
I will focus on the Cepheid variable stars that she discovered.
From the correlation between the light variation period and brightness,
He calculated the distance to the Small Magellanic Cloud.


Hertzsprung is absorbed by the interstellar medium
It seems that you underestimated the distance
It was his first "measurement".
and Hertzsprung are two asteroids
(1627) discovered Ivar and (1702) Kalahari. ”
(Wikipedia information)


 

 


2023年07月22日

ポール・ランジュヴァン
7/22改訂【双子のパラダイスを議論しソナーを開発】

こんにちはコウジです!
「ランジュヴァン」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】


 
【スポンサーリンク】
【1872年1月23日~1946年12月19日没】



19世紀後半のフランスと20世紀の議論


(ランジュバンの親となる)夫婦は1871年のパリコミューンでは
 第一線にいた。ランジュバンは1872年1月23日に生まれた。
 パリコンミューンの敗北によって両親が打ちひしがれていた時である。
 ランジュバンは「私は1870年の戦いの直後に共和主義者の父と献身的な
 母の間で育った。両親はパリ占領とコミューンの血なまぐさい鎮圧の
 目撃者として語ることによって私の心に暴力への憎しみと
 正義への熱望を植え付けた」と言っている。 

【以上の太字部は太田浩一「ほかほかのパン」より引用】


議論の中でランジュバンは中心に居ました。
本ブログのTOPで使っているソルベイ会議の写真でも
アインシュタインの隣に座っています。
そんなランジュバンは双子のパラドックス
という考え方が有名です。その特殊相対性理論における
矛盾の指摘は、初めはアインシュタインによる相対性理論
での議論で使っている「2つの慣性系での時間差」
から始まる話だったのですが、
ランジュバンが双子の例えに置き換えて
状況を分かりやすくしました。
ランジュバンはそんな時代の人です。



研究者としてのランジュバン


ランジュバンはイギリスのキャヴェンディッシュ研究所で
ジョゼフ・ジョン・トムソンのもとで学んだ後にソルボンヌ大の
ピエール・キュリーの下で学位を得ました。


上述した相対論の議論とは別に磁性に関わる物性の研究
も進めていたのです。
こんな経歴は当時の
イギリスとフランスの
物理学会における
つながりの強さも感じます。


其々の研究者を互いに評価しつつ、
イギリスで理解が進んだ電磁現象を
フランスで深めていって原子遷移に伴う
電磁波の放出を突き詰めていきます。


このように書くとイギリスでの物理学が先行していたように思えてしまうかもしれませんが、決してそうではなくイギリスでもフランスでも共に人々が物理を追及していて研究課題に関して盛んに情報交換をしていたのです。


特にフランスのキューリー夫妻が扉を開いた放射性物質の研究は目覚ましく、その後の原子核物理学へと発展していくのです。一方で固体中の電子運動に起因するスピンの挙動は帯磁現象に繋がっていきます。


そうした時代にランジュバンは、当時理解が始まった導体の帯磁特性を研究していったのです。量子力学以前の物性理解でも原子、電子という言葉を使いこなして個別物質の帯磁特性を明らかにしていったのです。


それまで未分類だった特性を整理していったのです。


また、磁性の研究をする一方で水晶振動子を開発して


超音波を発生させるメカを実用化しました。


 

小さな恋


マリ・キューリとの恋仲も知られていたようです。
ゴシップネタで恐縮ですが、ランジュバンには
家庭が上手くいっていなかった時期があり、
そんな時の良き相談相手がマリ・キューリでした。
無論。秘め事は当事者同士の大事な時間であって、
ゴシップ記者達が騒ぎ立てるのは無粋です。
私はこれ以上記載しません。ただ、
何十年か後に御二人の孫同士が結婚してます。


 

また超音波の研究からの発展で、
ランジュヴァンはソナーの発明でも知られています。
潜水艦の関係者なら多大な恩恵を受けている訳ですね。




テックアカデミー無料体験
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/31_初版投稿
2023/07/22‗改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
量子力学関係

力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Discussion at the beginning of the 20th century


Langevin was at the center of the discussion. He also sits next to Einstein in the Solvay Conference photo used at the top of his blog. Langevin is famous for the idea of ​​a twin paradox. The contradiction pointed out in the special theory of relativity started with the "time difference between two inertial systems" used in Einstein's discussion in the theory of relativity, but Langevin replaced it with the analogy of twins. I made the situation easier to understand. Langevin is a person of that era.



Langevin as a researcher


He earned a degree under Pierre Curie at the University of Sorbonne after studying under Joseph John Thomson at the Cavendish Laboratory in England. Apart from the discussion of relativity mentioned above, he was also conducting research on physical properties related to magnetism. His background also makes me feel the strength of the connection between the British and French physics societies at that time. While evaluating each researcher, he will deepen the electromagnetic phenomenon that was well understood in England in France and investigate the emission of electromagnetic waves due to atomic transition.


In particular, the research on radioactive materials that the French couple Curie opened the door to is remarkable, and it will develop into nuclear physics after that. On the other hand, the behavior of spin caused by electron motion in solids leads to magnetizing phenomenon. At that time, Langevin studied the magnetizing properties of conductors, which were beginning to be understood at that time. Even in his understanding of physical properties before quantum mechanics, he mastered the terms atoms and electrons to clarify the magnetizing properties of individual substances. He sorted out previously unclassified traits. Also, while he researched magnetism, he developed a crystal unit and put into practical use a mechanism that generates ultrasonic waves.



Little love


It seems that his love with Mari Cucumber was also known. Excuse me for the gossip story, but there was a time when Langevin wasn't doing well, and his good counselor at that time was Mari Cucumber. Of course. The secret is the precious time between the parties, and the gossip reporters make a fuss about it. I won't list any more. However, decades later, my two grandchildren are getting married.


Langevin is also known for his sonar invention, a development from his study of ultrasound. He's benefiting a lot if he's involved in submarines.

2023年07月21日

アーネスト・ラザフォード
7/21改訂【原子模型を提唱した原子物理学の父】

こんにちはコウジです!
「ラザフォード」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】
【1871年8月30日 ~ 1937年10月19日】



その名は正確にはアーネスト・ラザフォード_


Ernest Rutherford, 1st Baron
Rutherford of Nelson, OM, FRS,
初代のネルソン卿_ラザフォード男爵です。


ラザフォードはニュージーランドに生まれ数学で


マスターの学位をとった後に、奨学金を得てイギリスの


ケンブリッジ大学に進みます。そこでラザフォード


JJトムソンの指導のもとで


気体の電気伝導の研究をします。


導体ではない酸素や窒素などの「気体」中でも
高い電圧を加えた時に放電現象が生じ、
電気が流れます。雷を思い起こしてください。


そんな、電気伝導の研究を進めるうちに
ラザフォードはウランから2つの放射線である
α線とβ線が出ている事を発見します。
ラザフォードは後に透過性の非常に強い放射線が
電磁波である事を突き止め、半減期の概念を提唱します。



ラザフォードが考えた半減期


半減期の分かり易い実用例として、岩石の年代測定があります。特定の岩石に含まれる物質から出てくる放射線量を計測すれば、半減期の概念を使って対象岩石の形成から今迄、どのくらい時間が経っているか推定出来るのです。


ラザフォードは更に研究を続けました。ガラス管にα線を集め、そのスペクトル分析からα線とはヘリウム原子核であると突き詰めています。そして、1911年にはガイガー・マースデンとα線の散乱実験を行いました。


有名なラザフォードの原子模型が提唱されたのです。原子には中心に原子核がありその周りを電子が運動しているというもので、現代でも使えるモデルです。長岡半太郎が提唱していたような表現法ではなく、ラザフォードは実験結果をもとに理論を展開します。



ラザフォードの実験手法


具体的にはこの時に金箔に対してβ線(電子線)を当てた時に断線散乱に相当する軌跡が観測されます。金箔を構成する内部物質と電子はそれぞれ剛体ではないのですが相互に働くクーロン力が同じ効果をもたらすのです。


ビリヤードの玉みたいな剛体と微細な粒子間の運動が同じ弾性モデルで表せる事は、感動的ともいえる事実です。



ラザフォードの人柄


その人柄もあって、ラザフォードは原子物理学の父と呼ばれています。キャンデビッシュ研究所では若い研究所員たちに「ボーイズ!」と呼びかけていたりするような人でした。


また彼はイギリスに帰化した人ではありますが、紳士として夏の砂浜でもスーツのジャケットを脱がないスタイルも頑なに守っていたようです。そして、原子番号104の元素は今、彼を偲んでラザホージウムと呼ばれています。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/26_初回投稿
2023/07/21_改定投稿


纏めサイトTOP
舞台別のご紹介

時代別(順)のご紹介
イギリス関係のご紹介
ケンブリッジ関連
電磁気関係
量子力学関係

熱統計関連のご紹介


【このサイトはAmazonアソシエイトに参加しています】



(2021年10月時点での対応英訳)



Its name is Ernest Rutherford


Its name is Ernest Rutherford, 1st Baron Rutherford of Nelson, OM, FRS, the first Sir Nelson_Rutherford. Rutherford was born in New Zealand and earned a master's degree in mathematics before going on to Cambridge University in the United Kingdom with a scholarship. There, Rutherford studies the electrical conduction of gases under the guidance of JJ Thomson.


When a high voltage is applied to a "gas" such as oxygen or nitrogen that is not a conductor, a discharge phenomenon occurs and electricity flows. Remember thunder. While conducting research on electrical conduction, Rutherford discovers that uranium emits two types of radiation, alpha rays and beta rays. Rutherford later discovered that highly permeable radiation was electromagnetic waves and proposed the concept of half-life.



Half-life that Rutherford considered


An easy-to-understand example of half-life is rock dating. By measuring the radiation dose emitted from a substance contained in a specific rock, it is possible to estimate how long it has been since its formation using the concept of half-life.


Rutherford continued his research further. He collects alpha rays in a glass tube, and from the spectral analysis, he finds that alpha rays are helium nuclei. Then, in 1911, we conducted an alpha-scattering experiment with Geiger-Marsden. The famous Rutherford atomic model was proposed. An atom has an atomic nucleus in the center and electrons are moving around it, which is a model that can be used even in modern times. Rather than the expression that Hantaro Nagaoka advocated,



Rutherfoed's way


Rutherford develops his theory based on his experimental results. Specifically, at this time, when he hits the gold leaf with β rays (electron rays), a trajectory corresponding to disconnection scattering is observed. The internal substances and electrons that make up the gold leaf are not rigid bodies, but the Coulomb forces that work with each other have the same effect. It is a moving fact that the motion between a rigid body like a billiard ball and fine particles can be represented by the same elastic model.



Rutherford's personality


Due to his personality, Rutherford is called the father of atomic physics. He was the kind of person at the Candebish Institute who was calling out to young researchers "Boys!" Also, although he is a naturalized person in England, he seems to have stubbornly kept the style of not taking off his suit jacket even on the sandy beach in summer as a gentleman. And the element with atomic number 104 is now called Rutherfordium in memory of him.

2023年07月20日

本多光太郎
7/20改訂「今が大切」「つとめてやむな」

こんにちはコウジです!
「本多光太郎」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】

 
【スポンサーリンク】
【1870年3月24日生まれ ~ 1954年2月12日没】



本多光太郎について


本多光太郎は日本の鉄鋼業界での研究土壌を作り上げ、


研究者として多くの人材を育て上げた先人です。


人物としては、


彼の逸話を聞けば聞くほど人間臭い所が感じられて、


本人に会ってみたくなります。見てみたいです。


本多光太郎はいつも古い着物を着て、


靴底が擦り切れるまで靴を履き、雑種の犬を引きながら


大学に出勤していたようです。そんな人です。


本多光太郎は子供時代は学校の成績も悪くて、大柄な割に何時も青ばなをたらしてて、「はなたらしの光さん」と呼ばれていた学校嫌いの子供でした。そんな本多光太郎が東大に進学して理学系の物理学科を卒業します。


今は理物と物工(りぶつ、と、ぶっこう)があるのでしょうが、当時はどうだったのでしょうか。その後に本多光太郎はドイツとイギリスに留学します。帰国後、東北大学で教授を務め理化学研究所で研究を進める中で有名な「KS鋼」を発明します。


本多光太郎は金属に対しての材料物性学の研究を世界に先駆けて始めていました。より性能の優れた材料を作り上げる為に所謂「冶金」の過程を研究していったのです。



本多光太郎の業績


KS鋼(新KS鋼)は発明時に世界最強の永久磁石でした。


現代での硬質磁性材料に繋がる研究の端緒をつけたのです。


それまで刀などの特定目的で鍛えられてきた日本の鉄が


工業生産に耐える性能を備えて差別化出来るように


なっていくのです。この発明がなされてから益々、


各種産業で多くの日本の鉄が使われていくのです。



本多光太郎と実験


なにより、本多光太郎は無類の実験好きでした。「今日は晴れているから実験しよう」と言いながら実験を始めたり、「今日は雨だから実験しよう」と言って実験を続けたりしていました。そんな会話を始める時には周囲の人は「ぁ、本多節だ!(笑)」と感じたことでしょう。独独の朗らかな緊張感が生まれたことでしょう。また、結婚式をあげた時に本多光太郎本人が居なかったので、探しに行ったら実験室で実験をしていたという。とぼけたエピソードもあります。全般的に身の回りの細かい事は気にかけない大雑把な人でした。そんな本多光太郎は組織を育て人を育てたことで有名です。要職を務めたり創設に携わった研究機関を羅列すると、



東北帝国大学附属鉄鋼研究所、
東北帝国大学総長、
千葉工業大学設立、
東京理科大学初代学長、
日本金属学会創設初代会長、
後の電磁研初代理事長

です。
指導している仲間に対しては毎日のように「どんな状況?」と実験の具合を尋ねていき、論文に対して細かく意見を加えていたそうです。



最後に本多光太郎の言葉を残します


「今が大切」「つとめてやむな」


私にはトーマス・マンの
「くよくよするな働け」という言葉と重なります。
各人の人生・やりがいと、つながる言葉です。
本多光太郎は仕事として、人生として「実験を
何時までも考えていた人」だったのでしょう。



【スポンサーリンク】



〆最後に〆


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2021/04/05_初稿投稿
2023/07/20_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
熱統計関連のご紹介


【このサイトはAmazonアソシエイトに参加しています】



(2021年10月時点での対応英訳)



About Kotaro Honda


Kotaro Honda is a pioneer who created the research soil in the Japanese steel industry and nurtured many human resources as a researcher. As a person, the more I listen to his anecdotes, the more human-like I feel, and the more I want to meet him. I wanna see.


It seems that Kotaro Honda always wore an old kimono, trousers until his soles were worn out, and went to college while pulling a hybrid dog. He is such a person.


Kotaro Honda was a child who hated school and was called "Hanatarashi no Hikari-san" because he had poor grades at school when he was a child. Kotaro Honda goes on to the University of Tokyo and graduates from the Department of Physics in Science. Nowadays, there are physical objects and craftsmen (Ributsu, and Bukko), but how was it at that time?



