アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2024年02月 >>
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29    
最新記事
最新コメント

2024年02月29日

中嶋 貞雄
2/29改訂【日本で超電導現象の土台を作っていた人|低温電子物性】

こんにちはコウジです!
「中嶋 貞雄」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
中嶋 貞雄が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


超伝導
【スポンサーリンク】
【1923年6月4日生まれ ~ 2008年12月14日没】



 物理学者の中嶋貞雄


映画監督で似た名前の方が居ますが
映画監督の方は貞夫と書きます。
物理学者の中嶋さんは貞雄と書きます。
中嶋貞雄は私が昔使っていた量子力学での
教科書の著者でした。(発行元は岩波書店)


東京大学を卒業後に名古屋大で教授を務め、
東大物性研の所長を務めています。
超伝導現象の理論化に先鞭をつけた方です。


超電導の議論史の中で有名な
エピソードがありますのでご紹介します。



 バーディンと中嶋貞夫


中嶋貞雄は低温物理の物性に関わる研究をしていきました。
そんな中で
名古屋で会議が開かれ、くりこみ理論を応用した
低温電子物性の議論をします。
その話にアメリカのバーディーン
が着目し、
講演内容のコピーを中嶋に求めました。


その時点ではカメリー・オネスの発見した超伝導現象は
実験的に示されていま
したが理論的な説明はなされてません。
バーディーンはそれを作ろうとしていたのです。


個別電子のモデルはありましたがその電子が
集団励起していく姿は誰も想像していませんでした。


中嶋はきっと研究の方向性に自信を持った事でしょう。
半導体の大家と一緒に現象を追求したのです。
後に名古屋駅で
バーディンにコピーを渡します。


バーディンは帰国後に英訳し、共同研究者であるクーパー・
シュリーファーと共に
考察を進め、クーパー対のアイディア
を盛り込み、
BCS理論を完成させます。日本で無くアメリカ
で生まれた事が残念ですが、
そうした議論の端緒は
日本でも芽生えて
いたのです。



 科学技術と我々


私は科学技術は人類が共有する財産だと思っています。
それだから、
コピーを届けた中嶋貞雄の行為は正しかった
と感じています。これからの若い研究者達も知を共有して
育んで欲しいと思います。
そうした行為が、
ひいては日本の発展に
繋がっていくと信じています。
そして、世界人類の発展に繋がっていくと信じています。


最後は信念とか、
宗教っぽい話になりましたが
感動・情熱から繋がる話
ではないでしょうか。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/12/19_初版投稿
2024/02/29_改定投稿


纏めサイトTOP
舞台別のご紹介へ
時代別(順)のご紹介

日本関連のご紹介へ
東大関連のご紹介へ
熱統計関連のご紹介へ
量子力学関係のご紹介へ


AIでの考察(参考)


(2021年11月時点での対応英訳)



Physicist Sadao Nakajima


There is a movie director with a similar name, but I write that as Sadao. This is written as Sadao. Sadao Nakajima was the author of a textbook on quantum mechanics that I used to use. (Published by Iwanami Shoten) He is a professor at Nagoya University after graduating from the University of Tokyo, and is the director of the Institute for Solid State Physics of the University of Tokyo. He was a pioneer in theorizing superconducting phenomena. I would like to introduce a famous episode in the history of superconductivity discussions.



Birdin and Sadao Nakajima


Sadao Nakajima has been conducting research related to the physical properties of low temperature physics. Under such circumstances, a conference will be held in Nagoya to discuss low-temperature electronic properties applying the renormalization theory. Bardeen of the United States paid attention to the story and asked Nakajima for a copy of the lecture. At that time, the superconducting phenomenon discovered by Kamerlingh Ones was experimentally shown, but no theoretical explanation was given. Bardeen was trying to make it.


Nakajima must have been convinced of the direction of his research. He later gives a copy to Birdin at Nagoya Station. After returning to Japan, Bardeen will translate it into English, discuss it with his collaborator Cooper Schriefer, incorporate ideas for Cooper vs., and complete the BCS theory. It's a pity that I was born in the United States instead of Japan, but the beginning of such discussions was also budding in Japan.



Science and technology and us


I think science and technology are a property shared by humankind. Therefore, I feel that Sadao Nakajima's act of delivering the copy was correct. I hope that young researchers in the future will share their knowledge and nurture them. I believe that such actions will eventually lead to the development of Japan. And I believe that it will lead to the development of humankind in the world.


At the end, it was a belief or a religion-like story, but I think it is a story that connects with emotion and passion.


2024年02月28日

P・アンダーソン
2/28改訂【”More is different”と語った物性論の大家】

こんにちはコウジです!
「アンダーソン」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
アンダーソンが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


メゾスコピック系
【スポンサーリンク】
1923年12月13日生まれ ~ 2020年3月29日没



 物性論の大物、アンダーソン博士


その名の綴りは”Philip Warren Anderson”。


物性研究で有名なアンダーソン博士をご紹介します。


所属研究機関としてはハーバード大で学びベル研・ケンブリッジ大・
プリンストン大学
で勤務しました。米国や英国の綺羅星が並んでます。
素晴らしい研究人生です。


アンダーソンの研究で先ず思いつくものは
アンダーソン局在です。


無秩序系における電子の基本的な性格で、物性論の一つの基礎原理
になっています。
その理論では電子が実空間上で局在した状態は
非局在の状態と明らかに異なりエネルギー的に区別されます。



 アンダーソンと磁性


当たり前ですが、超電導の話で出てくる位相空間での局在と
明確に区別する必要があります。アンダーソン局在では電子が
空間的に局在するので、電気伝導について考えた時に
「固体中の電子が電導に寄与しなくなる」という事実が大事です。
導体が不導体に近いづいていくのです。


更にアンダーソンは、長さ・時間のスケールを変換する理論を
スケーリング理論として展開して
理論を発展させたのです。


また、磁性を紐解く解釈も行っています。こういった業績を評価され、
アンダーソンは
ノーベル物理学賞を受賞しています。
とある研究によると、論文引用の頻度から評価してアンダーソンは世界で
「最も創造的な物理学者」だという位置づけを得ています。


そしてアンダーソンは 東京大学から名誉博士号を贈られています。
その記念として
物性研で記念植樹されていたようですが、
赤坂・防衛省の近くでしょうか。柏でしょうか。
何時か見に行きたいと思います。


最後に、アンダーソンの
残した言葉を一つご紹介します。


”More is different”


アンダーソンは多様性の中から秩序を拾い出していました。皆さんも多様性に怯まないで下さい。寧ろ、多様性の中で
逍遥する心持で複雑怪奇の中で物事の本質を探って下さい。


数学的な手法に拘って、何度も検算を繰り返してみても良い
と思えます。数学はあくまで現実のモデル化なのですが、
本質に近いことが多いです。また、
別解を探してみると面白いかもしれません。

少しでも多くの手法で考え続けて下さい。私も励みます。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/11/03_初稿投稿
2024/02/28_改定投稿


舞台別のご紹介
時代別(順)のご紹介

アメリカ関連
イギリス関連
ケンブリッジのご紹介
東大関連のご紹介

熱統計関連のご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Dr. Anderson, a big figure in condensed matter theory


The spelling of the name is "Philip Warren Anderson". Introducing Dr. Anderson, who is famous for his research on physical properties. As his research institute, he studied at Harvard University and worked at Bell Labs, Cambridge University, and Princeton University. He is lined with Great Britain in the United States and Britain. He has a wonderful research life.


The first thing that comes to mind in Anderson's research is Anderson localization. It is the basic character of electrons in a chaotic system, and is one of the basic principles of condensed matter physics. According to the theory, the state in which electrons are localized in real space is clearly different from the delocalized state and is energetically distinguished.



Anderson and magnetism


Obviously, it must be clearly distinguished from the localization in topological space mentioned in the story of superconductivity. In Anderson localization, electrons are spatially localized, so the fact that "electrons in a solid no longer contribute to the Hall of Fame" is important when considering electrical conduction. The conductor is getting closer to the non-conductor.


In addition, Anderson developed his theory by developing the theory of transforming the scale of length and time as a scaling theory.


He also interprets magnetism. In recognition of his achievements, Anderson has won the Nobel Prize in Physics.


According to one study, Anderson is positioned as the "most creative physicist" in the world, judging by the frequency of his dissertation citations.


Anderson has received an honorary doctorate from the University of Tokyo. It seems that a commemorative tree was planted at the Institute for Solid State Physics as a memorial, but is it near the Akasaka Ministry of Defense? Is it Kashiwa? I would like to go see it someday.


Finally, Anderson's
I would like to introduce one word he left behind.


“More is different”


Anderson was picking order out of diversity. Don't be scared of diversity. Rather, explore the essence of things in a complex mystery with a feeling of wandering in diversity. I think it's okay to repeat the checkup many times, regardless of the mathematical method. Mathematics is just a modeling of reality, but it is often close to the essence. Also, it may be interesting to look for another solution. Keep thinking in as many ways as you can. I also encourage you.