Works of Honda Koutarou


After that, Kotaro Honda will study abroad in Germany and England. After returning to Japan, he invented the famous "KS Steel" while working as a professor at Tohoku University and conducting research at RIKEN. Kotaro Honda was the first in the world to start research on material properties of metals. He studied the so-called "metallurgical" process in order to create better performing materials.


KS Steel (new KS Steel) was the strongest permanent magnet in the world at the time of his invention. He began his research on modern hard magnetic materials. Japanese iron, which had been trained for specific purposes such as swords, will be able to differentiate itself with the ability to withstand industrial production. Since the invention of this invention, more and more Japanese iron has been used in various industries.



Experiment with Kotaro Honda


Above all, Kotaro Honda loved experiments like no other. He started his experiment saying "it's sunny today so let's experiment" and continued his experiment saying "it's raining today so let's experiment". Kotaro Honda wasn't there when he had the wedding, so when he went looking for it, he was experimenting in the laboratory. There is also a blurry episode. He was a rough person who generally didn't care about the details around him.



Engaged Organaization


Kotaro Honda is famous for raising organizations and raising people. When he lists the research institutes that have held important positions or were involved in the founding,


Tohoku Imperial University Steel Research Institute,
President of Tohoku Imperial University,
Established Chiba Institute of Technology,
First President of Tokyo University of Science,
Founding Chairman of the Japan Institute of Metals,
He was later the first deputy director of the Institute of Electromagnetics.


He asked his colleagues about the condition of the experiment on a daily basis, asking "what kind of situation?" And added detailed opinions to his treatise.



Finally, I will leave the words of Kotaro Honda.


"Now is important" "Don't stop"


To me, it overlaps with Thomas Mann's words, "Don't work hard." It is a word that connects each person's life and rewards. Kotaro Honda must have been "a person who had been thinking about experiments forever" in his life as his job.


2023年07月19日

中村清二
7/19改訂【地球物理・実験物理を研究し多くの人材を育てました】

こんにちはコウジです!
「中村清二」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】
【1869年10月28日〜1960年7月18日】



中村清二の時代のキャリア形成


中村清二は福井県に生まれ東京帝国大学に進みます。そこで田中舘愛橘の指導を受けるのですが、そこから先のキャリアに時代を感じました。


1903年に30代で助教授の地位にあったのですが、その時代に中村はドイツへ留学します。時代を感じた部分とはその後なのですが、中村は帰国後に博士号をとるのです。


その時代の修士課程の扱いは詳しく存じませんが、博士課程を終える前に助教授として学生を指導して、留学をして、更にその後に博士号をとっていたのです。時代が違うと感じました。


今であれば博士号を取っていない助教授(准教授)って居ない気がするのです。



中村清二の研究業績


何より先ず、中村は光学の研究で知られています。量子力学が成立してゆく時代に関連の仕事をしていき、光弾性実験やプリズムの最小偏角を研究したりしています。


また中村は地球物理学の分野でも研究を進めています。特に三原山が大正時代に噴火したときは地球内部の物理学に関心を持ちました。火山学を確立していき、三原山や浅間山の研究体制の整備に貢献しています。。


また、熱心に物理の教科書をまとめ上げる作業を繰り返しました。特に、東大での講義科目の一つであった実験物理学は、後の我が国の人材を育て上げて物理学発展の礎を固めました。1925年に理科年表が世に出されるのですが、その際には、物理の部門でのの監修者として中村は仕事を残しています。
また中村は定年後は八代海の不知火や魔鏡の研究を行なっています。



中村清二の人柄など


中村は妻との間に二男二女を設け得ました。
作家の中村正常は兄の子で、三原山の調査に同行したこともあしました。
正常の長女が女優の中村メイコです。
そうした多くの仕事と繋がりを残し、中村は召されました。
享年91歳の大往生です。



〆最後に〆


テックアカデミー無料体験
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2022/04/02_初回投稿
2023/07/19_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】




 

(対応英訳)


Seiji Nakamura was born in Fukui prefecture and enterd into the University of Tokyo. There, he was taught by Tanakadate Aikitsu, and from there I felt the times in his future career. He was an assistant professor in his thirties in 1903, when he went to Germany to study abroad. The part where I felt the times was when I thought about it, but Nakamura got his PhD after returning to Japan. I don't know how to treated a master's degree at that time, but before finishing his doctoral course, he taught students as an assistant professor, studied abroad, and then got a PhD. He felt that the times were different.


Nakamura is known for his research in optics. He has been doing related work in the era when quantum mechanics was established, and he is studying photoelastic experiments and the minimum declination of prisms.


Nakamura is also conducting research in the field of geophysics. Especially when Mt. Mihara erupted in the Taisho era, he was interested in the physics inside the earth. He has established volcanology and is contributing to the development of research systems for Mt. Mihara and Mt. Asama. ..


He also repeated the work he enthusiastically put together a physics textbook. In addition, experimental physics, one of the lecture subjects at the University of Tokyo, cultivated human resources in Japan laters and laid the foundation for the development of physics. His science chronology was released in 1925, when he left his job as a supervisor in the physics department.
After retirement, Nakamura is conducting research on Shiranui and magic mirrors in the Yashiro Sea.


Personality of Seiji Nakamura, etc.
Nakamura could have a second son and a second daughter with his wife.
The writer, Masatsune Nakamura, was the son of his older brother and also accompanied him to the investigation of Mt. Mihara.
The normal eldest daughter is Meiko Nakamura, an actress.
Nakamura was called, leaving behind many of them. He is 91 years old.


 

2023年07月18日

ヨハネス・ゾンマーフェルト
7/18改訂【粒子の運動を考察して量子化条件を進化|立派な人材を育てた良き先生】

こんにちはコウジです!
「ゾンマーフェルト」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】
【1868年12月5日生まれ ~ 1951年4月26日没】



その名の綴りはArnold Johannes Sommerfeld。
ドイツのゾンマーフェルトは


 

パウリハイゼンベルク の指導をして


育てあげた大きな実績があります。


 

 この二人は量子力学で大きな仕事をしていて


この二人が抜けていたら


量子力学の発展は大きく遅れていたでしょう。


「とても意義深い仕事」をしてきた人達でした。


パウリもハイゼンベルグも


ゾンマーフェルトの研究室を離れた後に


対象の深い部分に対しての考察を進めています。


また、ゾンマーフェルトを語るうえで忘れたくないのはボーア・ゾンマーフェルトの量子化条件です。粒子の運動を語り出した時に大きさスケールで具体的に従来の枠組みで語れない量子化された世界を考えるきっかけを作りました。ゾンマーフェルトの貢献は非常に大きいです。


個人的にゾンマーフェルトを考察すると、


積分の経路に工夫を凝らして展開計算


していった手法が印象的でした。そこがまさに


電子軌道の自由度を考える事に繋がったのです



ゾンマーフェルトの考えは


単純な円軌道で電子が運動しないで


楕円の軌跡を描く筈だと言う物です。


より詳細にはボーアの提唱した量子化条件を


進化させてより高次の拡張を展開していった


と言えるでしょう。同時期の


ウィルソンや石原純の理論も特筆すべきです。


 

【以下2原論文はWikipediaより引用しました】



  • Wilson, W. (1915). “The Quantum Theory of Radiation and Line Spectra”. Phil. Mag.. Series 6 29 (174): 795-802. doi:10.1080/14786440608635362.

  • Ishihara, J. (1915). “Die universelle Bedeutung dse Wirkungsquantums”. Tokyo Sugaku Buturigakkai Kizi. Ser. 2 8: 106–116. JOI:JST.Journalarchive/ptmps1907/8.106.


こういった話をしていて感じるのは
どうやっても見えない世界に
何とか形を与える事は素晴らしい、
という事実です。


実際に形を与える事は文化的発展に繋がり


世界を変えていくのです。


ダイナミックな世界かと思います。


日々の暮らしでは感じられない世界です。


そして、
ゾンマーフェルトは事故で命を落としています。
残念な最後ですね。残した物が大きいだけに残念です。
後程、AIで彼のお人柄を分析してみたくなりました。
少しでも思い出したい人って居ますから。


 


テックアカデミー無料体験
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/20_初稿投稿
2023/07/18_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
ドイツ関連のご紹介
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


 

Sommerfeld in Germany has a great track record


of growing up with the guidance of Pauli and Heisenberg. If these two people were missing, the development of quantum mechanics would have been greatly delayed. They were people who had done "very meaningful work". Both Pauli and Heisenberg have been thinking about the deeper parts of the subject after leaving Sommerfeld's laboratory.


Personally in Sommerfeld's work, I was impressed with the method of expanding and calculating the integral path. I thought that was exactly what led to thinking about the degree of freedom of electron orbits. ..


Sommerfeld's idea is that an electron should draw an elliptical locus without moving in a simple circular orbit. In more detail, it can be said that Bohr's proposed quantization conditions were evolved to develop higher-order extensions. The theory of Wilson and Jun Ishiwara at the same time is also noteworthy.



[The following two original papers are quoted from Wikipedia]


Wilson, W. (1915). “The Quantum Theory of Radiation and Line Spectra”. Phil. Mag .. Series 6 29 (174): 795-802. Doi: 10.1080 / 14786440608635362.
Ishihara, J. (1915). “Die universelle Bedeutung dse Wirkungsquantums”. Tokyo Sugaku Buturigakkai Kizi. Ser. 2 8: 106–116. JOI: JST.Journalarchive / plotms1907 / 8.106.


What I feel when talking about this is that it is wonderful to somehow give shape to the invisible world. Actually giving shape leads to cultural development and changes the world. I think it's a dynamic world. It's a world you can't feel in your daily life.


2023年07月17日

ロバート・ミリカン
7/17改訂【油滴重量から電気素量を導いた米国の実験家】

こんにちはコウジです!
「ミリカン」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】
【1868年3月22日 ~ 1953年12月19日】



ミリカンは非常に優れたアメリカの実験家でした。


コロンビア大学で物理学の博士号をとりますが、ミリカンが


同大学での初めての物理博士習得者だったそうです。


光に粒子性と波動性がある事を実証していく段階で


波動性を前面に出した理論を展開していきます。


ただ、実験事実として粒子性を前提に考えた実験が


非常につじつまの合う結果を出していたことに


ミリカン自身も自問自答を繰返したと思えます。


結果としてアインシュタインが論じた光電効果を


ミリカンも実験的に裏付けます。また、そうした


実験と光の波長からプランク定数を定めました。


思えば、2022年のノーベル賞も実験家に贈られています。時代・時代で現実世界との対応を確かめていくのが実験家です。同時に、実験家が事実を示すことで理論が進みます。プランク定数は今の多くの論文の中で当たり前に使われている定数です。



電気素量を導き出した実験


金属板の間を落下する液体の運動を考えミリカンらは


重力効果に対してクーロン力の兼ね合いを計算に取込み、


厳密に計測値が求まる油滴重量から電気素量を導きます。


この油滴の実験の素晴らしい所は量子化する事で電子の


粒子性を示した点です。電流が計測されるイメージを考え


みた時に、その担い手の電子が連続量なのか粒子のように


考えられるか、当時は不確かだったのです。


ミリカンの実験結果では粒子性が示されました。


この2つの業績でミリカンはノーベル賞を受けました。



ミリカンは非常に優れた教育者


多くの教科書を世に送り、その中で少し先んじた


概念を紹介しています。更にミリカンは


カリフォルニア工科大学の創設に大きく関わりました。


今でも同大学に彼の名を冠した建物があるそうです。


【そもそも米国の通例で、1号館と言う代わりに
ミリカン・ホールという名をつけたりします】





テックアカデミー無料体験
【スポンサーリンク】


以下アドレスまでお願いします。
最近は全て返事できていませんが
問題点に対しては適時、返信・改定をします。


nowkouji226@gmail.com


2020/09/12_初稿投稿
2023/07/17_改定投稿


旧サイトでのご紹介
舞台別のご紹介

時代別(順)のご紹介
アメリカ関連のご紹介

電磁気関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】




(対応英訳)


Millican was a very good American experimenter.


He holds a PhD in physics from Columbia University, and Millican was the first PhD in physics at Columbia University.


He develops a theory that puts wave nature in the foreground at the stage of demonstrating that light has particle nature and wave nature. However, it seems that Millican himself repeatedly asked himself that the experiment that assumed particle nature as an experimental fact produced very consistent results.


As a result, Millican also experimentally supports the photoelectric effect discussed by Einstein. We also determined Planck's constant from such experiments and the wavelength of light. In addition, the experiment that derived the elementary charge is also wonderful. Considering the movement of the liquid falling between the metal plates, Millican et al. Incorporated the balance of Coulomb force against the gravitational effect into the calculation.



The elementary charge is derived from the weight of the oil droplet


, for which the measured value can be obtained exactly. The great thing about this oil drop experiment is that it shows the particle nature of electrons by quantization. When I thought about the image of measuring the electric current, it was uncertain at that time whether the electrons of the bearer were considered to be continuous quantities or particles. Millican received the Nobel Prize for these two achievements.


Millican has also sent many textbooks to the world as a very good educator, introducing concepts that are a little ahead of the game. In addition, Millican was heavily involved in the founding of the California Institute of Technology. It seems that there is still a building bearing his name at the university.


[In the first place, it is customary in the United States to call it Millican Hall instead of Building No. 1.]