2024年02月27日

南部 陽一郎
2/27改訂【自発的対称性の破れを使って素粒子を研究|大戦時はレーダー研所属】

こんにちはコウジです!
「南部 陽一郎」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
南部 陽一郎が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



対称性の破れ
【スポンサーリンク】
【1921年1月18日生まれ ~ 2015年7月5日没】

 戦時下の南部陽一郎


南部 陽一郎は第二次世界戦時に研究を志しました。
まさに時は戦時中。彼の頭脳は武器製造に貢献できる
と判断されて陸軍のレーダー研に配属されました。


戦時下ではどんな研究をしていたんでしょうね。
そして、どんな気持ちだったのでしょうね。


戦争の前後で東京帝国大学で研究を進めます。
戦後、南部 陽一郎は朝永 振一郎のグループで研究を続けます。
そして物質を構成する原子を考えていき、
今に続く素粒子論を完成させていきます。



南部陽一郎と自発的対称性


 南部陽一郎の新規性は真空概念の考え直しでしょう。


「特定の対称性をもった物理系がエネルギー


で色々な状態を考えた時に的に、より


安定な真空状態に自発的に落ち着く」のです。


BCS理論でのクーパ対生成はこの考え方


に従っています。電子対生成が安定なのです。


中間子をひもとき、素粒子間の総合作用を考え
、その形成に関して実験事実と、つじつまの合う
理論を展開していきます。


そうした研究を重ね南部陽一郎は「自発的対称性の破れ」で
ノーベル賞を受賞しています。


南部陽一郎の話の組み立てとしては、
強磁性体の自発磁化状態(外部からの磁場無しで
内部磁気モーメントを揃えている状態)が温度上昇に伴い
磁化を失う状態を考え、ラグラジアンを巧みに使い
素粒子に適用しているのです。


また彼は量子色力学や紐理論でも成果を上げています。



そういえば、


南部洋一郎は私が学生時代に使っていた教科書の著者でした。
その時点で米国の国籍を得ていた記憶
があり、
研究者に対しての日本での待遇に疑問を抱いたものです。


私は理論物理学の研究室に所属して居ましたが、
卒業後も研究を続けて研究者として身を立てている仲間は
今では数えるほどしかいません。多くは私のように、
民間の会社に所属して物理学とは全く関係のない業務に従事しています。


少子化という流れもありますが名誉職としての教授に対して
日本社会の扱いは低いとも感じていました。
狭き門である事に加えて扱いが低いのです。
そして、南部陽一郎のような優秀な頭脳は
どんどん海外に流出していきます。 


それだから


南部 陽一郎がアメリカに帰化した気持ちは


少しは理解出来る気がするのです。




以上、間違い・ご意見は
以下アドレス迄お願いします。
適時、返信改定をします。


【スポンサーリンク】


nowkouji226@gmail.com


2020/09/10_初版投稿
2024/02/27_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
量子力学関係
AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


【2021年11月時点での対応英訳】



Yoichiro Nambu during the war


Yoichiro Nambu aspired to his research during World War II. However, the time is during the war. Judging that his brain could contribute to the manufacture of weapons, he was assigned to the Army's Radar Lab. What kind of research did he do during the war? And what was your feeling? Before and after the war, he pursued research at the University of Tokyo. After the war, Yoichiro Nambu continued his research with Shinichiro Tomonaga's group. And he thinks about the atoms that make up matter, and completes the theory of elementary particles that continues to this day.



Spontaneous symmetry with Yoichiro Nambu


Yoichiro Nambu's novelty would be a rethinking of the vacuum concept. ・ "When a physical system with a specific symmetry considers various states with energy, it spontaneously settles into a more stable vacuum state." Cooper pair production in BCS theory follows this idea. The electron pair generation is stable.


We will consider the overall action between elementary particles when using mesons, and develop a theory that is consistent with experimental facts regarding the formation of mesons. After repeating such research, Yoichiro Nambu won the Nobel Prize for "spontaneous symmetry breaking". As for the construction of Yoichiro Nanbu's story, considering the state in which the spontaneous magnetization state of the ferromagnet (the state in which the internal magnetic moments are aligned without an external magnetic field) loses magnetization as the temperature rises, the Lagradian is skillfully used. It is applied to particles. He has also been successful in quantum chromodynamics and string theory.



by the way,


Yoichiro Nanbu was the author of the textbook I used when I was a student. I remember he had American citizenship at that time
I was skeptical about the treatment of researchers in Japan. I belonged to the laboratory of theoretical physics, but now there are only a few colleagues who continue their research after graduation and become researchers. Many, like me, belong to a private company and engage in work that has nothing to do with physics.


Although there is a trend toward a declining birthrate, I also felt that the treatment of Japanese society was low for professors as honorary positions. In addition to being a narrow gate, it is not easy to handle.


that is why


I feel that I can understand the feeling that Yoichiro Nambu was naturalized in the United States.


2024年02月26日

竹内均
2/26改訂【科学の啓蒙活動を続けた初代Newton編集長】

こんにちはコウジです!
「竹内均」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
竹内均が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



科学雑誌NEWTON
【スポンサーリンク】
【1920年7月2日生まれ ~ 2004年4月20日没】


 竹内均のメガネ


私の中での竹内均さんのイメージは


特徴的な眼鏡かけたTVコメンテーターです。


実際、文筆活動中もあんな感じだったそうです。
沢山本を出していますが、作業はテープレコーダ
への録音一辺倒です。文章に起こす秘書さんが居て
一緒に作業します。独特の書き方ですね。




それでもお人柄から悪い印象は持ちません。
人から好かれる性格ですね。竹内均は自分に厳しくて
子供に優しい人だったと言われています。


独特の喋り口調が印象的で通り易い声で
聴きやすいリズムで人に語りかけていました。


子供向けの伝記を沢山、監修していて
キューリー夫人伝」とか「エジソン伝」とかの表紙に
小さく竹内均の名前が入っていたりしました。


そんな啓蒙活動を考え続けて初代NEWTON編集長
として日本の一般向け教育書を作っていきます。

ちなみに、
非常に名前が似ていると思える方で
竹内薫さん
という方が居まして、私は時々混同してしまいます。
失礼。。。



 民衆と竹内均


物理学の理解には個人の勉強も必要ですが、
学問の性質上、万物を人がどう考えるか
(モデル化していき理解するか)
という論点が欠かせません。


個人が理解するという考え方と同時に日本人が、
そして人類が理解していくというプロセスが欠かせません。


大衆にも理解出来る物理モデルが作れた時に理論は出来上がる
のです。ギブスの文章を書くときに協調しましたが
「数学者と物理学者の視点は異なる」のです。


数学は論理として完結しているモデルであれば
現実と対応が付かないでも問題がないです。
そんなものです。


物理学は絶えず現実と対応する理論を作らないと
意味がありません。


竹内均はそういった民衆との対話をとても大事にしていました。

 竹内均と地球物理学


竹内均の仕事を考えていくと寺田寅彦の系譜です。
具体的には直接の講義・指導を受けていない孫弟子
にあたります。


地球物理学に関心を持って、特にプレートテクトニクス理論
を広く広めています。実際に地面が少しずつ動いていく様子
を伝える際に物理学者として地球の内部構造や
境界面での様子を伝えたのです。
深い知見を持って伝えたのです。


そして何より、

竹内均さんの独特の「優しい言葉」で伝えたのです。


【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2021/07/04_初版投稿
2024/02/26_原稿改定


舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係
量子力学関係
AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Hitoshi Takeuchi's glasses


The image of Hitoshi Takeuchi in me is

It is a commentator with characteristic glasses.

In fact, he was like that during his writing activities.

I have published a lot of books, but the work is a tape recorder

It's all about recording to. There is a secretary who wakes up in the text

Work together It's a unique way of writing.

 

Still, I don't have a bad impression from my personality. It's a personality that people like. Hitoshi Takeuchi is said to have been a strict and child-friendly person. His unique speaking tone was impressive, and he spoke to people with an easy-to-listen voice and an easy-to-listen rhythm. I supervised a lot of biographies for children, and there was a small name of Hitoshi Takeuchi on the cover of "Mrs. Curie's biography" and "Edison's biography". Continuing to think about such enlightenment activities, as the first editor-in-chief of NEWTON, I will make educational books for the general public in Japan as well.

People and Hitoshi Takeuchi


Understanding physics requires individual study, but due to the nature of scholarship, the issue of how people think of everything (modeling and understanding) is indispensable. At the same time as the idea of ​​individual understanding, the process of understanding by the Japanese and humankind is indispensable. The theory is completed when a physical model that can be understood by the general public is created. I collaborated when writing Gibbs' writing, but "the perspectives of mathematicians and physicists are different." If mathematics is a model that is complete as logic, there is no problem even if it does not correspond to reality. That's it. Physics is meaningless without constantly creating a theory that corresponds to reality. Hitoshi Takeuchi cherished such dialogue with the people.

Hitoshi Takeuchi and Geophysics


Considering Hitoshi Takeuchi's achievements, it is the genealogy of Torahiko Terada. Specifically, he is his grandchild who has not received direct lectures or guidance. He has an interest in geophysics and is particularly widespread in plate tectonics theory. As a physicist, he told us about the internal structure and boundaries of the Earth when he actually told us how the ground was moving little by little. He conveyed it with deep knowledge. And above all, I conveyed it with Hitoshi Takeuchi's unique "gentle words."




2024年02月25日

久保 亮五
2/25改訂【線形応答理論を使ったフーリエ変換NMR理論を展開】

こんにちはコウジです!
「久保 亮五」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
久保 亮五が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


デジタルフーリエ変換
【スポンサーリンク】
【1920年2月15日生まれ ~ 1995年3月31没】



物理学者久保亮五


久保亮五と同名(漢字違い)の別人が居ますが、
以下記載は物理学者に関する文章で、ここでの
久保亮五は統計力学で
私が使った教科書の著者です。


私の指導教官は久保先生の講義を受けていたそうです。
そんな時代の
物理学者についての記載です。


久保亮五は学者肌の家で育ち、お父様の仕事で
子供時代には
台湾で生活しています。高校まで
台湾で過ごし、
帰国後に旧制高校へ入学、
東大へ入学、その後に助手、助教授、教授をつとめました。



久保亮五の業績 


久保亮五の仕事で何より特筆すべきは物性論での成果です。
ゴムの弾性に関する研究と、線形応答理論を使った
フーリエ変換NMRへの応用研究があげられます。


久保亮五の基礎理論を構築したNMRの概説を
一般の人向けに記し
てみたい
と思います。先ず
フーリエ変換理論は端的には
「時系列の波形を周波数を基準に考えた
波形に変換し
て解析する技術」です。


そうした「数学的に確立されているフーリエ変換」
を理論的基礎として電子回路で応用されています。
離散化された電気信号に対して回路上で
実質的に
マトリクス変換を加えます。



久保亮五とNMR 


診察で実際にNMRを使った経験のある人はNMRの中で
測定を受けている時を思い出してみてください。
頭の中を調べる時などに、強磁場を人間の頭部に
二次元的に与えます。
その時に大きな音がしますが、
音がしている時に「時系列でインパルス的な情報」
機械的に処理して「周波数応答に関する情報」を得ます。


作業として、吸収スペクトルを測定することで
各スピンの情報を集め、そこから
最終的には
断面の画像を処理します。


最終的な写真で見える画像は、
これらの処理の結果です。


そして今、久保亮五はこの世に居ませんが、
その仕事を応用したNMRは世界中の病院で
患者達の情報を集めています。きっと今、
この瞬間も医療行為の中
NMRの機械が動い
ています。


【参考:東大理学部での退官当時の広報




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/11_初稿投稿
2024/02/25‗改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介へ
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介へ
熱統計関連のご紹介へ


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Physicist Ryogo Kubo


There is another person with the same name (different Chinese characters) as Ryogo Kubo, but the following is a sentence about a physicist, and Ryogo Kubo here is the author of the textbook I used in statistical mechanics. My supervisor took a lecture. This is a description of physicists of that era. Ryogo Kubo grew up in a scholarly-skinned house and lived in Taiwan as his childhood for his father's work. He spent his time in Taiwan until high school, and after returning to Japan he entered a high school, the University of Tokyo, and then an assistant, associate professor, and professor.



Achievements of Ryogo Kubo


The most notable thing about Ryogo Kubo's work is the result of condensed matter theory. His research on the elasticity of rubber and his applied research to Fourier transform NMR using linear response theory can be mentioned. I would like to write an overview of NMR that Ryogo Kubo thought about for the general public. First of all, the Fourier transform theory is simply "a technology that converts a time-series waveform into a waveform that is considered based on frequency and analyzes it." Such "mathematical established Fourier transform" is applied in electronic circuits as a theoretical basis. Substantially matrix transformation is applied on the circuit to the discretized electrical signal.



Ryogo Kubo and NMR


If you have actually used NMR in a medical examination, remember when you were taking measurements in it. A strong magnetic field is applied to the human head two-dimensionally when examining the inside of the head. There is a loud noise at that time, but the impulse-like information is mechanically processed in that time series to obtain information on the frequency response. As a result, the information of each spin is collected by measuring the absorption spectrum, and finally the image of the cross section is processed from there. The image you see in the final photo is the result of these processes.


And now, Ryogo Kubo is not in the world, but NMR, which applies his work, collects information on patients at hospitals around the world. I'm sure I'm collecting this moment as well.


2024年02月24日

アイザック・アシモフ
2/24改訂【「ロボット3原則」で有名なSF作家】

こんにちはコウジです!
「アシモフ」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
アシモフが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


ロボット戦士
【スポンサーリンク】
【1920年1月2日 ~ 1992年4月6日】



アシモフの人物像


今回、少し物理から離れます。アシモフは


「ロボット3原則」で有名なSF作家です。


具体的に3原則とは、


第1条:ロボットは人間に危害を与えてはならない。
また、その危険を看過することによって人間に危害を及ぼしてはならない.


第2条:ロボットは人間に与えられた命令に服従しなければならない。


3条:ロボットは前掲第1条及び第2条に反する恐れがない限り、
自己を守らなければならない。


となります。


悪い人が善人を攻撃しなさいと命じたらどうなるか?
と考えていくと議論のネタになるのですが、
そうした考察を現代の我々は当然していかなければ
いけない段階に来ています。
鉄腕アトムも色々と悩んでいましたよね。


最近のウクライナ紛争ではドローンが強力な兵器となり、
白兵戦での戦局に影響を与えています。


平和利用として地雷探査ロボが活躍していますが、
殺傷能力を持ったロボットが戦う日も想定できます。
ロボットの動きは性格で素早いので殺傷能力が
どこまで期待できるのでしょう。怖いことです。


何故ならロボットに殺されていく貧しい国の人々が
想像出来るからです。尚更無念な死が現実として
迫ってきているのです。


過去に、人類は核兵器を具現化して
暗黒の歴史を作りました。悲劇は繰返しありません。


実際のアシモフの研究分野としては生化学なのですが、
作家としての顔
の方が有名ですね。


また調べてみるとアシモフはロシア生まれでした。
リニアモーターカー
が走る今日の世界を見せてあげたいと、
個人的には考えてしまいます。また、もはやロボットも日常的ですよね。


そんな未来をアシモフは20世紀の初めにに予見していました。


20世紀の知見で機械化が進む未来を描き、進んだら
どうなるだろうと考えますが、
好ましい方向性を指摘して
大衆に問いかける。
つまり、科学の夢を投げかけていたのです。



アシモフの作家デビュー


アシモフは1938年に初めてのSF作品を雑誌に持ちかけて認められ、
1939年から作家デビュー
しています。


才能を認めるアメリカっぽいですね。
この年にコロンビア大学を卒業して大学院に進みます。


所謂、ロボット三原則などを提唱していますが、
時代は第二次大戦に向かう時代でアシモフは学校を休学したりしています。


科学が知識を集めるスピードの速さにアシモフは驚愕していて、
社会が叡智を集結
する事を求めていました。
相変わらず分断
している世界をどう見るのでしょうか。



意外な結末


そして、意外な最後なのですが、アシモフは


1992年にHIV感染が元でこの世を去ってます。


心臓バイパス手術の時に使用された
輸血血液が感染源のようです。


本当に色々と経験してきた人生だったと思います。



【スポンサーリンク】



以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。


nowkouji226@gmail.com


2020/08/24_初回投稿
2024/02/24_改定投稿



舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Asimov's portrait


This time, I'm a little away from physics. Asimov is a science fiction writer famous for "Three Laws of Robotics". Biochemistry is the actual research field of Asimov, but his face as a writer is more famous. When I looked it up, Asimov was born in Russia. He personally wants to show us the world of today's maglev trains. Also, robots are no longer commonplace. Asimov foresaw such a future in the 20th century. He envisions a future of mechanization with his knowledge of the 20th century, and wonders what will happen if it progresses, but he points out a favorable direction and asks the public. In short, he was throwing a dream of science.



Asimov's writer debut


Asimov was recognized for his first science fiction work in a magazine in 1938, and has made his debut as a writer since 1939. He's like America, who recognizes his talent. He graduated from Columbia University this year and went on to graduate school.


He advocates the so-called Three Laws of Robotics, but Asimov is taking a leave of absence from school in the era of World War II. Asimov was amazed at the speed at which science gathered knowledge, and he wanted society to gather wisdom. How does he see the world that is still divided?



Unexpected ending


And, surprisingly, Asimov died in 1992 due to HIV infection. He seems to be infected with the transfused blood used during heart bypass surgery. I think he really had a lot of experience in his life.

2024年02月23日

R・P・ファインマン
2/23改訂【天才|経路積分やファインマンダイヤグラムを考案】

こんにちはコウジです!
「ファインマン」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
ファインマンが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


経路積分
【スポンサーリンク】
【1918年5月11日 〜1988年2月15日】



アメリカのファインマン


有名な教科書の著者で、私が学生時代からその著書は
日本で使われていました。
世界中でその教科書は使われています。
またファインマンは量子電磁気学の業績で
朝永 振一郎と共にノーベルを受賞しています。。


具体的に、ファインマンの名を聞いて
真っ先に
思い出す業績は経路積分です。
数学的な定式化が驚異的なのです。
【参考_Wikipedeiaの記載:経路積分


その発想はとてもユニークだとも言えます。



経路積分の考え方


二つの経路を初めに考えて、其々からの寄与を
考えていく時に拡張が出来て二つ、三つ、四つ、、、
そして無限大の経路。と経路を
無限大に広げていくのです。


もう少し具体的にファインマンの考えを紹介しますと、
「ダブルスリットの実験を拡張した場合に、
無限の経路を想定すると何も無い空間
を考える事になっていく」という考え方なのです。


この経路に関するファインマンの考え方には数学的な難点
も指摘されているようですが物理の世界では非常に面白い
考えであり、考え進めていきたい視点です。


また、素粒子の反応を模式化したファインマンダイアグラムは
視覚的に、直感的に秀逸です。本当に天才の技に見えました。


業績の話が先行しましたが、最後に
生い立ち,人つながりの話を致します。


ファインマンはユダヤ系なので苦労を強いられています。
ユダヤ人枠で大学に入れなかったりした時代もありました。
後にMITやプリンストン大学で研究を進めます。


電気力学の量子論についてのゼミをプリンストン大学で
行うことになった時には、ゼミの話を聞きつけて
ユージン・ウィグナー、ヘンリー・ノリス・ラッセル、
フォン・ノイマンE・パウリアインシュタイン
が参加していたそうです。天才大集合ですね。


そして、ファインマンはアインシュタインと共に
原爆開発の計画であるマンハッタン計画に参画しています。その中で、率直に意見を述べたメモが
没後の2018年にサザビースで落札されています。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/09/01_初版投稿
2024/02/24_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介
電磁気関係
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



American Feynman


He is the author of a well-known textbook, and his book has been available in Japan since I was a student. The textbook is used all over the world. He has won the Nobel Prize with Shinichiro Tomonaga for his achievements in quantum electrodynamics. .. Specifically, the first achievement that comes to mind when I hear Feynman's name is path integral.


The mathematical formulation is amazing.
[Reference_Wikipedeia description: Path integral]



Concept of path integral


Two, three, four, ... infinite routes that can be expanded when considering the two routes first and then the contributions from each. And expand the route to infinity. To introduce Feynman's idea a little more concretely, the idea is that if we expand the double-slit experiment, we will think of an empty space. It seems that Feynman's way of thinking about this path has some mathematical difficulties, but it is a very interesting idea in the world of physics, and I would like to continue thinking about it. In addition, the Feynman diagram, which models the reaction of elementary particles, is visually and intuitively excellent. It really looked like a genius.