2023年07月16日

マリ・キュリー
7/16改訂【ウラン含有量に注目|元素崩壊|特定原子の遷移を示し物理学に殉じたフランスの偉人】

こんにちはコウジです!
「マリ・キュリー」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代?
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】


 
【スポンサーリンク】


【1867年11月7日生れ ~ 1934年7月4日没】



マリア・スクウォドフスカ=キュリー


:Maria Salomea Skłodowska-Curieですが


フランス語でマリ・キューリと呼ばれる事が多いです。


彼女は物理学と化学で2度ノーベル賞を受けています。マリ・キューリの父は研究者でしたが貴族階級の出身だった為に、帝政ロシアの支配下の元で教壇に立つことを禁じられていました。マリ・キューリは10歳をなる前に大変苦労します。父の非合法の講義が発覚して職・住を失い、母の結核による他界があり、更には投機での失敗もあり、マリーは親戚等の世話になります。


 

そんな苦しい時期にマリ・キューリにも


恋をした時間がありました。


当時、マリ・キューリは家庭教師を生業としていましたが、カジュミェシュ・ゾラフスキという青年と恋仲に落ちます。共に避暑旅行に出かけたりして幸せな時間を過ごしますが、最終的には破局を迎えました。この事がマリ・キューリのパリ行きに繋がった様です。



パリでもマリ・キューリは苦労します


屋根裏部屋に住んで、寒い時には持っている全ての服を着ながら勉学に励みます。そんなパリ生活は大学の学部を卒業する迄、続きました。


 

そんなマリ・キューリに


光明がさします。知り合いを通じて


ピエール・キューリと出会ったのです。


 

そのピエール・キューリは国外で評価を受けていて1893年には英国のケルヴィン卿が訪ねてくる程でした。ところが、ピエール・キューリは勲章を辞退してしまうような性格でひたすら研究に励んでいました。


そんな二人が惹かれ合い、認め合い、マリの帰国後もピエールは恋文を贈り続け、遂にはマリの心が動き、2人は簡素な結婚式をあげます。


幸せな結婚だったと思います。


祝いの宴もなく、結婚指輪も無い、


つつましい形式でしたが


祝い金で買った自転車に乗り、


フランスの片田舎へと新婚旅行に旅立ちます。


ピエールが自転車をこぎ、


その後ろにマリが乗り、長閑な道を


語りながら進んでいった事でしょう。


料理を頑張り、長女に恵まれながら学問を続け、ベクレルの見出した放射線に対して二人は研究していきました。そこで。光や温度といったパラメターではなくウラン含有量の「量」が放射現象には本質的であるとの結論を得ます。
その後、マリとピエールの夫妻は元素の精製に心血を注ぎます。純度をあげる事で同位体の存在に近づいていったのです。関心のある精製にキューリー夫妻は全てを注ぎ込みます。結果として、夫ピエールは度重なる発作に苦しみ、妻マリは神経衰弱から睡眠時遊行症に陥ります。
そんな中で第2子を流産してしましました。そうした犠牲を払い、夫婦は物理学で大きな成果をあげます。



新しい概念の提唱に至ります


新しい発見とは即ち、


「特定元素は別の元素へ変化する」


という事実です。


そして、その過程で放射線を放出して一見エネルギー保存の法則に相反する変化を起こしますが、それを追ってラザフォードらが研究成果を次々に発表します。
原子核の崩壊過程では素粒子の結合に関わる様々なエネルギーが関与します。現在では簡素にダイヤグラムで理解する手法が確立されていますが、当時は手探りの状況理解でした。
そして夫ピエールが放射線に医学的効果を期待出来ると発見をしていくのです。ラジウムの効果でした。微量のラジウムならば古くから「ラジウム温泉」の効果は広く知られていました(ただし、明確に「ラジウム」という言葉は使われていませんでした)。


また、現在では分かっているのですが過度のラジウムは身体に悪影響を与えます。放射線の影響を直接・装置で患者に対して考慮し始めたのです。ピエールの発見は大きな人類の知見へと繋がっていきます。


当初は、妻マリーの博士学位習得が放射線研究の目的であったのですが最終的にはマリー・ピエール・ベクレルの3人に対してノーベル賞が贈られます。苦労してきた二人にとって、まさに栄誉の極みでした。


所が、その後突然の不幸が訪れました。夫ピエールが46歳の若さにして交通事故で命を落とすのです。妻マリーは悲痛にくれます。当然でした。その後、傷が癒えるまでに多くの言葉と時間が必要でしたが、最終的に妻マリーは夫ピエールの大学での職位と実験室の後任を引き継ぎます。研究者として活動を始めたのです。



ケルビン卿との議論


マリー・キューリ―はケルヴィン卿と対峙します。夫を認めてくれていた恩人でもあるのですがケルビン卿はラジウムを元素ではなく化合物であると考えていたのです。マリーは実験事実で論破してケルビン卿の誤りを正しました。そしてカメリーオネスと低温状態のラジウム放射線を研究していこうと話を進めます。


また第一回ソルベー会議で論文を発表していた若き日のアインシュタインを評価して、チューリッヒ大学教職への推薦状を書いています。そうした当時の綺羅星の物理学者が彼女と交流を持ちました。反面、ゴシップ騒動に追われていた部分も有、マリーはマスコミを嫌います。二度目のノーベル賞を受ける際にはスウェーデン側からも授与を見合せる打診がありましたがマリーは毅然と対応して、ゴシップネタとされた関係を「成果をあげた関係」であると語りました。
旦那様の教え子、ランジュバンとの成果でした。


そして、、、語らなければなりません。何より悲しかったのは放射線のもたらした弊害です。研究の過程で放射線被曝が重なりマリーは頭痛・耳鳴り・怪我がなかなか治らないといった障害に悩まされ続けます。そして終には死に至りますが、当時はまだその関連性が明確ではなかったようです。


波乱に満ちたマリー・キューリの人生は幕を閉じましたがその後人々は彼女の残した物を高く評価しています。1995年、夫妻の墓はパリのパンテオンに移されました。フランス史の偉人の一人として今でも祭られています。そして、物理の世界の偉人として世界中で語り継がれています。




テックアカデミー無料体験
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/14_初稿投稿
2023/07/16_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
量子力学関係

力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】


 

(2021年9月時点での対応英訳)



Maria Salomea Skłodowska-Curie
She is often called Mari Curie in French.


She has received two Nobel Prizes in physics and chemistry. Mari Curie's father was a researcher, but because he was from the aristocratic class, he was forbidden to teach under the rule of imperial Russia. Mari Curie has a hard time before she turns 10. Marie takes care of her relatives and others as her father's illegal lectures are discovered and she loses her job and residence, her mother died of tuberculosis, and her speculative failure. Become.


I had a time when I fell in love with Mari Curie during such a difficult time. At the time, Mari Curie was a tutor, but she fell in love with a young man named Kajumjesh Zorafski. She spends a happy time together on a summer trip, but in the end it was catastrophic. This seems to have led to Mari Curie going to Paris.


Mari Curie has a hard time even in Paris. She lives in the attic and works hard at her studies while wearing all her clothes she has when it's cold. Her life in Paris continued until she graduated from college.


Her light shines on such Mari . She had met Pierre Curie through her acquaintance. The Pierre Curie was well received abroad, and in 1893, Sir Kelvin of England visited him. However, Pierre Curie was devoted to his research with a personality that would decline his medal.


The two were attracted to each other and acknowledged each other, and even after her return to Paris, Pierre continued to give her a love story, and finally Mali's heart moved, and the two had a simple wedding ceremony. I think it was a happy marriage. There was no celebration party, no wedding ring, and although it was a humble format, I rode a bicycle I bought for the celebration and set out on my honeymoon to a remote country in France. Pierre would ride a bicycle, and Mali would ride behind him, talking about a quiet road. They worked hard on cooking, continued their studies while being blessed with her eldest daughter, and studied the radiation found by Becquerel.


Therefore. We conclude that the "amount" of uranium content, rather than parameters such as light and temperature, is essential for radiation phenomena. After that, Mari and Pierre devoted themselves to the purification of the elements. By increasing the purity, we approached the existence of isotopes.


Mr Curie and his wife put everything into the refinement of interest. As a result, her husband Pierre suffers from repeated seizures and his wife Mari suffers from sleepwalking due to memory weakness. Meanwhile, I had a miscarriage of my second child. At that cost, we come up with a new concept. That is, "a specific element changes to another element"
The fact is.


Then, in the process, it emits radiation and causes changes that seemingly contradict the law of conservation of energy, but Rutherford et al. Will announce their research results one after another. Various energies involved in the bonding of elementary particles are involved in the decay process of atomic nuclei. Nowadays, a simple method of understanding with a diagram has been established, but at that time it was a fumbling understanding of the situation.


And her husband Pierre discovers that radiation can be expected to have a medical effect. It was the effect of radium. The effect of "radium hot springs" has long been widely known for trace amounts of radium (although the word "radium" was not explicitly used). Also, as we now know, excessive radium has a negative effect on the body. We began to consider the effects of radiation on patients directly and with equipment. The discovery of Pierre will lead to great human knowledge.


Initially, the purpose of radiation research was to obtain a doctoral degree from his wife Marie, but in the end, the Nobel Prize will be given to three people, Marie Pierre Becquerel. It was a great honor for the two who had a hard time.


However, sudden misfortune came after that. Her husband, Pierre, died in a car accident at the young age of 46. Her wife Marie is in pain. It was natural. After that, it took a lot of words and time for her wounds to heal, but eventually her wife Marie took over her husband Pierre's college position and laboratory successor. She started her career as a researcher.



Discussion with Sir Kelvin


Marie Curie confronts Sir Kelvin. Sir Kelvin, who was also her benefactor who acknowledged her husband, considered radium to be a compound rather than an element. Marie argued with her experimental facts and corrected Sir Kelvin's mistakes. She then goes on to study Cameriones and cold radium radiation. She wrote a letter of recommendation for the University of Zurich teaching profession in recognition of her youthful Einstein, who had published her treatise at the first Solvay Conferences. The physicist of Kirasei at that time had an exchange with her.


On the other hand, Marie Curie has been chased by the gossip turmoil, and Marie hates the media. When sMari received her second Nobel Prize, the Swedish side also asked her to forgo her award, but Marie responded resolutely and described her relationship as her gossip story as "successful." "It's a relationship," she said.
It was an achievement with her husband's student, Langevin.


And ... I have to talk. The most sad thing was the harmful effects of radiation. In the process of her research, radiation exposure overlaps and Marie continues to suffer from disabilities such as her headaches, tinnitus and injuries that are difficult to heal. She and she eventually died, but it seems that the relevance was not yet clear at the time.


Her turbulent life with Marie Curie ended, but people have since appreciated her leftovers. In 1995, the tombs of the couple were moved to the Pantheon in Paris. She is still celebrated as one of the great men of French history. And she has been handed down all over the world as she is a great man in the physical world.

2023年07月15日

長岡半太郎‗7/15改訂【ボルツマンに学び原子の土星モデルを提唱】


こんにちはコウジです!
「長岡半太郎」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代?
初見の人が検索結果を見て記事内容が分かり易いように。





SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】


【スポンサーリンク】





【1865年8月19日生まれ ~ 1950年12月11日没】





長岡半太郎の豊かな人脈





この長岡半太郎は大村藩の流れに生まれます。





学生時代は東大で山川 健次郎田中舘愛橘に学び、





助教授としてドイツ留学していた





時期にボルツマンに学びます。それだから実証主義





の考え方も、留学以後は踏まえながら議論をしていった





のでしょうか。どこまで核心に迫っていったか





論じる際には当時の日本における量子論での





現象把握を考えると良いでしょう。そんな事を考えながら、





科学史の観点から論文を読んでみたくなりました。





別の面から調べてみたら話は進む時があると





思えるからです。そして長岡半太郎の子供時代は





学業成績は芳しくなかったようです。





この点は同時期の本多光太郎を思い出します。因みに、二人に加わえて鈴木梅太郎の三人は「理化学研究所の三太郎」と呼ばれていたそうです。携帯電話のコマーシャルで似たような人達居ましたね。





長岡半太郎の研究業績





長岡半太郎は田中舘愛橘と地震の論文を纏めたり、





本多光太郎と磁気の論文を纏めたりしていますが、





長岡半太郎の研究業績として大きいのは、





なんと言っても原子モデルでしょうボルツマン仕込みで





ミクロへの探求を進めていたのです。トムソン





ブドウパンの中のブドウのような形で





中心からの距離や軌跡と無関係に





電子の存在を仮定していたのに対し、





長岡半太郎は原子の周りを電子が回転する





土星のようなモデルを提唱しました。





この話は、不確定性関係と合わせて論じてみたいと思います。後に確立された不確定性関係では対象粒子の位置と運動量の関係が論じられます。この二要素が関連して論じられる訳です。





不確定性の考え方の枠組みでは運動量が確定している電子に対して位置は不確定であって当然です。具体的には個体原子の位置は止まっていると見なせそうですが、動き回る電子の位置の確定が難しいのです。「運動量」の観測精度を高めている電子に対して位置情報はどんどんぼやけてきてしまいます。





時代を戻して長岡半太郎の時代に電子を観測





することを考えてみて、電子の挙動をとらえる





帯電物質を想定してみても帯電体の中を





動き回る電子の動きを止める事は出来ません。





電子とは何時も動いている物体だからです。





それだから、初めの時点での





モデル化の難しさが出てくるのです。





今日の物理学、特に量子力学的な知見では不完全なモデルとも言えますが、長岡半太郎のモデルは当時の原子モデルを大きく変えた点で高く評価出来ると思えます。





全く知見の無かった原子という存在をに対して初期的なイメージを作る事が出来たのです。そのモデルをもとに帯電物質である電子の挙動が議論できたのです。
素晴らしいパラダイムシフトでした。





〆最後に〆










【スポンサーリンク】





以上、間違いやご意見があれば
以下アドレスまでお願いします。
問題点に関しては適時、
改定や返信を致します。





nowkouji226@gmail.com





2020/09/13_初回投稿
2023/07/15_改訂投稿





(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係





【このサイトはAmazonアソシエイトに参加しています】





(2021年9月時点での対応英訳)





Hantaro Nagaoka's rich personal connections





This Hantaro Nagaoka was born in the flow of the Omura domain as well as Hideki Yukawa. He studied with Kenjiro Yamakawa and Aikitsu Tanaka at the University of Tokyo when he was a student, and with Boltzmann when he was studying abroad in Germany as an assistant professor. So did he discuss the idea of ​​positivism based on his study abroad? When discussing how close he was to the core, it would be good to consider the phenomenon grasp in quantum theory in Japan at that time. With that in mind, I wanted to read the treatise from the perspective of the history of science. If you look at it from another side, it seems that there are times when the story goes on. And it seems that his academic performance was not good when he was a child of Hantaro Nagaoka.





This point reminds me of Kotaro Honda at the same time. By the way, in addition to these two people, Umetaro Suzuki was called Santaro of RIKEN. There were similar people in mobile phone commercials.





Research achievements of Hantaro Nagaoka





Hantaro Nagaoka has compiled papers on earthquakes with Tanakadate Aikitsu and papers on magnetism with Kotaro Honda, but the major research achievement of Hantaro Nagaoka is probably the atomic model. I was pursuing a quest for the micro. Whereas Thomson assumed the existence of electrons in the shape of grapes in grape bread regardless of the distance or trajectory from the center, Hantaro Nagaoka created a Saturn-like model in which electrons rotate around an atom. Advocated.





I would like to discuss this story together with the uncertainty relation. The uncertainty relation established later discusses the relationship between the position of the target particle and the momentum. These two factors are discussed in relation to each other. In the framework of that idea, it is natural that the position is uncertain with respect to the electron whose momentum is fixed. Specifically, it seems that the position of a solid atom is stopped, but it is difficult to determine the position of moving electrons. The position information becomes more and more blurred for the electrons that improve the observation accuracy of "momentum".





Considering going back in time





and observing electrons in the time of Hantaro Nagaoka, even if we imagine a charged substance that captures the behavior of electrons, we cannot stop the movement of electrons moving around in the charged body. Because an electron is an object that is always moving. That's why it's difficult to model at the beginning.





Although it can be said that it is an incomplete model in today's physics, especially in quantum mechanics, Hantaro Nagaoka's model can be highly evaluated because it changed the atomic model at that time. I was able to create an initial image of the existence of an atom that I had no knowledge of. Based on that model, we were able to discuss the behavior of electrons, which are charged substances.
It was a wonderful paradigm shift.
















































































































2023年07月14日

ピーター・ゼーマン
2023/7/14改定【縮退の解放を使い、ナトリウム原子の電子特性を説明しました】

こんにちはコウジです!
「ゼーマン」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代?
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】


ピーター・ゼーマン【1865年5月25日生まれ ~ 1943年10月9日没】



その名の綴りはPieter Zeeman


ゼーマンはオランダの小さな町、


ゾンネメレに生まれています。


またゼーマンはローレンツと同じ時代の理論家で


ローレンツと同時にノーベル賞を受賞してます。


当然、アインシュタインとも交流をもちます。


ゼーマンにとって幸運だったのは


ローレンツカメリー・オネスに師事した事


です。稀代の理論家と実験家の指導のもと、


ゼーマンは素晴らしい環境で育ちます。


そんなゼーマン等が出した結果がゼーマン効果です。


具体的には磁場中に置かれたナトリウム原子のスペクトル


を観察した時に、それが分裂していたのです。


ローレンツとゼーマンによってなされた説明は


ナトリウム原子の内部構造についてのものでした。


細かくは原子内部の電子が電荷を持ち、


磁場中では今で言う縮退状態からの開放される


ので(スピンの性質から)放射特性が変化するのです。


更には、その電荷の物理量が別に理論を進めていた


J・J・トムソンのそれと近しい値をとった事で


ローレンツとゼーマンの理論は説得力


をもちました。結果、


ノーベル賞が贈られます。



また、ノーベル賞受賞後


ゼーマンはアムステルダムで
研究所を運営し、そこで電磁光学
の研究を進めています。特に、
移動する媒質の中での光の伝播
に関しても研究していますが、
それは相対論の形成に有益
ローレンツアインシュタイン
も評価していたと言われています。
因みにこの3人を考えると年齢順で
ローレンツ(1853年生まれ)
ゼーマン(1865年生まれ)
アインシュタイン(1879年生まれ)
の順番です。実験事実が確立していき、
相対性理論が熟成されていくのです。


ローレンツとゼーマンの素晴らしい
点はナトリウム原子の構造を
解明した手法にあったと思います。
実験結果の積み重ね、仮設の設定、
そして全てを使った理論構築の
モデルはその後に多くの学者が活用可能で
再現可能な手法だったかと思えます。
その後に他の原子も次々と性格が
明らかにされていきます。




テックアカデミー無料体験
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
適時、返信・改定をします。


nowkouji226@gmail.com


2020/10/31_初版投稿
2023/07/04_改定投稿


舞台別のご紹介
時代別(順)のご紹介

オランダ関係の紹介へ
ライデン大学のご紹介

熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】



(2021年9月時点での対応英訳)



The name is spelled Pieter Zeeman.


Seeman was born in the small Dutch town of Zonnemaire. Zeeman is a theorist of the same age as Lorenz and has won the Nobel Prize at the same time as Lorenz. Naturally, he also interacts with Einstein.


Fortunately for Zeeman, he studied under Lorenz and Kamerlingh Onness. Under the guidance of rare theorists and experimenters, Zeeman grows up in a wonderful environment. The result of such Zeeman is the Zeeman effect. Specifically, when I observed the spectrum of the sodium atom placed in the magnetic field, it was split.


The explanation given by Lorenz and Zeeman was about the internal structure of the sodium atom. In detail, the electrons inside the atom have an electric charge, and in a magnetic field, they are released from the degenerate state as they are now called, so the radiation characteristics change (due to the nature of spin).



Furthermore, Lorenz and Zeeman's


theory was convincing because the physical quantity of the electric charge took a value close to that of J.J. Thomson, who was advancing the theory separately. As a result, the Nobel Prize will be awarded.


After receiving the Nobel Prize, Zeeman runs a laboratory in Amsterdam, where he pursues research in electromagnetic optics. He is particularly studying the propagation of light in moving media, which is said to have been useful in the formation of relativity and was also appreciated by Lorenz and Einstein. By the way, considering these three people, in order of age
Lorenz (born 1853)
Zeeman (born 1865)
Einstein (born 1879)
It is the order of. Experimental facts will be established and the theory of relativity will be matured.


I think the great thing about Lorenz and Zeeman was the method of elucidating the structure of the sodium atom. It seems that the accumulation of experimental results, the setting of temporary settings, and the model of theory construction using all of them were methods that many scholars could utilize and reproduce after that. After that, the characteristics of other atoms will be revealed one after another.


2023年07月13日

W・C・ヴィーン
7/13改訂【黒体放射の研究やウィーンの法則をもたらした物性研究の先駆者】

こんにちはコウジです!
「ヴィーン」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代?
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】


W・C・ヴィーン【1864年1月13日生まれ ~ 1928年8月30日没】



その名を正確に記すとヴィルヘルム・カール・ヴェルナー・オットー・フリッツ・フランツ・ヴィーン:Wilhelm Carl Werner Otto Fritz Franz Wien


熱力学における黒体放射の研究で有名です。ヴィーンは東プロイセンで農夫の子として生まれ、ベルリン大学でヘルツの元で学位を取ります。そこでの学位論文は光の回析特性に関する論文でした。


その後ヴィーンはレントゲンの後任としてヴュルツブルク大学で教鞭をとっています。またヴィーンはドイツ物理学会で会長を努めていて、前任はゾンマーフェルトでした。

さて、今日までヴィーンの業績・人となりを
調べていて断片的な印象を持ってしまいました。
それだから、ヴィーンの「人柄」が伝えられないのです。
実際の性格もあるのでしょうが、考えてみてたら、
当時の時代背景も大きいと思えてきました。
ヴィーンはドイツで生まれドイツで亡くなっています。
その時代のヨーロッパでは大戦がありました。
特にドイツはユダヤ人を迫害し、
何人ものユダヤ人物理学者が
反ドイツの体制で活動していました。
ヴィーンが生きたのは、そんな時代なのです。


そんな時代にヴィーンはソルベーユ会議に出ていて
国を代表して物理学会に関わっていたでしょうが、
政治絡みの考えは他のメンバーと独自のものとなって
いたと考えられます。時節柄、修業を兼ねて他国へ
留学したり協同研究をしたりする環境とは
大きく異なっていたのでしょう。ドイツ帝国の人ですから。
ヴィーンは現代とは異なった環境に生きていたのです。



ヴィーンの業績について考えてみると、
ヴィーンの法則はプランクの法則の極限
として考える事が出来ます。この法則は
反応を起こす物質の温度と放出される
電磁波の波長を関連付けますが、
対象物質の内部構造迄、踏み込んだ議論
を垣間見る事は出来ません。現象の
不完全な定式化であって独自の理論です。


考えを進めさせて頂くと、
マッハとボルツマンの考え方の
対立も思い起こされます。

ソルベー会議に出席する中で
ヴィーンもまた従来の考え方を守る立場で、
伝統的な枠組みの中で葛藤していたのでしょうか。


はっきりと確定して言える内容に悩み、
使っている推論の妥当性に対して悩みます。
ミクロの現象に対するモデルが大きく変更される
時代に当事者達は大胆かつ慎重に
判断せねばならなかった筈です。
いつかまた考えてみたいと思っています。


それにつけても、
ヴィーンの法則は我々に新しい知見を
もたらしていて、物質内部での反応に対し
変化を定量的議論の枠組みに乗せて
次なる議論の礎を作っています。
確かな一歩でした。





テックアカデミー無料体験
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/11/09_初回投稿
2023/07/13_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
ドイツ関連のご紹介

熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年9月時点での対応英訳)



The exact name is Wilhelm Carl Werner Otto Fritz Franz Wien.


He is famous for his work on blackbody radiation in thermodynamics. Wien was born in East Prussia as a child of a farmer and holds a degree from Hertz at the University of Berlin. His bachelor's thesis there was a treatise on the diffractive properties of light. Wien has since taught at the University of Würzburg as a successor to Roentgen. Wien was also chairman of the German Physical Society, and his predecessor was Sommerfeld.


By the way, until today, I have been investigating Veen's achievements and personality, and I have a fragmentary impression. That is why Veen's "personality" cannot be conveyed. He may have an actual personality, but when I think about it, I think he has a big historical background at that time. Vein was born in Germany and died in Germany. There was a great war in Europe at that time. Germany, in particular, persecuted Jews, with a number of Jewish physicists operating in an anti-German regime. It was at that time that Veen lived.


At that time, Veen would have been involved in the Physical Society of Japan on behalf of the country at the Solbeille Conference, but it is probable that his political ideas were unique to the other members. Perhaps it was very different from the environment in which students study abroad or collaborate in research in other countries for the purpose of training. He is from the German Empire. Veen lived in a different environment than it is today.



Considering Wien's achievements


 

, Wien's law can be thought of as the limit of Planck's law. This law associates the temperature of the substance that causes the reaction with the wavelength of the emitted electromagnetic wave, but we cannot get a glimpse of the in-depth discussion of the internal structure of the target substance. It is an incomplete formulation of the phenomenon and is an original theory.


As I move forward, I also recall the conflict between Mach and Boltzmann's ideas. Was Veen also struggling within the traditional framework in attending the Solvay Conferences, in a position to uphold his traditional thinking? He is worried about what he can say clearly and definitely, and about the validity of the reasoning he is using. The parties would have had to make bold and careful decisions in an era when the model for microscopic phenomena changed drastically. I would like to think about it again someday.


Even so, Wien's law brings us new insights, laying the foundation for the next debate by putting changes in the reaction within matter within the framework of a quantitative debate. It was a solid step.



2023年07月12日

ダーヴィット・ヒルベルト
7/12改定【現代数学の父・高木貞治の師・そしてフォンノイマンを評価】

こんにちはコウジです!
「ヒルベルト」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代?
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】


ダーヴィット・ヒルベルト【1862年1月23日 〜 1943年2月14日】


 

ヒルベルトの名前を英語でつづるとDavid Hilbertとなり
ドイツ語:でつづるとˈdaːvɪt ˈhɪlbɐtとなります。誰しもが認める
「現代数学の父」がヒルベルトです。遅ればせながら、
誰しもが認める大物をご紹介します。
ヒルベルトは当時プロイセン王国領だったケーニヒスベルク
(今はロシア領であるカリーニングラード)に生まれました。


ヒルベルトはケーニヒスベルク大学に進学し学びますが、この大学では別途、カントが(別の時代に)学び、学長を務めていたような歴史ある大学です。もともとドイツ騎士団だった人物が設置した大学で、第二次大戦後はソビエト連邦領として統治されていました。


記事を書いている2022年にはウクライナとロシアの紛争が続いていますがロシアの領土を巡る経緯は非常に根深いものがあると感じさせる地方です。思えば旧東ドイツも実質的にロシアの支配下あったとも言えます。


プロイセン王国ではありますが、後の時代には別の国であったような地方でヒルベルトは生まれ学びました。後に多彩な才能がヒルベルトを育てました。特にウェーバーはドイツ数学の影響をヒルベルトに与えたと言われています。


更に、同大学でヘルマン・ミンコフスキーとアドルフ・フルヴィッツと刺激を与えあう関係を持ちます。なかんずくミンコフスキーとは「最良にして、本当の友人」と感じるような関係を築きました。


またヒルベルトは偉大な数学者を多数、指導輩出しています。教育者として非常に優れています。ヒルベルトはゲッティンゲン大学で色々な人を指導していきました。


ゲッティンゲン大学に居た一人であるヨハネス・ルートヴィヒ・フォン・ノイマン(のちのジョン・フォン・ノイマン)の論文を評価していて、ノイマンは後に原子爆弾やコンピュータの開発で特筆される業績を残します。


また、後述する「ヒルベルト空間」の名付け親はノイマンだと言われています。「三次元ユークリッド空間」を発展させていったのです。ヒルベルトは当時22歳であったノイマンをゲッティンゲン大学に招いて育てたのです。


また日本人では東大の高木貞治がドイツ留学時代ヒルベルトの指導を受けたと言われています。思い返せば恐縮ながら、私も高木貞治の教科書を使っていたので、日本で数学を志す若者もヒルベルトの影響を受けていたのです。明文化すると少し感慨深いです。


ヒルベルトの業績で大きいと思えるのは数学概念の統合計画」と言える仕事だと思えます。それは不変式論、抽象代数学、代数的整数論、積分方程式、関数解析学、幾何学の公理系の研究、一般相対性理論などで個別にあった公理を整理して応用を考えました。


また現実の現象(人間の頭の中での認識群)との相関を考えた時に、多岐に及ぶ業績を「結びつける試み」であると思えます。
ヒルベルトの「公理論と数学的な整合性の証明」に関する一連の計画
はヒルベルト・プログラムと呼ばれ、現代で理解されています。


後にフォンノイマンも議論を続け、ヒルベルト空間と呼ぶ空間を3次元ミンコフスキー空間から発展させています。また、ヒルベルトの零点定理などに名前が残っています。


何よりヒルベルトはドイツの数学レベルを世界最高の水準ひきあげた数学者達の一人でした。一流の数学者でした。そんなヒルベルトは、晩年にナチスドイツによるユダヤ人迫害を目の当たりにしています。ドイツの数学研究所からユダヤ人たちが一人一人いなくなっていく様子に心を痛めていたそうです。



〆最後に〆




テックアカデミー無料メンター相談
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2022/04/06_初回投稿
2023/7/12_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】




 

(対応英訳)


Hilbert's name is spelled in English as David Hilbert and German: as ˈdaːvɪt ˈhɪlbɐt. The undisputed "father of modern mathematics" is Hilbert. I will introduce the big game that everyone recognizes, though it is late. Hilbert was born in Königsberg (now Russian territory Kaliningrad), which was then the Kingdom of Prussia.


Hilbert goes on to study at the University of Königsberg, which is a historic university where Kant studied (at another time) and was the president. The university was originally set up by a man who was the Teutonic Order, and was ruled as the Soviet Union territory after World War II. In 2022, when I wrote the article, the conflict between Ukraine and Russia continued, but it is a region that makes me feel that the history of Russia's territory is very deep-rooted. If you think about it, it can be said that the former East Germany was also under the control of Russia.


Although it is the Kingdom of Prussia, Hilbert was born and learned in a region that would have been another country in later times. Later, various talents raised Hilbert. In particular, Weber is said to have influenced Hilbert with German mathematics. In addition, he has an inspiring relationship with Hermann Minkowski and Adolf Hurwitz at the university. Above all, he had a relationship with Minkowski that made him feel "best and true friend".


Hilbert has also produced many great mathematicians. He is very good as an educator. Hilbert taught various people at the University of Göttingen. He appreciates the paper of one of them, Johannes Ludwig von Neumann (later John von Neumann), who later made remarkable achievements in the development of atomic bombs and computers. In addition, it is said that Neumann is the godfather of "Hilbert space" described later.


He developed the "three-dimensional Euclidean space". Hilbert invited Neumann, who was 22 at the time, to the University of Göttingen to raise him. It is said that Teiji Takagi of the University of Tokyo received guidance from Hilbert when he was studying in Germany. Looking back, I'm sorry to say that I also used Teiji Takagi's textbook, so young people who aspired to mathematics in Japan were also influenced by Hilbert. I am a little deeply moved when it is written.


What seems to be a big achievement of Hilbert is the work that can be said to be the integration plan of mathematical concepts. It is an invariant theory, abstract algebra, algebraic integer theory, integral equations, functional analysis, research on axioms of geometry, general relativity theory, etc.