I talked about achievements first, but at the end I will talk about how I grew up and how people connect. Feynman is struggling because he is Jewish. There was a time when he couldn't enter university because of the Jewish quota, but he pursued research at MIT and Princeton University. When it was decided to hold a seminar on quantum theory of electromechanics at Princeton University, Eugene Wigner, Henry Norris Russell, von Neumann, E. Pauli, and Einstein were attending the seminar. is. Feynman and Einstein are participating in the Manhattan Project, a plan to develop the atomic bomb.
Among them, a memo that frankly expressed his opinion
It was sold at Sotheby's in 2018 after his death.


2024年02月22日

D・J・ボーム
_2/22改訂【マンハッタン計画に参画しボーム解釈を提唱】

こんにちはコウジです!
「D・J・ボーム」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
D・J・ボームが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

ロシア革命
【スポンサーリンク】
【1917年12月20日 ~ 1992年10月27日】



 ペンシルバニアに生まれたボーム


細かく記載すると、その名は、


デヴィッド・ジョーゼフ・ボーム_


David Joseph Bohm、ヘブライ語表記


ではדייוויד ג'וֹזף בוֹהם, דוד יוֹסף בוֹהם。


偶然ですが、ボームはロシア革命の年に生まれてます。
閉塞的な社会が打破された様子を新大陸で知ったのです。


そんな時代背景もボームの人生に影響を残しているのでは
ないでしょうか。ハンガリー系‎‎ユダヤ人の父と
リトアニア系ユダヤ人の母の間に
ペンシルベニア州で生まれ、
UCB(カリフォルニア州立大学バークレー校)
オッペンハイマーの教えを受けます。


そんな時期に学生時代に当時の知人の影響で
思想的
に影響を受け、異なった社会モデルを持つ
急進的な主義の考えをボームは抱きます。
後にはその為にFBIにマークされます。



 マンハッタン計画とボーム


第2次世界対戦の時にはボームは師であるオッペンハイマー
に従いマンハッタン計画
に参加します。その計画は
陽子と重陽子の
衝突研究を進め、濃縮ウランを作り原爆を製造
する計画で実行に移されました。


戦後、ボームはプリンストン大学でアインシュタイン
と共に働いていましたが、
いわゆるマッカーシズム(政治的な圧力)
にあい、
プリンストン大学を追われます。


社会主義者としての過去の活動を当局に問題視されたのです。
アインシュタイン
ボームに彼の助手として大学に残る事を勧めました。


ところが、その願いは叶わずにボームはブラジルの
サンパウロ大学に移りました。少し島流し的な印象を持ってしまいます。
菅原道真公の左遷も思い起こされます。


研究者としてボームは幾多の成果を残しています。
先ず
量子力学の解釈の面でボーム解釈。
EPRパラドックスの確認。そして、電磁気学でのA-B効果です。
それぞれ問題の本質をとらえようと考え続けていたように思えます。


こうした業績で、その分野の考えに
今でも残る影響を与えています。


【スポンサーリンク】



間違い・ご意見は
以下のアドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/31_初稿投稿
2024/02/22_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介
電磁気関係
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】



Baume born in Pennsylvania


To be precise, its name is David Joseph Bohm, in Hebrew notation דייוויד ג'וֹזף בוֹהם, דוד יוֹסף בוֹהם.


Coincidentally, Baume was born in the year of the Russian Revolution. I think that such a historical background has also influenced Baume's life. Born in Pennsylvania to a Hungarian Jewish father and a Lithuanian Jewish mother, he is taught by Oppenheimer at the UCB (University of California, Berkeley). At that time, Baume embraced the idea of ​​radicalism, which was ideologically influenced by his acquaintances at the time when he was a student and had a different social model. He was later marked by the FBI for that.



Manhattan Project and Baume


During World War II, Baume follows his teacher Oppenheimer to participate in the Manhattan Project. The plan was put into practice with a plan to produce enriched uranium and produce an atomic bomb by proceeding with research on the collision of protons and deuterium. After the war, Baume worked with Einstein at Princeton University, but was ousted from Princeton University due to so-called McCarthyism. His past activities as a socialist were questioned by the authorities. Einstein advised Baume to stay in college as his assistant. However, that wish did not come true and Baume moved to the University of Sao Paulo in Brazil.


As a researcher, Baume has made many achievements. He first interprets Baume in terms of the interpretation of quantum mechanics. Proposal of the EPR paradox. And the AB effect in electromagnetism. It seems that each of them kept trying to capture the essence of the problem. These achievements still have an impact on his thinking in the field.

2024年02月21日

矢野 健太郎
2/21改訂【数々の数学書を監修|「解法のテクニック」の著者】

「矢野 健太郎」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
矢野 健太郎が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


解法のテクニック
【スポンサーリンク】
【1912年3月1日生まれ ~ 1993年12月25日没】



矢野健太郎の多彩な活躍


矢野健太郎は私が使っていた数学の教科書の著者でした。
同名の方で漫画家の「矢野健太郎」と
サッカー選手の「矢野健太郎」が居ますが、
本稿は数学者の矢野健太郎に関する原稿です。


因みに、名前の「矢野」に関するエピソードとして
有名なものがあります。外人との雑談
をする中で
「矢野」って英語でいえばどんな表現?
と聞かれた際に矢野さんは当意即妙で
矢野さんは次のように答えました。


「矢」=「Vector」、「野(野原)」=「Field」。


だから「矢野」って「ベクトル場」ですね。


そう答えたそうです。当然、外人は大喜び。


専門は幾何学関係か解析学関係だったかと。


彫刻家の子として生まれ東京帝大で学びます。



矢野健太郎とパリ大学


矢野健太郎の小学生時代にアインシュタインが来日し
健太郎
は刺激を受けました。また、
帝大の山内恭彦先生から
物理学の理解には
代数幾何学が必要だと教えを受けました。


物理現象のモデル化の有用性を感じた筈です。
その後、矢野はカルタン先生の下で学ぶべく
パリ大学
留学します。パリ大学で纏めた博士論文は
射影接続空間に
関する論文でした。


この頃から統一場理論にも関心を持ちます。



 矢野健太郎とアインシュタイン


戦後にはプリンストン高等研究所で微分幾何学の研究
をしていき、同時期に在席していたアインシュタイン
交流
を持ちます。奥様と一緒にアインシュタイン
写った写真は
大事にしていて、家宝としたそうです。


 

その他、矢野健太郎の著作は多岐に渡り、


受験参考書の定番だった(今でも定番)


解法のテクニック」は矢野健太郎の著作です。


また、アイザックアシモフポアンカレアインシュタイン
書物を日本に紹介する際に監修をしたりしました。


私や皆さんが知った情報も矢野健太郎
の仕事かも知れませんね。そんな、


矢野健太郎はバイオリンが好きな静かな人でした。


安らかな印象を持ち続けたいと思います。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/11/12_初稿投稿
2024/02/21‗改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】



Various activities of Kentaro Yano


Kentaro Yano was the author of the textbook I was using. There is a manga artist "Kentaro Yano" and a soccer player "Kentaro Yano" who have the same name, but this article is about the mathematician Kentaro Yano. By the way, there is a famous episode about the name "Yano". What kind of expression is "Yano" in English while chatting with foreigners? When asked, Mr. Yano was selfish
"Arrow" = "Vector", "Field (field)" = "Field", so "Yano" is a "vector field". I heard that he answered. Naturally, foreigners are overjoyed. Was my specialty related to geometry or analysis? He was born as a child of a sculptor and studied at the University of Tokyo.



Kentaro Yano and the University of Paris


Kentaro Yano was inspired by Einstein's visit to Japan when he was in elementary school. Also, Professor Yasuhiko Yamanouchi of Imperial University taught me that algebraic geometry is necessary to understand physics. It seems that he found the usefulness of modeling physical phenomena. After that, Yano will study abroad at the University of Paris to study under Professor Cartan. His dissertation he compiled was a dissertation on the projective connection space. From this time on, he was also interested in unified field theory.



Kentaro Yano and Einstein


After the war, he studied differential geometry at the Princeton Institute for Advanced Study and interacted with Einstein, who was present at the same time. He cherished the photo of Einstein with his wife and made it a heirloom.


Kentaro Yano has a wide variety of authors, and Kentaro Yano's "Solution Technique", which was a staple of examination reference books. He also supervised the introduction of Isaac Asimov, Poincaré and Einstein's books to Japan. The information that I and everyone knew may be Kentaro Yano's work. Kentaro Yano was a quiet person who liked the violin. He wants to keep a peaceful impression.


2024年02月20日

武谷三男 
2/20改訂【利益・便益と それに伴う被曝の有害さ・リスクを考察|三段階理論での現象把握を考察】

こんにちはコウジです!
「武谷三男」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
武谷三男が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


原爆の秘密






【スポンサーリンク】
【1911年10月2日生まれ - 2000年4月22日没】

武谷三男の研究基盤


武谷三男は京大理学部で理論物理学の基礎を修めました。

武谷三男の主な関心は原子核の振る舞いや素粒子論です。

湯川秀樹や坂田昌一と共同で研究を進めていった時代の人です。
反ファシズムの立場だった武谷は原子核関連の開発と
発展についての発言で
政治的ともいえる言葉を
残しています。
原爆や水爆の
開発に対しての是非について発言しています。

また会津に亡命していたロシア人の奥様との縁
にも興味を覚えます。まさかあの人と、
とかいった話が出てきそうです。

いずれにしても武谷は未だ曖昧だった原子核に対して
形を与えていった時代の人なのです。


一つ一つ現象を見ていき、定式化していったのです。
何より武谷は独自の方法論を駆使したのです。

武谷の三段階理論

ここで、方法論として三段階理論と呼ばれた
論法を用いて武谷は論拠としていましたので
ご紹介します。
(以下ウィキペディアから引用)

@現象論的段階
量子力学の範疇に入る現象で
「測定にかかるもの」を
そのまま記述する
(第一)段階

A実体論的段階
上記現象の方程式を作る前に、
現象論的段階に出てこない実体
(模型、粒子など)を知る
(場合によっては新たに導入する)
(第二)段階

B本質論的段階
現象論的段階で記述される現象を、
実体論的段階で導入した実体も含めて、
方程式など主として
数学的手法で記述する
(第三)段階
【引用ここまで】

この武谷の理論は測定方法の面から考えたときに、

「観測問題の制限」を意識した理論だと言えるでしょう。

その時代から数十年遡って思い返せば、
量子力学創設の時代以前にはすべての段階
意識化されていなかったのです。


また、米国のビキニ環礁での水爆実験に際し、
問題点を掘り下げて定量的な指標を考察して
放射線の許容量(がまん量とも表現しました)
議論していきました。

具体的に「急性の放射線障害」と「長期的に蓄積される効果」
を明確に区別して
議論すべきだと主張していきました。
昨今の福島原発での処理水放出でこうした議論が
生かされているでしょうか。一行の価値ありです。


当時、立教大学の教授であった武谷は、
放射線防護の概念を考え直し、「自然科学的な対象の概念」
に留まらず、
放射線利用の「利益・便益と
それに伴う被曝の有害さ・
リスク
ともいえる社会的概念」
として
考え直した功績も指摘されています。


〆最後に〆


【スポンサーリンク】
以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2022/01/01_初回投稿
2024/02/20_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
京大関連のご紹介
力学関係のご紹介
量子力学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

【2022年1月時点での対応英訳】

 Base of Taketani


Taketani Mitsuo studied the basics of theoretical physics

at the Faculty of Science, Kyoto University.