When considering the correlation with the phenomenon (recognition group in the human mind), it seems to be an "attempt to connect" a wide range of achievements. Hilbert's program, a series of plans for proof of mathematical consistency with Hilbert's public theory, is called the Hilbert Program and is understood today. Later, von Neumann continued his discussion, developing a space called Hilbert space from the three-dimensional Minkowski space. In addition, the name remains in Hilbert's zero point theorem.


Above all, Hilbert was one of the mathematicians who raised the level of mathematics in Germany to the highest level in the world. He was a leading mathematician. Hilbert witnessed the persecution of Jews by Nazi Germany in his later years. He was hurt by the disappearance of each Jew from the Deutsche Mathematics Institute.

2023年07月11日

ピエール・キューリ_7/11改訂【ピエゾ効果や磁性損失を研究して定式化した優れた実験家】

こんにちはコウジです!
「ピエール・キューリ」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代?
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】


ピエール・キューリ【1859年5月15日生まれ 〜 1906年4月19日没】



ピエール・キューリって有名


ご紹介するピエールはマダム・キューリの
旦那様
ですが、調べていけばいくほど良い男です。


ピエールはフランスのパリに生まれましたが、


学校に行きたがらず、お医者だった


お父様や家庭教師等に勉強を


教えてもらって自宅で勉強していました。


特に数学で優秀さを発揮して、とりわけ幾何学で光る所を見せるようになっていき、16歳でパリ大学に入学します。そしてなんとピエールは18歳で学士号を得てしまいます。今の日本では現役学生が入学試験を受ける年齢ですね。びっくりです。ご家庭の事情で博士号習得はあきらめて物理研究室の助手として働きます。原子に対して知見が集まりつつあった未開の時代に数々の業績を残しています。


 

パリ大学鉱物学助手時代に圧電効果


圧電効果とピエゾ効果発見


ピエールは同じ大学の兄ジャックと協同研究進めます。水晶等の結晶に圧力差が生じた時に電位差が発生する現象を定理化して「圧電効果」または「ピエゾ効果」と呼ばれる法則を明確に定式化して、公表しました。更に、彼等はもう一つの現象も示します。水晶に電界を加えた時に形が変わるという現象を発表しましています。



現代の工業製品での応用


現在の工業製品ではこの応用である水晶振動子がデジタル回路で使われています。固有周波数を持つので時計やコンピュータの回路で時間(クロック)の基準となっているのです。最新機器は衛星情報で時刻を補正しますが、得ている衛星情報の基準が厳密な水晶発振器だったりします。
現場の精度を議論出来る仕組みである、
振動子をピエールは作りました。


 

ピエールと磁性


ピエールは磁性に対して更に研究を進めています。その中で自差係数を計測するための精密なねじりばかりを使っていますが、その装置は後に精密計測で世界中の研究者に広く使われています。ピエール・キュリーは博士論文のテーマとして強磁性、常磁性、反磁性について研究をおこないました。特に常磁性への温度特性を「キュリーの法則」として定式化しています。。その式に出てくる物質固有の定数は「キュリー定数」と呼ばれています。更に強磁性体の磁性損失も明らかにしています。「キュリー点」です。キュリー天秤も作りました。沢山の業績を残していますね。


 

そんな沢山の成果をあげていましたが、


ピエールは薄給に甘んじ出世に興味をもたず教育功労勲章も断っていました。そんなピエールを外国では高く評価していて、1893年には英国のケルヴィン卿が訪問してきています。その後ピエールはポーランド人のマリア・スクウォドフスカ(後のキューリ夫人)と出逢い結婚しています。何度もピエールは恋文を送っていたようです。簡素な下宿で温かい時間を過ごしていました。その後は夫婦共同で放射性物質の研究をしていて、ポロニウムとラジウムを発見、放射能という用語の提案を行っています。そして遂にピエールは学生と共に核エネルギーを発見します。


原子核の遷移は熱を生んでいたのです。学生との発見は続き、アルファ線、ベータ線、ガンマ線を見付けています。それぞれの放射線の帯電特性に気付いた訳です。


 

こうした成果をピエールがあげていく中で、過度の研究の中でピエールの心身のダメージは徐々に蓄積していきました。リウマチの症状で毎晩ピエールは激痛に襲われて悲鳴をあげていたそうです。妻マリアとベクレルと共にノーベル物理学賞を受賞した際には体調不良で授賞式に出られませんでした。



そして運命の日が来ます。1906年4月19日木曜日です。


当時パリ大学教授になったばかりのピエールは昼食後2時半頃に目的地に徒歩で移動していました。パリの狭い道を多くの馬車が混走していました。道を渡り損ねた彼は馬車にひかれてしまい、頭蓋骨にひどいダメージを負って即死してしまうのです。一瞬の悲劇でした。フランスは宝を失います。


彼の死後に妻マリアは2度目のノーベル賞を得ています。また娘のイレーヌ・ジョリオ=キュリーとその夫で研究所の助手だったフレデリック・ジョリオ=キュリーも放射性元素の研究でノーベル賞を受賞しています。もう1人の娘エーヴは、母の伝記を書き残しました。孫の ヘレン ランジュバン ジョリオ はパリ大学の核物理学教授で、同じく孫の ピエール ジョリオ は生化学者です。


そして今ピエールとマリの魂はパリのパンテオンの


地下聖堂に眠ってます。他のフランスの産んだ


偉人達と共に。フランスの名誉と共に。


夫婦で深い安らかな眠りを続けています。




テックアカデミー無料体験
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


2021/01/21_初稿投稿
2023/07/11_改定投稿


 


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
量子力学関係

力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】


(2021年9月時点での対応英訳)



Pierre Curie is the famous Madame Curie husband


, but the more you look up, the better he is.


Pierre was born in Paris, France, but he didn't want to go to school and was studying at home with his father, a doctor, and a tutor. He entered the University of Paris at the age of 16, especially as he demonstrated his excellence in mathematics, especially in geometry.


And Pierre gets his bachelor's degree at the age of 18. In Japan today, it's the age at which active students take entrance exams. That's surprising. Due to family circumstances, I give up my PhD and work as an assistant in the physics laboratory. He has made many achievements in the undeveloped era when knowledge about atoms was gathering.


He works with his brother Jack, who was also an assistant in mineralogy at the University of Paris. The phenomenon that a potential difference occurs when a pressure difference occurs in a crystal such as quartz is theoremized, and the law called "piezoelectric effect" or "piezo effect" is clarified and published. In addition, they show another phenomenon. We are announcing the phenomenon that the shape changes when an electric field is applied to the crystal. In current industrial products, this application, the crystal unit, is used in digital circuits. Since it has a unique frequency, it is the standard for time (clock) in clock and computer circuits.



Pierre is researching magnetism


 

. Among them, he uses only precision torsion to measure the deviation coefficient, but the device was later widely used by researchers all over the world for precision measurement.


Pierre Curie studied ferromagnetism, paramagnetism, and diamagnetism as the theme of his dissertation. He especially formulates the temperature characteristics for paramagnetism as "Curie's law". .. The substance-specific constants that appear in the formula are called the "Curie's constant". Furthermore, the magnetic loss of the ferromagnet is also clarified. It is a "Curie point". He also made a Curie balance. You have a lot of achievements.


Although he had achieved many such achievements, Pierre was content with a low salary and was not interested in his career and refused the Order of Educational Achievement. Such Pierre is highly evaluated in foreign countries, and in 1893, Sir Kelvin of England visited. Pierre then met and married the Polish Maria Squadovska (later Mrs. Curie).


Pierre seems to have sent a love letter many times. He had a warm time in a simple boarding house. After that, my husband and wife were jointly researching radioactive materials.


He discovered polonium and radium and proposed the term radioactivity. And finally Pierre discovers nuclear energy with his students. Nuclear transitions were producing heat. His discoveries with his students continued, finding alpha, beta, and gamma rays. I noticed the charging characteristics of each radiation.


As Pierre achieved these achievements, Pierre's physical and psychological damage gradually accumulated through his excessive research. Pierre was screaming every night because of the symptoms of rheumatism. When he won the Nobel Prize in Physics with his wives Maria and Becquerel, he was ill and could not attend the award ceremony.



And the day of his destiny will come.


It is Thursday, April 19, 1906. Pierre, who had just become a professor at the University of Paris at the time, was walking to his destination around 2:30 after lunch. He was crowded with many carriages on the narrow streets of Paris. He fails to cross the road and is run over by a carriage, causing terrible damage to his skull and dying instantly. It was a momentary tragedy. France loses treasure.


His wife Maria has won the Nobel Prize for the second time after his death. Her daughter, Irene Joliot-Curie, and her husband, an assistant at the institute, Frederick Jorio-Curie, have also won the Nobel Prize for her work on radioactive elements. Another daughter, Ave, wrote down her mother's biography. Her grandson her Helen her Langevin her Jorio is a professor of nuclear physics at the University of Paris, and her grandson her Pierre her Jorio is a biochemist.


And now the souls of Pierre and Mali are sleeping in the crypt of the Panthéon in Paris. With other great men from France. With the honor of France. The couple continues to sleep deeply and peacefully.

2023年07月10日

マックス・プランク
2023/7/10改定【実証主義に対して実在論を展開してプランク定数を定めました】

こんにちはコウジです!
「プランク」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代?
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】


マックス・プランク【1858年4月23日生まれ ~ 1947年10月4日没】



その名は正確には



マックス・カール・エルンスト・ルートヴィヒ・プランク
(Max Karl Ernst Ludwig Planck)


【現在の国で言えば】ドイツ生まれのプランクは


前期量子論の主要メンバーの一人です。


ベルリン大学でヘルムホルツと共に教授職を務めた際には、当時の重鎮だったヘルムホルツと同列に話が出来る事に対してプランクは大変な名誉を感じていたそうです。ヘルムホルツから評価を受けた時などはとても嬉しかったとこぼしていたと言われています。因みに、この時のプランクの教授就任はキルヒホッフの死去に伴うもので、就任前に大学側はボルツマンヘルツに打診をしていたそうです。そしてプランクは黒体放射の研究からエネルギーと輻射波の関係を導き、プランクの法則として理論化します。



学問的方法論の観点から語れば、


エルンスト・マッハの実証主義に対し


プランクは実在論を展開しています。


プランクは微視的な物理公式を特徴づける定数である「プランク定数」を提唱しています。即ち微視的な知見において、不連続な物理量を上手に理論に取り入れて微細な定数を導入して体系化しているのです。プランクの提唱した一連の考え方はとても大事な概念で、量子力学の根幹をなしています。現代の我々が後付けで考えてみると、取り得る状態が不連続だから行列力学で使えます。そして状態の時間発展が量子力学体系の中で記述出来て、微視的な状態間の遷移が「定量的に」表せるのです。こうした様々な新概念が提唱されたのです。そんな、



プランクらの時代における改革には、まさに
「パラダイムシフト」という言葉が使えます。
思想体系において大きな変換が起きました。
まず、考え方のハードルをクリア出来た事は
物理学にとって大きな一歩であったと言えます。


そしてプランクは戦争の時代を生きたので幾多の悲劇を味わいました。人道的見地から、アインシュタインへのユダヤ人迫害に対して当時の独裁者であるヒットラーに直接意見を述べています。そして、プランクの長男は第一次世界大戦で戦死しています。プランクの二男はヒットラーを暗殺に加担したので処刑されてしまいました。加えてプランク自身も国賊の親として批難を受けていました。更には、、他にプランクには二人の娘さんが居ましたが、共に孫娘を産んだ後に亡くなっています。



こうして色々とあったプランクの人生ですが、プランクの残した業績は決して消えていません。プランクの名前を残しているプランク定数は今でも世界中で議論の中で使われていて、彼の名を冠した研究所は21世紀になっても最先端の研究を続けています。






TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違いやご意見があれば
以下アドレスまでお願いします。
問題点に対しては適時、
改定・訂正を致します。


nowkouji226@gmail.com


2020/09/08_初回投稿
2023/07/10_改訂投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介

ドイツ関連のご紹介
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年9月時点での対応英訳)



To be exact, its name is
Max Karl Ernst Ludwig Planck.


[Speaking in the current country] German-born Planck is one of the main members of the early quantum theory.


When he was a professor with Helmholtz at the University of Berlin, Planck was very honored to be able to talk with Helmholtz, who was a major figure at the time. He is said to have complained that he was very happy when he was evaluated by Helmholtz. By the way, Planck's appointment as a professor at this time was due to Kirchhoff's death, and it seems that the university side had consulted with Boltzmann and Hertz before his appointment. Planck then derives the relationship between energy and radiant waves from the study of blackbody radiation and theorizes it as Planck's law.



From an academic methodology perspective


, Planck develops realism against Ernst Mach's positivism. Planck advocates the "Planck's constant," which is a constant that characterizes microscopic physical formulas. That is, in microscopic knowledge, he skillfully incorporates discontinuous physical quantities into theory and introduces minute constants to systematize them.

The series of ideas proposed by Planck is a very important concept and forms the basis of quantum mechanics. When we think about it later, it can be used in matrix mechanics because the possible states are discontinuous. And the time evolution of states can be described in the quantum mechanical system, and the transition between microscopic states can be expressed "quantitatively".


You can use the term paradigm shift. A major transformation has occurred in the ideological system. First of all, it can be said that clearing the hurdle of thinking was a big step for physics.



And since Planck lived in the era of war


 

, he experienced many tragedy. From his humanitarian point of view, he speaks directly to Hitler, the dictator of the time, about the persecution of Jews against Einstein and others. And Planck's eldest son was killed in action in World War I. Planck's second son helped Hitler assassinate and he was executed. In addition, Planck himself was criticized as a parent of national bandits. In addition, Planck had two other daughters, both of whom died after giving birth to a granddaughter.


In this way, Planck's life has changed, but his achievements have never disappeared. Planck's constant, which retains Planck's name, is still used in discussions around the world, and his institute continues to do cutting-edge research into the 21st century.