His main interests are nuclear behavior and particle physics.

He is in collaboration with Hideki Yukawa and Shoichi Sakata

He is a man of the era when he was advancing research.
T
aketani, who was in an anti-fascist position

Remarks on nuclear-related development and development

He leaves behind words that can be called political.

He is about the pros and cons of atomic and hydrogen bombs.

Also, a Russian wife who was in exile in Aizu

I am also interested in the relationship with. No way, with that person

There seems to be a story like that.

In any case, Takeya was still ambiguous

He was a man of the era that gave shape to the atomic nucleus.

He looked at the phenomena one by one and formulated them.

Above all, Takeya established a methodology.

Three step of Taketani


Here, as a methodology, a three-step theory

Because Takeya used the reasoning called

I will introduce you. (Quoted from Wikipedia below)

@ Phenomenon stage
A phenomenon that falls into the category of quantum mechanics
"What is measured"
Describe as it is
(the first stage

A Realistic stage
Before making the equation of the above phenomenon
Entities that do not appear in the phenomenological stage
Know (models, particles, etc.)
(In some cases, newly introduced)
(Second) stage

B Essentialist stage
Phenomena described at the phenomenological stage,
Including the substance introduced at the realist stage,
Mainly equations etc.
Describe with mathematical methods
(Third) stage
[Quote so far]

This Takeya's theory is based on the measurement method.

It can be said that the theory is conscious of the limitation of the observation problem.

Looking back decades from that era,

All stages before the era of quantum mechanics

Was not conscious.

Also, during a hydrogen bomb test at Bikini Atoll in the United States,

Dig into the problem and consider quantitative indicators

Radiation allowance (also referred to as the amount of radiation)

I continued to discuss.

Specifically, "acute radiation injury"

A clear distinction between "long-term accumulated effects"

I insisted that it should be discussed.

Takeya, who was a professor at Rikkyo University at that time,

Rethinking the concept of radiation protection,

Beyond the "concept of natural science objects"

"Benefits / benefits of radiation use and the harmful effects of radiation exposure /

As a "social concept that can be called a risk"

His rethinking achievements have also been pointed out.

2024年02月19日

坂田 昌一
2/19改訂【相互作用の過程を議論|電磁場の量子化を行った先駆者】

こんにちはコウジです!
「坂田 昌一」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
坂田 昌一が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

星新一ショートショート
【スポンサーリンク】
【1911年1月18日生まれ ~ 1970年10月16日没】



坂田晶一の生きた時代 


坂田昌一は素粒子を研究した物理学者です。


湯川秀樹朝永一郎らと同じ時代を生き、議論を交わし、
物理学会を切り開きました。
京都帝国大学を卒業していて
名古屋帝国大学で教えています。


また意外なご縁なのですが、坂田昌一の奥様の信子さんは
SF作家・星新一の従兄弟になのです。



坂田モデルの坂田博士 


坂田昌一の理論物理学での業績は「電磁場の量子化」
に関するものが
あげられます。質点の議論が進んで、
相互作用の過程を議論していったのです。


その当時は場を量子化する時に電子の
「質量が発散する」現象が
問題でした。
その問題に対して坂田昌一は
中間子の概念を使って問題解決に挑みます。


最終的には、この量子電磁力学での問題は
朝永振一郎がくりこみ理論使い説明し解決します。
また
坂田昌一は湯川秀樹の中間子に
関する論文で
協同執筆者を務めています。坂田さんって
そんな仕事をしていった人なんですね。


また、坂田昌一の業績としては、
陽子・中性子・ラムダ粒子を基本粒子と考え、
その構成に対する「坂田モデル」
を提唱した点が、
特筆すべきでしょう。その坂田モデルは
大貫 義郎益川敏英、小林誠
ら次の理論的な土台となり
議論が進んだのです。
それぞれ次世代の議論へと繋がった、確かな成果です。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/12_初稿投稿
2024/02/19_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
京大関連のご紹介
力学関係のご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



The time when Dr. Sakata lived


Shoichi Sakata is a physicist who studied elementary particles. He lived in the same era as Hideki Yukawa and Ichiro Tomonaga, exchanged discussions, and opened the Physical Society of Japan.


He is a graduate of Kyoto Imperial University and teaches at Nagoya Imperial University. In addition, Shoichi Sakata's wife, Nobuko, is a cousin of science fiction writer Shinichi Hoshi.



Dr. Sakata of Sakata model


Shoichi Sakata's achievements in theoretical physics are related to the quantization of electromagnetic fields. At that time, the problem was that the mass of the electron diverged when the field was quantized.


Shoichi Sakata tries to solve the problem by using the concept of mesons. Finally, this problem in quantum electrodynamics will be explained by Shinichiro Tomonaga using renormalization theory. Shoichi Sakata is also a co-author of a paper on Hideki Yukawa's mesons.


It should be noted that Shoichi Sakata's achievements are that he considered protons, neutrons, and lambda particles as elementary particles, and proposed a "Sakata model" for their composition. The Sakata model became the next theoretical foundation for Yoshiro Onuki, Toshihide Maskawa, and Makoto Kobayashi, and discussions proceeded. These are solid results that have led to discussions for the next generation.


2024年02月18日

ニコライ・N・ボゴリューボフ
2/18改訂【固有値を使い定常状態を表現したロシア人】

こんにちはコウジです!
「ボゴリューボフ」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
ボゴリューボフが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


カピッツァの手紙
【スポンサーリンク】
【1909年8月21日 ~ 1992年2月13日】



ロシアの物理学者


名前から分かるかとおもいますが、


ボゴリューボフはロシアの物理学者です。


本稿を記載するにあたり改めて
ボゴリューボフ
の「人となり」
を調べてみましたが
伝わっていません。
ボゴリューコフの名で検索をかけると
私のブログが上位に出てきてしまう有様です。


ボゴリューコフは20世紀初頭の生まれなので
革命前後のソビエト連邦で青年期を迎え、
閉鎖的な学会環境で研究を進めていた
考えるべきなのでしょう。


因みに、プランクメダルを受けていますので
ドイツ関係の画像を使っています。



ボゴリューボフの業績


何よりも、数学的にボゴリューボフ変換と呼ばれる
考えを打ち出し
行列形式で表される
状態遷移を角化する事で表現していると言えるでしょう。


別言すれば、観測にかかる定常状態を数学手法を使って作りだしています。つまり、数学的にいう固有値問題に帰着させて定常的な状態を表現しているのです。数学的な作業をしてみた結果がどういった現象に対応しているか物理的に説明する事が出来るのです。 


この定常状態を使い、ボゴリューボフは現実にヘリウムの超流動状態を表しました。ボーズ粒子の超流動をボゴリューボフ変換で示しフェルミ粒子の超電導をボゴリューボフ変換で示す訳です。役にたちますね。





【スポンサーリンク】




以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/08_初稿投稿
2024/02/18_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
ドイツ関連のご紹介
熱統計関連のご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Russian physicist


As you can see from the name, Bogoliubov is a Russian physicist. In writing this article, I re-examined Bogoliubov's "becoming a person", but it has not been conveyed. If you search by that name, my blog will appear at the top.


Since Bogoryukov was born in the early 20th century, it should be considered that he was adolescent in the Soviet Union before and after the revolution and was conducting his research in a closed academic environment. By the way, he has received a Planck medal, so he uses images related to Germany.



Bogoliubov achievements


Above all, it can be said that he mathematically expresses the idea called Bogoliubov transformation by diagonalizing the state transitions expressed in the form of a matrix.


In other words, the steady state of observation
It is created using mathematical methods.
In other words, reduce it to the mathematical eigenvalue problem.
It represents a steady state.


The result of doing mathematical work
What kind of phenomenon is supported
It can be explained physically. Twice


Using this steady state, Bogoliubov
He actually represented the superfluid state of helium.
Bogoliubov transformation shows the superfluidity of boson particles
Superconductivity of fermions by Bogoliubov transformation
It is a translation to show. It will be useful.