2023年07月09日

ハインリヒ・R・ヘルツ
2023/7/9改訂【電磁現象の実用化の為に送受信の装置を実現したドイツ生まれの先駆者】

こんにちはコウジです!
「ヘルツ」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代?
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】


ハインリヒ・R・ヘルツ【1857年2月22日生まれ ~ 1894年1月1日没】



独逸のヘルツ


ハインリヒ・R・ヘルツのRは
ルドルフ(Rudolf )のRです。


もともと、ヘルツは気象学に関心を持っていました。
1878年ミュンヘン工科大学では指導教官が気象学者のベゾル
でしたが、そこではさしたる業績を残していないようです。
その後の師ヘルムホルツのもとで
液体の蒸発の論文や新型の温度計に関する
論文をまとめた程度だと言われてす。



エーテルに対する理解の変遷


所で、19世紀終わり頃迄は電磁波の伝達物質としてエーテルという物質を想定していました。確かに波を伝える伝達物質、別の言葉を使うと媒質といった物があり波は伝わります。


水という媒質があり表面で波紋が伝わり、空気という媒質があって音が伝わる訳です。1881年にマイケルソンが実験でエーテルを否定したタイミングでヘルツはマクスウェルの方程式を再度考え直します。電磁波の存在を煎じ詰めて実用的なアンテナを考案しました。


現代の整理された考え方によると、電磁波は真空中であっても伝わります。例えば太陽光は大気圏に届く前に真空中を伝わってくるのです。そこにはエーテルは存在しません。エーテルの仮定は観測にかからないばかりか、地球の自転運動・公転運動に対して説明がつかないのです。



ヘルツのその他の業績 


別途、ヘルツは電磁波を発信する
装置を開発して電磁波の送受信
の実験を繰り返しました。
マクスウェルの理論を現実の生活の中の仕組みと
関連させることを考えてみると、
電波を発信する仕組みと受信する仕組みが必要です。


例えば、磁場中で帯電体が振動運動をした時に
電場と磁場が生成されて、光速度に近い
伝番をする筈です。それを観測にかけるには
「出来るだけ簡単で解析しやすい送信部と受信部」
を設計してシステムの構築をしなければいけません。
ヘルツはそうしたシステムを構築したと言えるのです。
その過程では例えば、

送受信間にガラスを置くと
電磁波が通じ難くなると確認しました。即ち、
電磁波というものがあって、それを使うと離れた
空間の間を送受信出来て、電磁波が透過しやすいもの
とし難いものがあると示したのです。大きな一歩でした。


そして、実験で人々にガウスマクスウェル
の理論を現実の世界とより近づけました。
ヘルツは周波数の単位に名を残しています。






テックアカデミー無料体験
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com
2020/10/07_初稿投稿
2023/07/09_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
ドイツ関連のご紹介
電磁気関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年9月時点での対応英訳)



Hertz of Germany


Heinrich R. Hertz's R is Rudolf's R.


Originally, Hertz was interested in meteorology. At the Technische Universität München in 1878, the instructor was the meteorologist Bezor, but he does not seem to have made much of a mark there. It is said that he only compiled a treatise on liquid evaporation and a new thermometer under his teacher Helmholtz after him.



At the transition of understanding of ether


Until the end of the 19th century,People had assumed The Existance,Ether  as a transmitter of electromagnetic waves. surely


There is a transmitter that transmits waves, or in other words, a medium, and waves are transmitted. There is a medium called water, and ripples are transmitted on the surface, and there is a medium called air, and sound is transmitted.


Hertz reconsiders Maxwell's equations when Michaelson denies ether in an experiment in 1881. He devised a practical antenna by decocting the existence of electromagnetic waves.


According to modern organized thinking, electromagnetic waves are transmitted even in a vacuum. For example, sunlight travels through a vacuum before it reaches the atmosphere. There is no ether there. Not only is the assumption of ether unobservable, but it cannot explain the rotation and revolution of the earth.



Other achievements of Hertz


Separately, Hertz developed a device for transmitting electromagnetic waves and repeated experiments to send and receive electromagnetic waves.
Considering the relationship between Maxwell's theory and the mechanism in real life, we need a mechanism to transmit and a mechanism to receive radio waves. For example, when a charged body vibrates in a magnetic field, an electric field and a magnetic field are generated, and the number should be close to the light velocity. In order to observe it, it is necessary to design a "transmitter and receiver that are as simple and easy to analyze as possible" and build a system.


It can be said that Hertz built such a system. In the process, for example, I confirmed that placing glass between transmission and reception makes it difficult for electromagnetic waves to pass through. In other words, he showed that there are electromagnetic waves that can be used to send and receive between distant spaces, making it easy for electromagnetic waves to pass through and difficult for them to pass through. It was a big step.


And in his experiments he brought Gauss Maxwell's theory closer to the real world. Hertz has left its name in the unit of frequency.


2023年07月08日

J・J・トムソン
2023/7/8改定‗【電子の単位を明確にして同位体を示した優れた実験家】

こんにちはコウジです!
「J・J・トムソン」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代?
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】


J・J・トムソン【1856年12月18日生まれ~1940年8月30日没】



その名はジョゼフ・ジョン・トムソン


;Sir Joseph John Thomson。


イギリスのJJトムソンは同位体の発見者です。


指導者としてはラザフォードオッペンハイマーボルンの師であり物理学の発展に大きく貢献しました。先ずケンブリッジ大学を卒業し、4年後にキャヴェンディッシュ研究所の所長を務めます。さらに、電子の実在を形にしていった一人でもあります。電子を発見したかについては異論があるかも知れませんがいくつかの洗練された実験で、JJトムソンは電子の単位量を決めて特定原子の同位体を示しました。



トムソンによる電子の追及


J Jトムソンの生きた時代の大きな関心は電子でした。ニュートン力学が確立され、それをもとに色々な議論が進んでいた時代に、トムソンは原子核などの束縛を受けていない所謂「自由電子」の振る舞いを明らかにしていきました。トムソンが考えていた時代、初めは陰極線と電子線という言葉さえうまく使い分けられていなかったようです。


電子が沢山放出されるような現象を作り上げて、飛んでくる電子を観測していくイメージです。電子線と呼んだ方が細いイメージです。一昔前の実験装置で「真空ガラス」で電子の流れが可視化できている姿を陰極線、最近の電子ビームで半導体加工の為に電子を飛ばす時には電子線と表現する人が多いです。物理の常識が変化して着目している点が変化しているとも言えます。


原子核の周りをまわっているような「束縛された電子」は当時でも今でも観測の対象とすることはとても難しいのです。また、JJトムソンの子供も後に、電子の波動性を証明してノーベル賞を受けています。


そして、いくつもの偉業を遂げ


J・J・トムソンの亡骸は


ニュートンの墓のすぐ近くに眠っています。


英国の生んだ偉人として。


【スポンサーリンク】


以上、間違いやご意見があれば以下アドレスまでお願いします。
時間がかかるかもしれませんが、必ずお答えします。
nowkouji226@gmail.com


2020/09/14_初回投稿
2023/06/28_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係
ケンブリッジ関連
電磁気関係


【このサイトはAmazonアソシエイトに参加しています】



(2021年9月時点での対応英訳)


Its name is Joseph John Thomson


[Sir Joseph John Thomson].


This JJ Thomson of England is a discoverer of  the isotopes. As a leader, he was a teacher of Rutherford, Oppenheimer, and Born, and contributed greatly to the development of physics.


At first,JJ Thomson graduated from Cambridge University and will be the director of the Cavendish Laboratory four years later. And , He is also one of the people who shaped The Reality of Electrons. There may be some disagreement about the discovery of the electron, but in some sophisticated experiments,Joseph  Thomson determined the unit amount of the electron and showed the isotope of a specific atom.



J Thomson's pursuit of electrons


The history of  John Thomson and electronics is closely related. In an era when Newtonian Mechanics was established and various discussions were proceeding based on it, we clarified the behavior of so-called "free electrons" that are not bound by atomic nuclei. At the beginning, it seems that even the terms cathode ray and electron beam were not used properly.


It is an image of observing flying electrons by creating a phenomenon in which a lot of electrons are emitted. It is a thinner image to call it an electron beam. It is very difficult to observe "bound electrons" that seem to orbit around the nucleus even now. The child of JJ Thomson also later received the Nobel Prize for proving the wave nature of electrons.


And now, the corpse of JJ Thomson, who has achieved several feats, is sleeping in the immediate vicinity of Newton's tomb. He was a great man born in England.


2023年07月07日

田中館 愛橘(たなかだて あいきつ)
7/7改訂【日本物理学の黎明期に英国で物理学を学び、日本で紹介し、ケルビン卿を敬愛した偉人・「種まき翁」と呼ばれた男】

こんにちはコウジです!
「田中館 愛橘」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代?
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】


田中館 愛橘(たなかだて あいきつ)【1856年10月16日生まれ ~ 1952年5月21日没】



日本物理学創設期の人、
田中館愛橘


その名は田中館・愛橘と書いて


たなかだて・あいきつ、と読ませます。


生まれた年は旧暦の時代で安政3年9月18日です。
【新暦で1856年10月16日です】
没年は新暦での昭和27年です。


先祖に南部藩の赤穂浪士
と呼ばれた方が居たそうですから、
そうしたイメージから語り出したいと思います。
田中館は時代の変革期に生まれました。


 

田中館愛橘の生い立ち


ご紹介する田中館愛橘の父方は
兵法師範の家系であり、
愛橘は藩校である作人館に学びます。
作人館での同窓生には原敬がいて後輩には
新渡戸稲造がいました。存じませんでしたが
立派な学校ですね。東京に出て慶應義塾に通い
ますが学費が高額なので東京開成高校に進みます。


今で言えば東大教養学部のイメージでしょうか。
そこで愛橘は山川健次郎から物理学を学びます。


政治にも関心を持っていたようですが、山川から諭され、
日本での理学の遅れを挽回せんと愛橘は物理学を志しました。


1879年に東大で外国人教師であるメンデンホールが(ユーイングと共に)トーマス・A・エジソンの発明したフォノグラフを日本に紹介しましたが、田中館愛橘は早速試作を行いました。その音響や振動の解析を行っています。


音を音質と音量に分けて考えたり、
フィルター処理をする作業が日本で始まったのです。
1880年にはメンデンホールによる重力観測に参加し、
東京と富士山で観測作業を行いました。
当時の世界一の性能を持っと言われたた
電磁方位計を研究開発しました。


そんな時期に、、


突然、福岡に帰っていた父・稲蔵が割腹自殺したとの
知らせを受けて田中館愛橘は明治16年12月に帰郷します。
土地や家などを売り払い東京三田に愛橘の教育の為に
一家総出で引っ越しをしたようなお父様でした。
そのお父様がなくなったのです。


そしてその年に東京大学助教授となりました。
詳細は追って調べます。この時期気になる動きです。
時代の変革期に各人が考え抜いていたはずです。



田中館愛橘とケルビン卿


その後、田中館愛橘はイギリスでケルビン卿に師事し、
大きな影響を受け、生涯を通じてケルビンを敬愛しました。


その後1890年にヘルムホルツのいた
ベルリン大学へ転学、電気学などを修めます。


この時代の電気に対する理解は、項を改めて
マクスウェルらと関連して語っています。


電磁気学は力学と異なり色々な人々の多様な知見が
次々重なり形成されていった歴史があるのです。


力学のように第一法則、第二法則、
として電磁気学では出来ていません。


 

愛橘は東京帝大理科大学教授となり後に
理学博士の学位を受けます。更にデンマークのコペンハーゲン
で開かれた万国測地学協会 第14回総会で
地磁気脈動や磁気嵐の発表をします。



田中館愛橘の業績


時代柄もあって、田中館愛橘は陸軍や海軍に対して貢献します。地磁気測量では指導の中心的な役割を果たしています。旅順での戦闘の際には敵情視察用の繋留気球の制作を依頼されています。それが愛橘と航空研究のきっかけ
となりました。


田中館愛橘は中野の陸軍電信隊内での気球班で気球研究を始め、制作および運用法を指導しています。試行錯誤の末に気球を完成させ、旅順戦で戦闘に使用しています。


そして田中館愛橘が60歳になり、教授在職25周年のパーティで愛橘は辞職する旨を伝えました。後の東大での定年退職制度に繫がっていきます。


また、田中館愛橘は数多くの人材を育てました。教え子としては長岡半太郎中村清二本多光太郎、木村栄、田丸卓郎、寺田寅彦などが居ます。それ故、愛橘は「種まき翁」、「花咲かの翁」と呼ばれたそうです。
95歳7か月の天寿を全うしました。




以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。


nowkouji226@gmail.com


【スポンサーリンク】


2020/12/16_初版投稿
2023/07/07_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
日本関連のご紹介
東大関連のご紹介


【このサイトはAmazonアソシエイトに参加しています】


 

(2021年9月時点での対応英訳)



Tanakadate Aikitsu,


whose name is Aikitsu, is written as Aikitsu.


Born on September 18, Ansei 3 in the lunar calendar. [October 16, 1856 in the new calendar] The year of death is 1952 in the new calendar. It seems that his ancestor was called Ako Ronin of the Southern Clan, so I would like to start with that image. He spent his youth in a period of change.


By the way, Tanakadate Aikitsu's father is a family of military art masters, and Aikitsu learns from the clan school, Sakujinkan. The alumni at the Sakujinkan was Takashi Hara, and his junior was Inazo Nitobe. I didn't know about it, but it's suary a good school.


He went to Tokyo and go to Keio University, but the tuition fee is high, so he went to Tokyo Kaisei High School. Is it the image of the Faculty of Liberal Arts at the University of Tokyo now? There, Aitachibana learns physics from Kenjiro Yamakawa.



Yonger days of Tanakadate


In his younger days,Aikitsu have been interested in politics, but Yamakawa advised him to make up for the delay in Japanese science, and Aitachiya decided to pursue physics. He introduced Edison's invented phonograph to Japan in 1879 with Mendenhall, a foreign teacher at the University of Tokyo, but Tanakadate Aikitsu made a prototype immediately. He is analyzing the sound and vibration.


He started working in Japan to divide sound into sound quality and volume, and to filter it. In 1880, he participated in gravity observation at Menden Hall and carried out observation work in Tokyo and Mt. Fuji. Aitachi made an electromagnetic directional meter, which was said to be the world's number one high-precision directional meter at that time.


 

Tanakadate Aikitsu returns home after being informed that his father, Inazo, who had returned to Fukuoka in December 1884, committed suicide by seppuku. And that year he became an assistant professor at the University of Tokyo. Details will be investigated later. Because it is a movement that is worrisome at this time.



Tanakadate and Baron Kelvin


After that, Tanakadate Aikitsu studied under Sir Kelvin in England and was greatly admired Kelvin throughout his life. After that, he transferred to the University of Berlin, where Helmholtz was, in 1890 and studied electrical engineering. His understanding of electricity in this era will be discussed later in the context of Maxwell et al.


Unlike mechanics, electromagnetism has a history of  accumulating diverse knowledge of various people one after another made electromagnetism. It has not made as the first law or the second law of mechanics.


Aitkitsu became a professor at the University of Tokyo Science University and later received a doctorate in science. He will also present geomagnetic pulsations and geomagnetic storms at the 14th General Assembly of the International Association of Geodesy Sciences in Copenhagen, Denmark.


 

Job of Tanakadate


Also, due to his time, Tanakadate Aikitsu contributes to the Army and Navy. He plays a central role in his guidance in geomagnetic surveying. During the battle in Lushun, he made a mooring balloon for hostility inspection. That was the catalyst for Aikitsu and his aviation research.


Tanakadate Aikitsu started balloon research in the balloon team within Nakano's Army Telegraph Corps, and is instructing production and operation methods. After a lot of trial and error, the balloon was completed and used in battle in Lushunkou.


 

When Tanakadate Aikitsu turned age 60, he announced that he would resign at the party of his 25th anniversary as a professor. He will be involved in the retirement age system at the University of Tokyo later. In addition, Tanakadate Aikitsu has nurtured a large number of human resources.