2024年02月17日

伏見康治
2/17改訂【原子力三原則|対象の美・折り紙を考えた物理学者|国会議員】

こんにちはコウジです!
「伏見康治」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
伏見康治が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


紋様の科学【伏見康治著】
【スポンサーリンク】


【1909年6月29日 〜 2008年5月8日】



伏見先生の多彩な活躍


伏見康治は愛知県名古屋市に生まれます。そして東京で育ちます。
何だか一般サラリーマン家庭の生まれ育ちを想像してしまいます。
伏見先生は20世紀の生まれの人ですから、それはそれで納得です。


ただし、その後の動きが活発です。
東大の 理物を卒業し東大で助手を務めた後に、
新設された阪大に着任して1934年には理学部長を務めます。


更には1936年には年には名古屋大学プラズマ研究所の新設に伴い、
所長として就任しています。結果として
二つの旧制大学の名誉教授を務める事となります。


併せて1952年からは日本学術会議会長、
1958年から6年間は公明党所属の参議院議員として科学者の立場で政策に関わっています。


以下では国会議員も勤めた「伏見先生」について語っていきたいと思います。
「先生お願いします!」って感じです。



一貫した科学者サイドの見識


科学者として伏見先生は
「原子力の平和利用」を推進し、大きな役割を果たしました。
日本における原子力の研究がとても大事であると認識しています。
被爆国である日本独自の視点から平和利用を考えていました。
具体的に「原子力三原則」でまとめています。


「自主、民主、公開」の三原則を起草して茅誠司と連名で
伏見先生は「茅・伏見の原子力三原則」を考えています。



対称の美


物理学を研究・体感する中で伏見先生は
「対称の美」に対する美学を持っていました。
特に、その数式的な表現と万人受けする印象に着目しています。


例えば自分の子供が幾何学模様に対して関心を抱いたら、
そこを掘り下げて「どこまで習ったの?」とか
「何で学校で教えないんだろう?」とか色々な視点で
議論していったのです。1960年代には「紋様の科学」としてまとめています。



水素エネルギーの推進


朝日新聞が水素エネルギー開発の全面的にバックアップを表明したタイミングで、
伏見先生は原子力開発に関わっていきます。


1952年に朝日新聞の木村部長(科学部の部長)から声をかけられたことがきっかけです。


伏見先生は2月に朝日講堂で開催された公開講演会で講師として
「核融合の現状と問題点」と題して講演しました。


その時の御縁と元来、伏見先生が水素エネルギーを支持していたこともあり
次世代燃料として水素を勧めておられました。
クリーンなエネルギーだと考えていたのです。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2023/04/02‗初稿投稿
2024/02/17‗改訂投稿


旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】



(2023年4月時点での対応英訳)


Dr.Fushimi's Diverse Activities


Koji Fushimi was born in Nagoya, Aichi Prefecture. And he grows up in Tokyo.
I somehow imagine that he was born and raised in an ordinary office worker family.
Fushimi-sensei was born in the 20th century, so that makes sense.


However, there has been a lot of activity since then.
After graduating from the University of Tokyo with a degree in physics and working as an assistant at the University of Tokyo,
He joined the newly established Osaka University and in 1934 he became the Dean of the Faculty of Science.


In 1936, he assumed the post of Director of the newly established Nagoya University Plasma Research Institute. as a result
He will serve as an emeritus professor at two old-system universities.


He also served as president of the Science Council of Japan from 1952.
For six years from 1958, he was involved in policy as a member of the House of Councilors belonging to the New Komeito Party from the standpoint of a scientist.


Below, I would like to talk about Mr. Fushimi, who also served as a Diet member.
It's like, "Teacher, please!"


Consistent Scientist Insight


Professor Fushimi played a major role in promoting the "peaceful use of nuclear energy." He recognizes that nuclear research in Japan is very important. He was thinking about peaceful uses from the unique perspective of Japan, a country that suffered atomic bombings. He specifically sums it up in the "Three Principles of Atomic Energy."


He drafted the three principles of "independence, democracy, and openness", and jointly with Seiji Kaya, he considered "three principles of nuclear power of Kaya and Fushimi".


beauty of symmetry


Fushimi-sensei had an aesthetic for "symmetrical beauty." In particular, he focuses on its mathematical expression and universal impression.


For example, if my child was interested in geometric patterns, I would delve into it and discuss things from various perspectives, such as "How much did you learn?" is. In the 1960s he summarized it as "The Science of Patterns".


Promotion of hydrogen energy


When the Asahi Shimbun announced its full support for hydrogen energy development, Professor Fushimi became involved in nuclear power development.


In 1952, he was approached by the head of the Asahi Shimbun,
Mr. Kimura (head of the science department).


In February, Prof. Fushimi gave a lecture titled "Current Status and Problems of
Nuclear Fusion" at a public lecture held at the Asahi Auditorium.


At that time, Dr. Fushimi originally supported hydrogen energy,
and he recommended hydrogen as a next-generation fuel.
He was clean energy, he thought.

2024年02月16日

ネイサン・ローゼン
2-16改訂【ワームホールを考案|EPRパラドックスで相関を追及】

こんにちはコウジです!
「ローゼン」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
ローゼンが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


【Nathan Rosen, 1909年3月22日 - 1995年12月18日】



パラドックス大図鑑
【スポンサーリンク】
【1909年3月22日 - 1995年12月18日】



 

ユダヤ人物理学者ローゼン


その名前は Nathan Rosen。
ローゼンはイスラエル建国後はイスラエルでも活動しました。
ニューヨーク出身のユダヤ人物理学者。MITで学んでいます。

ローゼンはいわゆるワーム・ホールの発案者でもあり、
EPRパラドックスを考えた三人のひとりです。
量子的ふるまいの局所性を相対論的に完全に
説明できない(矛盾するだろう)という指摘であって、
量子力学的なモデルと相対論的モデルでの記述が
同時に記述できないのです。

簡単に言えば「もつれた状態」で空間的
距離を置いたスピン(別の議論では光子)
妙なふるまいを示すのです。


量子的なもつれ(エンタングルメント)の
記載に修正の必要があるのか、
相対論での記述に修正が出来るのか、
突き詰めていく手掛かりになります。

EPRパラドックスにおいてはもつれ
(エンタングルメント)
の状態が議論され、


「EPRの 前提の下では量子力学の確率的手法を
再現で きない場合がある」と考えると良いです。


または
「統計的な条件設定をしなければいけない」
特殊な場合があって、量子もつれが背景にあり
「理解しにくい現象もあるんだなぁ。」
という前提から話始めた方が良い、
と考えた方が良いです。

ベルの不等式が成り立ち、
量子テレポーテーションが議論される昨今、
基礎理論の解釈は完全になされているか
色々な側面で説明がなされています。


量子論も相対論も其々で様々な説明(効果)を
可能にしているのですが、完全に全てを
記述できると言えないのでしょうか。
この記載をするとどうしても
歯切れの悪い文章になってしまいます。
「局所的実在論」という言葉がありますが、
物理量の把握には究極の難しさがあります。

私もこの場でうまく説明が出来ているとは思えません。
ただ、物理の記載であることは確かで、
発展していく可能性を含めた議論ではあります。





【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返事できていませんが
問題点に対しては適時、返信・改定をします。


nowkouji226@gmail.com


2022/01/04_初稿投稿
2024/02/16_改定投稿


旧サイトでのご紹介
舞台別のご紹介

時代別(順)のご紹介
アメリカ関連のご紹介

電磁気関係
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2022年1月時点での対応英訳)


Jewish physicist Rosen


Its name is Nathan Rosen.
Rosen was also active in Israel after the founding of Israel.
He is a Jewish physicist from New York. He had studyied at MIT.


Rosen was also the inventor of the so-called wormhole,
He is one of the three in the EPR paradox.
Relativistically complete locality of quantum behavior
It was pointed out that it could not be explained (it would be inconsistent),
The description in the quantum mechanical model and the relativistic model
It cannot be described at the same time.
Quantum entanglement
Is it necessary to correct the description?
Is it possible to correct the description in relativity?
It will be a clue to the end.


Various explanations (effects) for both quantum theory and relativity
It's possible, but it's completely everything
Can't you say that you can describe it?
If you make this description,
The text will be crisp.
There is a word "local realism",
Understanding the physical quantity is the ultimate difficulty.
However, it is certain that it is a description of physics,
It is a discussion that includes the possibility of development.


2024年02月15日

ジョン・バーディーン
2/15改訂【トランジスタの発明とBCS理論で二度のノーベル賞受賞】

こんにちはコウジです!
「バーディーン」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
バーディーンが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


金属絶縁体転移
【スポンサーリンク】
【1908年5月23日 ~ 1991年1月30日】



超電導現象の理論的基礎を与えたバーディン


本稿は何度も追記したいです。


それは私にとって、関心のある


低温電子物性の話だからです


今回は極低温での現象理解を進めたバーディンについて
ご紹介致します。
バーディンは
二回のノーベル賞を受けています。


一回目はベル研での仲間とのトランジスタの発明、
二回目はイリノイ大学の仲間たちと確立したBCS理論です。


前述したカメリー・オネスの超電導現象の発見以後、その現象を説明する為に色々な理論が試みられでしょうが、イリノイ大学のバーディンを中心とした3人がBCS理論を確立します。バーディン、レオン・クーパーロバート・シュリーファー  3人の名前の頭文字を並べてBCS理論と呼ばれます。


このコンビの始まりはバーディンがクーパーを招聘する事から始まります。そこにバーディン研究室の大学院生、シュリーファー が加わり研究が進みます。


後に話す中嶋氏とのエピソードやベル研での仲間たちとのトランジスタの発明を考えてみて下さい。物理で理論を切り開いていく楽しさが感じられるのではないでしょうか。(他の専門分野の方でも感じられるでしょう。)
自分自身で思索にふける時間を経て、
議論をすることで理論が発展していくのです。
特にバーディンは議論の上手い人だったといえます。


バーディンは議論をして「興奮する時間」
を大事に使えたのです。


また別ブログで少しバーディンについてつぶやいてみました。



BCS理論とは 


BCS理論の内容はフォノン(音子)を介した電子が対になった結果(クーパ対の考え方)、そのコンビがスピンを打ち消し合って結合するという理論でした。相転移温度をその理論で説明し、今日、超伝導を考えるうえで理論の基礎となっています。


このBCS理論の妙はフェルミオンである電子が凝縮状態をとるところにあります。本来、同じ状態(位相等を考えた時のパラメター)をとる事が出来ない電子が対になってボゾン化することで巨視的な現象にとして観察される超伝導現象が実現するのです。