His students include Hantaro Nagaoka, Seiji Nakamura, Kotaro Honda, Hisashi Kimura, Takuro Tamaru, and Torahiko Terada. Therefore, They called Aitkitsu"Seeding old man" and "Hanasakika old man". He completed his life of 95 years and 7 months.


(NOTE)Transition Words,
"In the same time,on the other handsin addition for exanple" is Important.

改訂こんにちはコウジです!
「フォン・ノイマン」の原稿を改定します。


投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。
今後もご覧下さい。また、ブログ宣伝でツイッター使いません。
2021/7/11(日)から始めていてSNSの感じが分かりました。
流入はありますが労力がかかります。
今後はSEO中心に考えてSNSはブログと常時関連させません。
SNSは戦略的に使っていきます。


何より紹介の内容を吟味します。【以下改訂した原稿です】



【スポンサーリンク】
【1903年12月28日 - 1957年2月8日】



フォン・ノイマンの生い立ち


ノイマンはハンガリー系のドイツ人でアメリカに亡命します。
ハンガリー名ではナイマン・ヤーノシュ:nɒjmɒnˌjɑ̈ːnoʃ、
ドイツ名ではヨハネス・ルートヴィヒ・フォン・ノイマン
:Johannes Ludwig von Neumann,


ノイマンは少年時代から英才教育を受け、ディケンズの小説を
一字一句間違えず暗唱していたと言われます。
また、車を運転しながら読書していたと言われます。


数学・物理学・コンピューター科学で多才な才能を
発揮した人で映画のモデルにもなっています。


冒頭に掲載した映画作品は
フォン・ノイマンをモデルにしたと言われています。




原子爆弾やコンピューターの開発


フォン・ノイマンは1930年にプリンストンに招かれ、
プリンストン高等研究所の所員に選ばれています。


因みに、その時に同時にメンバーとして選ばれた一人が
アルベルト・アインシュタインでした。
戦争へ向かうアメリカで軍事関係の研究を進めます。





特に、フォン・ノイマンはロスアラモス国立研究所で
アメリカ合衆国による原子爆弾開発のための
マンハッタン計画に参加します。


そして、
弾道研究所に関わるENIACのプロジェクトに参加して
ノイマンも電子計算機のプロジェクトを進めていくのです。


ノイマンの別の関心事として衝撃波の伝達の研究分野がありました。
所謂FAT・MAN(長崎に投ちたプルトニウム型原子爆弾)
のための爆縮レンズを開発していくのです。


兵器開発に科学者が関わっていく良い例です。
「(効率的に)人を沢山殺そう」という考えと
「科学的探究心」は瞬時に置き換える事が出来るのです。



フォンノイマンの考え方を表す言葉



名言として残されている一つをご紹介します。

「思考こそが一次言語であり、
数学は二次言語である。

数学は、思考の上に作られた、
一つの言語に過ぎない。」


実際に物理モデルを構築する前の「思考」が大事で、
それは掴み様の無い物です。幾何学的な図形で抽象的に
表現してみたり群論を使って整理してみたりします。

見つかった「秩序」を数学的表現で表すのはその後の段階で、
さらには大衆に分かるように色々な言葉で肉付けします。


物理学者はこの作業を無限に繰り返さなければいけません。
そんなノイマンは1955年に骨腫瘍・あるいは、すい臓がん
と診断されました。


放射能に関わる研究を重ねた結果でもあります。
同僚のエンリコ・フェルミも1954年に
骨がんで亡くなっています。


科学の発展の為に晩年を捧げた人生でした、
ご冥福をお祈りいたします。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com


2021/10/01_初版投稿
2023/02/07_原稿改定


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介
電磁気関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



The background of von Neumann


Neumann is a Hungarian German who goes into exile in the United States. He is said to have been reciting Dickens' novels word for word, having been educated as a gifted boy in Hungary for Naiman Janos: nɒjmɒnˌjɑ̈ːnoʃ and in Germany for Johannes Ludwig von Neumann. increase. He is also said to have been reading while driving a car. He is a versatile talent in mathematics, physics and computer science and is also a movie model. The movie work posted at the beginning is
It is said to have been modeled after von Neumann.



Development of atomic bombs and computers


Von Neumann was invited to Princeton in 1930 and was selected as a member of the Princeton Institute for Advanced Study. By the way, one of the members who was selected at the same time was Albert Einstein. He pursues military research in the United States heading for war.


In particular, von Neumann will participate in the United States' Manhattan Project for the development of an atomic bomb at the Los Alamos National Laboratory. And Neumann will also proceed with this computer project by participating in the ENIAC project related to the Ballistic Research Laboratory.


Another concern of Neumann was the field of study of shock wave transmission. He will develop a detonation lens for the so-called FAT MAN (plutonium-type atomic bomb thrown at Nagasaki). It's a good example of how scientists get involved in weapons development. The idea of ​​"killing a lot of people (efficiently)" and "scientific inquiry" can be instantly replaced.



A word that expresses the idea of ​​von Neumann


I would like to introduce one that remains as a saying.
"Thinking is the primary language,
Mathematics is a secondary language.
Mathematics was built on thought,
It's just one language. "


It is important to think before actually building a physical model, which is something that cannot be grasped. Try to express it abstractly with geometric figures or organize it using group theory. The mathematical expression of the found "order" will be expressed later, and will be fleshed out in various words so that the public can understand it. Physicists have to repeat this task indefinitely. Neumann was diagnosed with bone tumor or pancreatic cancer in 1955. He is also the result of his repeated research on radioactivity. His colleague Enrico Fermi also died of bone cancer in 1954. I pray for the souls of his later life for the development of science.


2023年07月06日

ニコラ・テスラ
2023/7/6改定【磁場の単位を残し、それを社名として名を残したアメリカの天才】

こんにちはコウジです!
「テスラ」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代?
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】


ニコラ・テスラ【1856年7月10日生まれ ~ 1943年1月7日没】



 発明家テスラ


テスラはオーストリア帝国に生まれ
工夫を重ね、
誘導モーターを発明します。


そのモーターを広める為に
アメリカに渡って、かのエジソン
のもとで働いていましたが独立して
高電圧の変換をして発表をしたり
回転界磁型の電動システムを実用化して
供電社会の礎を築いたりしました。



テスラとエジソン


テスラとエジソンとの間には次第に対立関係が生まれますが、2陣営の対立は送電方式の考え方の違いが大きかったようです。エジソンが直流による電力事業を考えていたのに対してテスラは交流による電力事業に利点があると考えていました。実際に交流が主流になるのです。


幸運な事にテスラは多才、で例えば、
テスラはプレゼンテーションが上手でした。


学会での発表を聞いていたジョージ・ウェスティングハウスが感銘を受け、テスラは資金供給を受け始めます。最終的にはナイアガラの滝を使った発電システムの実現に繋がり、テスラは成功を収めました。ナイヤガラの滝を眺めて誰しも壮大な景色に心を動かされると思いますが、その時の感動を事業のアイディアへ繋げていく思考がテスラならではの凄さですね。事業計画のプレゼンテーションをする時に説得力を持ちますね。後は「本当に出来るの?」と聞かれている内容を説明していく説得力も大事です。そのアイディアや説得力をテスラは持っていました。


数々の事業を成功へ導いたテスラですが、色々な別れがあり晩年は寂しい老後を送っていた様です。テスラは生涯独身でした。


そしてテスラの名は今、磁場の単位として使われている他に、会社の名前として名を残しています。数トンの重さがあったと言われる彼の発明品や設計図はFBIが写しをとった後に母語へと返されています。



以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


【スポンサーリンク】


nowkouji226@gmail.com


2020/10/16_初版投稿
2023/07/06_改定投稿


舞台別のご紹介
時代別(順)のご紹介
アメリカ関係へ
電磁気関係
オーストリア関連のご紹介
グラーツ大学関連へ


【このサイトはAmazonアソシエイトに参加しています】


(2021年9月時点での対応英訳)



Inventor Tesla


Tesla was born in the Austrian Empire and invented an induction motor. After that, he traveled to the United States to spread the motor in addition, worked under Edison, but independently converted high voltage and made presentations and put into practical use a rotating field type electric system. It laid the foundation for a power supply society.



Tesla and Edison


A confrontational relationship with Edison gradually arises, but it seems that the confrontation between the two camps was largely due to the difference in the way of thinking about the power transmission method. While Edison was thinking of a DC power business, at that time, Tesla thought that an AC power business would have an advantage. In fact, exchange becomes mainstream.


Fortunately, for example Tesla was good at presenting.


George Westinghouse, who was listening to the conference presentation, was impressed and began to receive funding.


Ultimately, Tesla was successful in realizing a power generation system using Niagara Falls.


He is Tesla, who has led many businesses to success, but he seems to have had a lonely old age in his later years due to various farewells. Tesla was single all his life.


And in addition to being used as a unit of magnetic field, Tesla's name is now left as the name of the company.


Tesla's inventions and blueprints, which are said to have weighed several tons, have been returned to their native language after being copied by the FBI.



2023年07月05日

山川 健次郎
2023/7/5改定【後進を育てた日本物理学会黎明期の先駆者・東大総長】

こんにちはコウジです!
「山川 健次郎」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代?
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】


山川 健次郎【1854年9月9日生まれ ~ 1931年6月26日没】



山川健次郎の人生


山川 健次郎は日本初の物理学者です。その家は会津藩の家老家で戊辰戦争では健次郎は白虎隊に所属していました。自刀していった仲間もいた中で、山川健次郎は落ち延びました。その後に米国へ国費留学を果たし、イェール大学で物理学を修めます。日本に戻り、最終的には東大総長・京大総長を務めます。



山川健次郎と辰野金吾


私の家祖が会津藩・彰義隊でしたので個人的に彼になんとなく親近感を持っていました。山川健次郎は国費留学生として イェール大学で学位を修めます。また、東京駅の設計に携わった建築家・辰野金吾とは奥様を通じて親戚関係となっています。



山川健次郎のお人柄と研究成果


山川健次郎のお人柄を表すエピソードとして
日露戦争に関するものがあります。当時、
彼は東大で総長を務めていましたが、
愛国心に満ちた健次郎は陸軍に詰め寄り、
一兵卒として従軍させろ」と担当を困らせたそうです。
個人・家族・所属国家と意識が繋がっていたのですね。
その時にはもはや、賊軍だった頃の意識は無いのでしょう。


山川健次郎の時期の物理学会は諸外国との交流を感じさせません。特にコペンハーゲン学派が中心となって次々と新しい知見をもたらしていた時代に日本の物理学は黎明期にありました。欧州よりもむしろ日本に開国を促した米国に目を向けていたのです。それが精一杯だったのでしょう。「お雇い外人」は殆ど米国人です。


そして山川の時代まで欧州は遠く新大陸はまだ未開の部分が今より多い時代です。米国の独立戦争が1861年から1865年だったことも思い返してみましょう。


後の時代に原子核内の相互作用を解き明かしていく若者達を育てていく時代だったのです。山川健次郎と同年代のカメリー・オネスローレンツは師に恵まれ論敵に恵まれて、マッハボルツマンの構築した知見の中で考えを進めていたのです。大きく異なる環境から日本の物理学はスタートしています。


山川健次郎自身の研究成果は伝えられていません。研究内容をまとめた論文も広く知られていません。あるのでしょうか。それよりも寧ろ、後輩達を育てながら次の時代への為の土壌を育んでいたと考えるべきでしょう。


また、この時代に千里眼を巡る話題が世間を騒がせていましたがそれに対して山川健次郎は批判的で冷静な立場をとっていたと伝えられています。今も昔も千里眼という不可思議な現象は「議論して解明できる内容ではない」と考える方が良いようです。



〆最後に〆


【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/09/23_初回投稿
2023/07/05_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
京大関連のご紹介
イェール大学関連のご紹介


【このサイトはAmazonアソシエイトに参加しています】


(2021年9月時点での対応英訳)



Yamakawa Kenjiro's life


Kenjiro Yamakawa is Japan's first physicist. The house was the old family of the Aizu clan, and Kenjiro belonged to Byakkotai during the Boshin War. Kenjiro Yamakawa fell asleep while he had his own sword. He then went on to study abroad in the United States and studied physics at Yale University. He will return to Japan and eventually serve as President of the University of Tokyo and President of Kyoto University.



Kenjiro Yamakawa and Kingo Tatsuno


My ancestor was the Aizu clan Shogitai, so I personally had a sense of familiarity with him. Kenjiro Yamakawa is a government-sponsored international student and he completes his degree at Yale University. He also has a relative relationship with the architect Tatsuno Kingo, who was involved in the design of Tokyo Station, through his wife.



Yamakawa Kenjiro's personality
and research results


There is an episode about the Russo-Japanese War as an episode that shows the personality of Kenjiro Yamakawa. At that time, he was the president of the University of Tokyo, but the patriotic Kenjiro rushed to the Army and asked him to serve as a soldier. Your consciousness was connected to your individual, your family, and your nation. At that time, I wouldn't be aware of what I was when I was a thief.


The Physical Society of Japan during Kenjiro Yamakawa's time does not make us feel any interaction with other countries. In particular, Japanese physics was in its infancy at a time when the Copenhagen school was playing a central role in bringing in new knowledge one after another. It was an era of nurturing young people who would unravel the interactions within the nucleus in later times. Kamerlingh Ones and Lorenz, who were of the same age as Kenjiro Yamakawa, were blessed with teachers and controversial opponents, and were advancing their thoughts based on the knowledge built by Mach and Boltzmann. Japanese physics starts from a very different environment.


Kenjiro Yamakawa's own research results have not been reported. A paper summarizing his research is also not widely known. Is there? Rather, it should be considered that he was raising his juniors and nurturing the soil for the next era. In addition, it is said that Kenjiro Yamakawa took a critical and calm position against the topic of clairvoyance that was making a noise in this era. Even now and in the past, it seems better to think that the mysterious phenomenon of clairvoyance is "not something that can be discussed and clarified."


2023年07月04日

アンリ・ポアンカレ
7/4改定【数学・物理学・天文学で独自の領域を作り上げました】

こんにちはコウジです!
「ポアンカレ」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代?
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】


アンリ・ポアンカレ【1854年4月29日生れ ~ 1912年7月17日没】



 ポアンカレ予測


その名を書下すと、ジュール=アンリ・ポアンカレ


(Jules-Henri Poincaré)。多様体における考察である


ポアンカレ予想で、よく知られています。また、


小さなトリビア話なのですが、J・ポアンカレは


フランス大統領の従兄弟でもありました。


 

 ポアンカレの業績と評価


ポアンカレは数学、物理学、天文学において
名を残しています。残した業績は大きいのです。
しかし、


その数学的立場には賛否両論があります。


一般の見方ならば分からない程度の賛否両論のでしょうね。

ポアンカレは第一回ソルベーユ会議にも出席していて、
マリ・キューリとの写真は色々な所で紹介されています。
どんな話をしていたのか興味深いですね。
時間が出来たら議事録探して分析したいです。


ポアンカレの思考方法で独自性を見出せるでしょう。


他、ポアンカレの業績としては


位相幾何学の分野でのトポロジーの
概念形成などもあります。ヒルベルト形式主義よりも
直感に重きを置くスタイルは、いかにも数学者らしい、
とも思えますが、特定の人からみたら
意味不明に思えたりするのでしょう。また、
とある数学的な発見時に、思考過程を詳細に残し、
思考プロセスの形で心理学的側面の研究に
影響を残したとも言われています。


 

また、以下の著作は何時か時間が出来たら


読んでみたいと考えているポアンカレの著作です。


個人的な課題ですね。


・事実の選択・偶然_寺田寅彦訳_岩波書店


・科学と仮説_湯川秀樹・井上健編_中央公論


・科学の価値_田辺元 訳_一穂社






テックアカデミー無料メンター相談
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/31_初版投稿
2023/07/04_改定投稿


旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】


 

(2021年9月時点での対応英訳)



Poincare Prediction


The name is Jules-Henri Poincaré. Consideration in manifolds


Poincare conjecture, well known. Also, although it is a small trivia, J. Poincaré was also a cousin of the President of France.



Poincare's achievements and evaluation


Poincare has made a name for himself in mathematics, physics and astronomy. The achievements he left behind are great. However, there are pros and cons to his mathematical position. Pros and cons may not be understood by the general public.


Poincaré also attended the first Solbeille conference, and his photographs with Mari Cucumber are featured in various places. It's interesting what he was talking about. When I have time, I would like to find and analyze the minutes. You will find uniqueness in Poincare's way of thinking.


Other achievements of Poincare include the formation of the concept of topology in the field of topology. His style, which emphasizes intuition over Hilbert formalism, seems to be a mathematician, but he may seem irrelevant to a particular person. It is also said that at the time of his mathematical discovery, he left behind his thought process in detail and influenced the study of psychological aspects of the thought process.


In addition, the following works are Poincare's works that I would like to read when I have some time. It's a personal issue.


 Selection of facts ・ By chance _ Translated by Torahiko Terada _ Iwanami Shoten


 Science and Hypothesis_Hideki Yukawa / Ken Inoue _Chuo Koron


Value of science_Translated by Hajime Tanabe_Ichihosha


2023年07月03日

実験から超電導を示した
稀代の実験家・カメリー・オネス‗7/3改定【低温物理学への道筋】

こんにちはコウジです!
「カメリー・オネス」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代?
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】


【スポンサーリンク】


カメリー・オネス【1853年9月21生まれ ~ 1926年2月21日没】



 ライデン大学のカメリー・オネス


その名はより正確にはヘイケ・カマリン・オンネス


(Heike Kamerlingh Onnes)今日、 日本では


カーメルリング・オンネス、カマリン・オンネスや、


カマリン・オネスなど数パターンでカタカナ表記さ


れていますが、本稿ではカメリー・オネスとします。


 

ライデン大学実験物理学教授」この称号が


カメリー・オネスの人生をよく表しています。


彼は生涯オランダのライデン大学で教鞭をとり、


実験によって新しい世界を切り開きました。


また、ライデン大学には同じ年に生まれた理論家の


ローレンツ_が居ます。理論・実験で


ライデン大学は時代を切り開いたのです。


後に、ボルツマンの弟子のエーレンフェスト


アインシュタインがライデン大学に集います。


カメリー・オネスはドイツのハイデルベルク大学
に留学してキルヒホッフ等の師事を受けたと
言われていますが、特に帰国後にライデン大学
「ファン・デル・ワールスと出会い、彼との
議論を通じ、低温における物理現象に
興味を抱くようになった」【Wikipediaより】
と言われていて、ライデン大学での繋がりが
低温物理学に興味を抱く大きなきっかけ
だったようです。



低温電子物性の幕開け


特に温度を下げていく過程で電子の振る舞いが
どうなるか。それに対しての回答として
カメリー・オネスは超電導現象を示しました。
実験的に再現性のある現象を示す事で
更なる理論の土台を築いたのです。


格子間を運動する電子が電気的性質、磁気的特性を
温度変化に応じてどう変えていくか考えが異なりました。
異なる考えがあった時にカメリー・オネスは
事実を実験によって明確に示したのです。
絶対零度では抵抗はゼロになりました。
一つの予想を実験結果で証明したのです。






テックアカデミー無料メンター相談
【スポンサーリンク】
以上、間違い・ご意見は
以下アドレスまでお願いします。
時問題点に対して適時、
返信・改定をします。


nowkouji226@gmail.com


2020/09/05_初回投稿
2323/07/03_改定投稿


旧舞台別まとめ
舞台別のまとめ
時代別(順)のご紹介
オランダ関係のご紹介へ
ライデン大学のご紹介へ

熱統計関連のご紹介へ
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】

(2021年9月時点での対応英訳)


To be more precise, the name is Heike Kamerlingh Onnes. Today, in Japan, it is written in katakana in several patterns such as Carmelling Onnes, Kamerlingh Onnes, and Kamerlingh Onnes, but in this article, Kamerlingh Onnes is written in katakana. will do.


"Professor of Experimental Physics, University of Leiden" This title is a good representation of Kamerlingh Ones' life. He taught at Leiden University in the Netherlands throughout his life and opened up a new world through his experiments.


Leiden University also has a theorist, Lorenz, who was born in the same year. Leiden University opened the era with theory and experimentation.
Then, Boltzmann's disciples Ehrenfest and Einstein gather at Leiden University.


Kamerlingh Ones is said to have studied at Heidelberg University in Germany and studied under Kirchhof and others. Especially after returning to Japan, he said, "I met Van der Waals and through discussions with him, physical phenomena at low temperatures. "I became interested in Cryogenics" [Wikipedia], and it seems that the connection at Leiden University was a big reason for my interest in cryogenic physics.



behavior of electrons


What happens to the behavior of electrons, especially in the process of lowering the temperature? In response, Kamerlingh Ones showed the superconducting phenomenon.
He laid the foundation for further theory by showing it as an experimentally reproducible phenomenon.


They had a different idea of ​​how electrons moving between lattices change their electrical and magnetic properties in response to changes in temperature.
Kamerlingh Ones made the facts clear through his experiments when he had different ideas.
At absolute zero, the resistance is zero.
He proved one conjecture with experimental results.


2023年07月02日

ローレンツ変換で名を残し、
アインシュタイン等を育てた育てたローレンツ

こんにちはコウジです!
「ローレンツ」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンも居る時代?
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】


↑ Credit ; Wikipedea ↑



【スポンサーリンク】


H・A・ローレンツ【1853年7月18日生まれ ~ 1928年2月4日没】



ライデン大学のローレンツ


その名は正確にはHendrik Antoon Lorentz。


です。オランダに物理学で有名なライデン大学


がありますが、ローレンツは其処の出身者です。


後にエーレンフェストがコロキウムを開いていきますが、


そんな大学を理論の面で育んでいった一人が


今回ご紹介するローレンツです。


 

この大学では他に、


エンリコ・フェルミ
西周(日本の哲学者)、
ヘイケ・カメリー・オネス_
アルベルト・アインシュタイン
クリスティアーン・ホイヘンス
フィリップ・シーボルト(博物学者)、
ポール・エーレンフェスト


が学んだり、教えたり、議論をしたりしていました。


他、オランダで個人的に関心があるのは


デルフト工科大学です。そこは現在、


低温物理学で有名な拠点ですので別途、


機会があれば取りあげたいと思います。



ローレンツの主な業績


さて話戻ってローレンツですが、


電気・磁気・光の関係を解きほぐしました。


手法としては座標系の変換を効果的に使います。


特にアインシュタインが特殊相対性理論


を論じる際に起点の一つとして使った、


「光速度不変の定理」はローレンツが導いた


変換に関する考察があって成立しています。


無論、アインシュタインは、


その人柄と業績を高く評価していて、


ローレンツを「人生で出会った最重要な人物」


であったと語っています。



ローレンツの人脈


ローレンツとアインシュタインはエーレンフェストの家でよく語り合っていたと言われています。時間が出来たら寄合って、その時々の関心のある議題について語り合っていたのでしょう。有益な夜の時間が過ごせたはずです。このブログで今ご紹介している写真はそんな中での風景です。


ローレンツの業績は、電磁気学、電子論、


光学、相対性理論と多岐にわたります。


弟子のゼーマンが電子に起因するスペクトル線


が磁場中で分裂する事実を示した時には


理論的論拠を与えノーベル賞を受けています。


荷電粒子を考えた時には


@静電場からの力が働き
A静磁場からの力が働き
B電場中で速度vで働くとき力が働き、


その総和としてローレンツ力が表現されます。


また、ローレンツ変換は相対論を語る時の


基礎になっています。更に、双極子の性質を表


すローレンツ・ローレンツの式などでローレンツは


名前を残しています。その中で


特に印象深い業績はやはり変換に関する物でしょう。



ローレンツの独自性


ローレンツは座標系の変換の中で局所時間
と移動体の長さの収縮を議論していきます。そこから、
「ローレンツ収縮」といった言葉も生まれてます。
理論への要請として、
マイケルソン・モーレの実験を理論から
説明するには光速度普遍の枠組みで
事実を組み立てなければなりません。
これが可能な理論的土台として
ローレンツ変換は秀逸だったのです。


最後に、そのご臨終の話を語りたいと思います。


ローレンツの葬儀当日は追悼の意を込め、


オランダ中の電話が3分間電話が止められました。


英国王立協会会長だったアーネスト・ラザフォード


お別れの言葉を述べる中で多くの人が


ローレンツを惜しみました。







テックアカデミー無料体験
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/24_初版投稿
2023/07/02_改定投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
オランダ関係の紹介へ
ライデン大学のご紹介へ
電磁気学の纏め
熱統計力学関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年9月時点での対応英訳)



Lorenz of Leiden University


Its name is Hendrik Antoon Lorentz to be exact. Leiden University is famous for physics in the Netherlands, and Lorenz is from there. Ehrenfest will open the colloquium later, but one of the people who nurtured such a university in terms of theory is Lorenz. Besides at this university


Enrico Fermi,
Nishi Amane (Japanese philosopher),
Heike Kamerlingh Ones_
Albert Einstein,
Christiaan Huygens,
Philipp Siebold (naturalist),
Paul Ehrenfest


Was learning, teaching, and discussing. Another personal interest in the Netherlands is the Delft University of Technology. It is currently a well-known base for cryogenic physics, so I would like to take up it if there is another opportunity.



Lorenz's main achievements


Now back to Lorenz, I unraveled the relationship between electricity, magnetism, and light. His technique is to effectively use coordinate system transformations.


In particular, the "light velocity invariant theorem" that Einstein used as one of the starting points when discussing special relativity was established with consideration of the transformation derived by Lorenz. Of course, Einstein praised his personality and achievements and described Lorenz as "the most important person he met in his life."



Lorenz connections


Lorenz and Einstein are said to have often talked at Ehrenfest's house. When I had time, I would have come together and talked about the agenda of interest at that time. You should have had a good night time. The photos I'm introducing in this blog are the scenery in such a situation.


Lorenz's achievements range from electromagnetism, electron theory, optics, and theory of relativity. When his disciple Zeeman showed the fact that electron-induced spectral lines split in a magnetic field, he gave a theoretical rationale and received the Nobel Prize. When he thought of charged particles


@ Force from electrostatic field works
A Force from static magnetic field works
B When working at speed v in an electric field, force works,


Lorentz force is expressed as the sum. Lorentz transformations are also the basis for talking about relativity. In addition, Lorentz has left its name in the Lorentz-Lorenz formula, which expresses the properties of dipoles. The most impressive of these is probably the one related to conversion.



Lorenz's uniqueness


Lorenz discusses the contraction of local time and mobile length in the transformation of the coordinate system. From there, the word "Lorentz contraction" is also born. As a request to his theory, to explain Michaelson Moret's experiment from theory, we must construct the facts in the framework of universal light velocity. The Lorentz transformations were excellent as the theoretical basis for this.


Finally, I would like to tell you the story of the end.


On the day of Lorenz's funeral, telephone calls throughout the Netherlands were suspended for three minutes in memory. Many missed Lorenz as Ernest Rutherford, president of the Royal Society, said goodbye.


2023年07月01日

A・A・マイケルソン
7/1改定【稀代の実験化|エーテルを想定した干渉実験を実施】

こんにちはコウジです!
「マイケルソン」の原稿を改定します。
今回の主たる改定はタイトルの再考です。ベートーベンも居る時代?
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】
【1852年12月19日 ~ 1931年5月9日】



稀代の実験家マイケルソン


その名を全て書き下すとAlbert Abraham Michelson。


ユダヤ系の血を引くアメリカ人です。


マイケルソンは物理学の中でも特に光学に対して


関心を示し、干渉計を発明しました。。その後、


有名な干渉実験を実現します。マイケルソンはその後も


様々な研究者と実験をしていきますが、光の干渉を原理


として使っていて光路が長い程、精度が高くなります。


そこで、マイケルソン達の装置は大がかりな物に


なっていきますが、結果として様々な外乱に晒され、


誤差との戦いが続きました。装置を据え付ける地盤、


微振動、感光装置、その他に様々な


配慮を払わねはならなかったのです。



実験の時代背景 


こうした実験が行われた背景としてはそもそも、


マイケルソンの時代にエーテルという光の伝播媒質


が論じられていました。光が波であれば当然、


媒質は考えていく物です。ローレンツの理論


での変換は干渉のずれを収縮が打ち消す、


といった結果をもたらします。エーテルを想定した


マイケルソンの実験結果は様々な議論に繋がり


媒質としてのエーテルは現在、否定されています。


この有名な実験が広く認められ、マイケルソンは


アメリカ人として初のノーベル物理学賞を受けます。


近年、マイケルソンの実験手法は
別の成果をもたらしました。
2015年9月、2基のマイケルソン
干渉計を使い、直接的に重力波を
観測にかけたのです。
稀代の実験家の拘りが数十年後に
結実したと言えるでしょう。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/27_初回投稿
2023//07/01_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2020年9月時点での対応英訳)



Exprimentist Michelson


Albert Abraham Michelson if you write down all the names. He is an American of Jewish descent.


Michelson was particularly interested in optics in physics and invented the interferometer. .. After that, he realizes the famous interference experiment. Michaelson will continue to experiment with various researchers, but he uses the principle of light interference, and the longer the optical path, the higher the accuracy. There, Michaelson's equipment became a large-scale one, but as a result, it was exposed to various disturbances, and the fight against error continued. We had to pay attention to the ground on which the device was installed, micro-vibration, photosensitive devices, and so on.



Backglound of the Experiment


n the first place, the light propagation medium called ether was discussed in Michaelson's time as the background to these experiments. Of course, if the light is a wave, it is something to think about. The transformation in Lorenz's theory results in the contraction canceling out the deviation of the interference. Michelson's experimental results assuming ether have led to various discussions, and ether as a medium is currently denied. This famous experiment was widely recognized and Michaelson received the first American Nobel Prize in Physics.


In recent years, Michelson's experimental methods have yielded other results. In September 2015, Michelson used two Michelson interferometers to directly observe gravitational waves. It can be said that the insistence of a rare experimenter came to fruition decades later.