そもそも、金属中を移動する電子を単純な質点のモデルで考えると
「正荷電をもった原子核の間を負電荷が自由自在に無抵抗で動き回る事」は到底出来ません。何らかの相互作用が起きて金属内での抵抗が生じます。ところが、電子の波動関数を考え、波動的側面が顕著に現れる状態を考えていくのが超伝導現象だと言えます。


そして現象発現の条件として大事な尺度の一つが
温度だったのです。2023年時点での関心は
遷移を起こす温度のメカニズムを解明する事です。


現在での転移温度は「高温超電導」
と言ってもマイナス百℃以下ですので
転移温度に至るまでは液体ヘリウムや
液体窒素を使って冷却しなければいけません。



超電導現象の応用 


実用化しているリニアモーターカーや量子コンピューター等の応用技術も冷却した上で超電導現象を実現しているので、コストと安定性が課題となっています。転移温度が変わっていって、より常温に近い温度で現象を起こすことが出来ればメリットは非常に大きいです。


温度に関わるメカニズムとして中嶋貞雄がバーディンに与えたヒントが繰り込み理論の応用でした。そのヒントは手法だったともいえますが、電気伝導に関わる要素(素粒子)が「どういった条件で」、「どういった役割を果たすか」が重要です。その手掛かりの一つが「ゆらぎ」に関するメカニズムではないかと考えている人が居ます。今後の大きな課題です。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/15_初稿投稿
2024/02/15_改定投稿


【スポンサーリンク】


舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関連のご紹介へ
熱統計関連のご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Theoretical basis of superconducting phenomenon


I would like to add this article many times. That's because it's about the low-temperature electronic characteristics that I'm interested in. This time, I would like to introduce Birdin, who has advanced the understanding of the phenomenon at extremely low temperatures.


Birdin has received two Nobel Prizes. The first is the invention of the transistor with his colleagues at Bell Labs, and the second is the BCS theory described below. Since the discovery of the superconducting phenomenon of Camery Ones mentioned above, various theories may have been tried to explain the phenomenon, but three people led by Birdin of the University of Illinois establish the BCS theory. Bardeen, Leon Cooper, and Robert Schrieffer are called BCS theory by arranging the initials of the three names.


The beginning of this duo begins with Birdin inviting Cooper. Schrieffer, a graduate student from the Badin laboratory, will join the group to advance the research.



What is BCS theory?


The content of BCS theory was the theory that as a result of pairing electrons via phonons (sounds) (the idea of ​​Cooper pairs), the combinations cancel each other out and combine. The phase transition temperature is explained by the theory, and today it is the basis of the theory when considering superconductivity.
The mystery of this BCS theory is that the fermion electrons take a condensed state. Originally, electrons that cannot take the same state are paired and bosonized, and the superconducting phenomenon observed as a macroscopic phenomenon is realized.


In the first place, considering the electrons moving in a metal as a simple mass model, it is impossible for a negative charge to move around freely and without resistance between nuclei with a positive charge. Some interaction occurs and leads to resistance. However, it can be said that the superconducting phenomenon is to create a state in which the wave function appears prominently by considering the wave function of electrons.


One of the important measures for that condition was temperature. At this time, the interest is to elucidate the temperature mechanism that causes the transition. At present, the transition temperature is less than minus 100 ° C even if it is called high-temperature superconductivity, so it is necessary to cool it with liquid helium or liquid nitrogen until the transition temperature is reached.



Application of superconducting phenomenon


Since the superconducting phenomenon is realized after cooling the applied technologies such as linear motor cars and quantum computers that have been put into practical use, cost and stability are issues. If the transition temperature changes and the phenomenon can occur at a temperature closer to room temperature, the merit is very great.


The hint given to Bardeen by Sadao Nakajima as a mechanism related to temperature was an application of renormalization theory. It can be said that the hint was a method, but "under what conditions" and "what role" the elements (elementary particles) involved in electrical conduction play are important. Some people think that one of the clues is the mechanism related to "fluctuation". This is a big issue for the future.

2024年02月14日

レフ・D・ランダウ
2-14改訂【反磁性の研究を行い優れた教科書を残した天才】

こんにちはコウジです!
「ランダウ」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
ランダウが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


マグネット・ベース
【スポンサーリンク】
【1908年1月22日生まれ ~ 1968年4月1日没】



レフ・ダヴィドヴィッチ・ランダウ


その名をフルネームで表記すると、


レフ・ダヴィドヴィッチ・ランダウです。


ランダウは有名なユダヤ系ロシア人の科学者で
日本では教科書でその名を目にして
る人が
多いのではないでしょうか。1962年に


「絶対零度近傍でのヘリウムの理論的研究」


でノーベル物理学賞を受けています。
何よりランダウは天才です。個人的に考えたら
アインシュタイン・ランダウ・ノイマン・ディラック
が20世紀初頭の「(物理学者天才)四天王」でしょう。
パウリも仲間に入れたい気がしますが、情熱溢れる
イメージが私の中ではあるのでパウリは何となく別枠。
⇔パウリは情熱の理論家です。


さて、
ランダウは石油技術者の父と教育者の母
から生まれます。
12歳で微分法を理解し、
14歳で国立大学に入学、
物理数学科と化学学科
を同時に履修します。


19歳で学士の称号を得るとレニングラード物理工学研究所で
電磁場の中での電子性質である量子電磁気学を研究していきます。
そしてコペンハーゲン
にあるボーアの研究所で大きな影響を受けました。



ランダウの主な業績


その後、ケンブリッジでディラック・カピッツァと
共同研究を進め所謂「ランダウ反磁性」の研究をまとめます。


その後にチューリッヒでパウリと共同研究をした後に
ランダウはレニングラードに戻りました。


こうした海外の研究者との交流はとても大事で、
互いに刺激を与えあって自分の研究性の方向を
確認する経験を積んでいくことが出来ます。


単純には他大学のゼミに参加して普段交流しない人達と
議論出来るだけでも自分の成長につながるのです。


また、自分の作った意見(理論)が他人の目から見て
色々な整合性を持っているか、
問いかけることが出来るのです。


物理学者は初学者に限らず、
常に向上していく機会を作るべきだと思います。


ランダウの幸せだった時期を中心に記載しましたが
モスクワの研究所で要職を務めていながら
スターリン批判をしたことで、
刑務所に服役したりしています。


そして交通事故にあったりもしています。
水素爆弾の製造にも不本意ながら加担しています。
そして60歳でこの世を去ります。


ただ、ランダウの業績は不変です。


準粒子・フェルミ流体やギンツブルグ&ランダウ理論は
低温凝縮系の世界を大きく進ませました。




AIがライティング【Catchy】
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に関しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/09/24_初稿投稿
2024/02/14_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介へ
ケンブリッジ大学のご紹介へ
イギリス関係のご紹介
デンマーク関係
熱統計関連のご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


 

(2021年11月時点での対応英訳)



Lev Davidovich Landau


The full name is Lev Davidovich Landau. Landau is a well-known Jewish-Russian scientist who may have seen textbooks in Japan. He received the Nobel Prize in Physics in 1962 for his "Theoretical Study of Helium Near Absolute Zero". Now, Landau is born of a father of oil engineers and a mother of educators.


He understood differential calculus at the age of 12, entered a national university at the age of 14, and he took both physical mathematics and chemistry at the same time. When he earned his bachelor's degree at the age of 19, he studied quantum electrodynamics, which is an electronic property in an electromagnetic field, at the Leningrad Institute of Physical Engineering. And I was greatly influenced by Bohr's laboratory in Copenhagen.



Landau's main achievements


He then collaborated with Dirac Kapitsa in Cambridge to conclude his so-called "Landau diamagnetism" research. Landau then returned to Leningrad after collaborating with Pauli in Zurich.


I mainly described Landau's happy times, but he was sentenced to jail for criticizing Stalin while he was in a key position at a research institute in Moscow. And he is also in a car accident. He is also reluctantly involved in the production of hydrogen bombs. And he died at the age of 60.


However, Landau's performance remains unchanged. Quasiparticle-Fermi liquid theory and Ginzburg-Landau theory have made great strides in the world of low-temperature condensate systems.


2024年02月13日

エドワード・テラー
2/13改訂【ハイゼンベルグに学ぶ|原爆開発推進・水爆の父】

こんにちはコウジです!
「エドワード・テラー」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
エドワード・テラーが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


オッペンハイマーとテラー
【スポンサーリンク】
【1908年1月15日生まれ ~ 2003年9月9日没】



水爆の父・テラー


エドワード・テラーは水爆の父と呼ばれ、


晩年のオッペンハイマーと何かにつけて対立します。


エドワード・テラーはハンガリーのブタペストで弁護士の父と
4か国語を使う母から
生まれました。


ユダヤ系であったエドワード・テラーの父は職を追われ、
ハンガリー・ドイツ・
アメリカと移住を重ねました


ただ、学問の世界では良い出会いに恵まれています。
ハイゼンベルクの下で
博士論文を書き、
ボーアの居たコペンハーゲンで有益な
時間を過ごします。


有益な時代に原子核物理学分子物物理で多くの業績を残しました。
ヤーン・テラー効果やBETの吸着等温式
その時代のエドワード・テラーの業績です。



マンハッタン計画とテラー


アインシュタインと共にエドワード・テラーは
原爆の研究をアメリカ政府に働きかけ、
実際に
その計画は進んでいきます。


政治的な思想ではドイツ時代に資本主義の崩壊を
目の当たり
にしたテラーは共産主義に対して
当初は関心を
抱いていたようです。


ところが、友人のランダウソ連政府に
逮捕された時期に反共思想
を強めます。


反共思想と新兵器の開発にかける
熱意
が結びついていくのです。
そしてまた、
核兵器に対して考えていきます。



テラーとオッペンハイマー


ランダウが逮捕された時期以降
エドワード・テラーと
オッペンハイマーとの確執の始まります。


特に兵器としての原爆の利用に関しては
エドワード・テラーとオッペンハイマーは
対極の立場をとります。


エドワード・テラーは原爆開発の推進派で、
オッペンハイマーは開発否定派でした。


実際に、エドワード・テラーは原爆・水爆と兵器の
開発の中心に居ました。水爆を
「My・Baby」
と呼んでいた
と言われています。


その立場は変わらず、
生涯その事を悔いることはなかったと言われています。
エドワード・テラーはそんな研究人生を歩みました。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/22_初稿投稿
2024/02/13_改定投稿


舞台別のご紹介
時代別(順)のご紹介
ドイツ関係のご紹介
イギリス関係のご紹介
アメリカ関係のご紹介
UCBのご紹介
デンマーク関係
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Teller, the father of the hydrogen bomb


This main person,Edward Teller, called the father of the hydrogen bomb, confronts Oppenheimer in his later years. Edward Teller was born in Budapest, Hungary, to a lawyer's father and a four-language mother. Edward Teller's father, who was of Jewish descent, was forced out of work and emigrated to Hungary, Germany, and the United States. However, I am blessed with good encounters in the academic world. He writes his dissertation under Heisenberg and spends a useful time in Copenhagen, where Bohr was. Under such circumstances, he made many achievements in nuclear physics and molecular physics. The Jahn-Teller effect and the adsorption isotherm of BET are the achievements of Edward Teller.



Manhattan Project and Teller


So,Edward Teller, along with Einstein, urged the US government to study the atomic bomb, and the plan actually goes on. In political terms, Teller, who witnessed the collapse of capitalism during the German era, seemed initially interested in communism. However, when his friend Landau was arrested by the Soviet government, he intensified his anti-communism. His anti-communist ideas and enthusiasm for the development of new weapons are linked. and again,



Teller and Oppenheimer


After that time, the feud between Edward Teller and Oppenheimer began. Edward Teller and Oppenheimer are at the other end of the spectrum, especially when it comes to the use of the atomic bomb as a weapon. Edward Teller was a proponent of atomic bomb development, and Oppenheimer was a denial.


In fact, Edward Teller was at the center of the development of atomic and hydrogen bombs and weapons. He is said to have called the hydrogen bomb "My Baby". His position has not changed and it is said that he never regretted it throughout his life. Edward Teller went through such a research life.


2024年02月12日

湯川秀樹
2/12改訂【電子の数百倍の質量を持つ中間子の仮説を提唱しノーベル賞を受賞】

こんにちはコウジです!
「湯川秀樹」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
湯川秀樹が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


【1907年1月23日生まれ ~ 1981年9月8日没】



湯川秀樹の生きた時代


旅人
【スポンサーリンク】


湯川秀樹の書いた本「旅人」は湯川秀樹の


自伝です。その湯川秀樹は朝永振一郎と同じ時代


を生きています。


互いに刺激しあう関係を築き、共に


時代のテーマに取り組んでいます。


伝記を読んでいくと湯川秀樹が情熱を持って


物理学に取り組んでいた様子が分かります。


色々な所で引用されているのですが


「アイデアの秘訣は、執念である。」


と湯川秀樹は明言しています。一見、


不可解な現象を紐解き、単純明快な原理を抽出


する仕事をしてきたのです。


 

湯川秀樹の興味


そもそも、湯川秀樹の関心は物質の相互作用であって、
その世界は全く目に見えません。


湯川秀樹は情熱で綿密に話を組み立てます。
重力・電磁力以外の微細粒子間の相互作用を
引き起こす「強い力」
に着目して議論を進めました。


湯川秀樹の時代には場の考えが発展していく過程で
原子の中での相互作用を湯川秀樹は中間子という概念で
相互作用を紐解いたのです。
湯川秀樹のアイディアは
「場を担う粒子」
という考え方です。


そもそも、重力(万有引力)を考えると二つの質点が
存在した時に
その質点同士が互いを引き合い
現象が説明
されます。この明快なモデルに反して、


「電子の数百倍の質量をもつ中間子の仮定」


は当時の観測とは別に設定されていて、
ボーアハイゼンベルクは内容の吟味を求めていたと言われます。


最終的には1947年の英国物理学者セシル・パウエルによる
「中間子観測」が契機となり、湯川秀樹はノーベル賞を受けます。
「物理での概念確立の危うさ」を感じてしまう歴史です。


理論的な要請と言えなくはないですが、
辻褄合わせの為の概念は色々な角度から
真剣に議論されなければいけません。


別の言い方をすれば、その概念を磨き上げて
納得のいく説明をすることが出来た時に
「大きな仕事をした」と言えるのではないでしょうか。


湯川秀樹はボゾンの一つとして中間子を
仮定して強い力を説明してみせたのです。



湯川秀樹こぼれ話 


湯川秀樹の業績は京都大学の原子力研究を初めとして
日本の物理学者たちに引き継がれています。


個人的なご縁としては私が幼少時代を過ごした東京板橋にあった
理化学研究所の分室で研究をしていたようです。


少し時代がずれますが、私の故郷で彼が活動していたと思うと
不思議な気持ちです。ノーベル賞受賞者の朝永振一郎もそこに居ました。


最近までは、理化学研究所は本駒込にも拠点があり、
今でもホンダ朝霞の近くに拠点があります。


何故か、と調べを続けていったら埼玉県にある平林寺に
創始者の一人である大河内氏の墓所があります。


そんな、理化学研の霊的な側面を知って、
私は何となく納得してしまいました。


また、湯川秀樹はラッセル=アインシュタイン宣言にも参加しています。
以前のブログでもこの関連の話は盛り込んでいますが
私は研究者が異議を唱えても社会が破滅的な兵器を作る現実を
大変、問題だと思っています。


アインシュタインであれ湯川秀樹であれアシモフであれ
社会が叡智を集結して対応することを私は夢見ています。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
全て返信は出来ていませんが
適時、返信・改定をします。


nowkouji226@gmail.com


2020/09/07_初稿投稿
2024/02/12_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
京大関連のご紹介
纏めサイトTOP
電磁気関係
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)


The time when Hideki Yukawa lived


The book "Traveler" introduced at the beginning is an autobiography of Hideki Yukawa. Hideki Yukawa lives in the same era as Shinichiro Tomonaga. We build relationships that inspire each other and work together on the themes of the times. As you read the biography, you can see that Hideki Yukawa was passionate about physics.


Although quoted in various places, Hideki Yukawa clearly states, "The secret of the idea is obsession." At first glance, he has worked to unravel mysterious phenomena and extract simple and clear principles.


Hideki Yukawa's interest


In the first place, Hideki Yukawa's interest is in the interaction of matter, and the world is completely invisible. He assembles the story with passion.


He focused on the "strong force" that causes the interaction between fine particles other than gravitational and electromagnetic forces. In the days of Hideki Yukawa, Hideki Yukawa unraveled the interaction in atoms with the concept of mesons in the process of developing the idea of ​​the field.


Hideki Yukawa's idea is the idea of ​​"particles that carry the field." In the first place, considering gravity (universal gravitational force), when two mass points exist, the mass points attract each other and the phenomenon is explained.


Contrary to this clear model, the "assuming of a meson with a mass several hundred times that of an electron" was set separately from the observations at that time, and it is said that Bohr and Heisenberg sought scrutiny of the content.


Eventually, Hideki Yukawa received the Nobel Prize, triggered by "Meson Observation" by British physicist C. Powell in 1947. It is a history that makes us feel "the danger of establishing a concept in physics".


It can be said that it is a theoretical request, but the concept for Tsuji matching must be seriously discussed from various angles. In other words, when you can refine the concept and give a convincing explanation, you can say that you have done a big job.


Hideki Yukawa explained the strong force by assuming a meson as one of the bosons.



Hideki Yukawa Spill Story


Hideki Yukawa's achievements have been handed down to Japanese physicists, including nuclear research at Kyoto University.
As a personal connection, it seems that I was doing research in a branch office of RIKEN in Itabashi, Tokyo, where I spent my childhood. It's a little out of date, but it's strange to think he was active in my hometown.


Nobel laureate Shinichiro Tomonaga was also there. Until recently, RIKEN also had a base in Hon-Komagome, and it still has a base near Honda Asaka. If you continue to investigate why, there is a graveyard of Mr. Okochi, one of the founders, at Heirinji Temple in Saitama Prefecture. Knowing such a spiritual aspect of RIKEN, I somehow convinced myself.


Hideki Yukawa also participates in the Russell-Einstein Declaration. I've included this related story in my previous blog, but I think the reality of society making catastrophic weapons is a big problem, even if researchers disagree. Whether it's Einstein, Hideki Yukawa or Asimov, I dream of society gathering wisdom and responding.

2024年02月11日

H・アルプレヒト・ベーテ
2/11改訂【星の進化を考え、また原子核反応を考えた】

こんにちはコウジです!
「H・ベーテ」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
H・ベーテが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


核兵器の書籍
【スポンサーリンク】
【1906年7月2日~2005年3月6日没】



イギリスに逃れたベーテ


ベーテはユダヤ系なのでナチス政権下で


苦労します。国を追われイギリスに逃れ、


マンチェスター大学で職を得ます。


第二次大戦の間はオッペンハイマー招きでUCB
(カリフォルニア大バークレー校)
の特別会議に参加します。
そこでは核兵器の
開発が始められ、ロスアラモス研究所が出来る
とベーテは理論部門の監督を務めます。


戦後はトルーマン大統領が水素爆弾の開発を断行した流れで
ベーテは引き続き開発
において重要な役割を果たします。



ベーテの提唱した星の進化


その他、ベーテの業績としては大きく二点があげられます。
一つは恒星の内部で核融合反応が起きうると指摘をして、
重力と釣り合う内側からの力を考えたことです。


星の進化を考える時に超高圧下で起こりうる現象を予見したのです。
現在考えられている進化過程でベーテの考え方は不可欠です。
大まかに星の進化を考えていくと


@万有引力でガスや、チリが集まっていき、
段々に中心方向に向かって『まとまり』が出来てきて
Aまとまりの質量がどんどん増えていくのですが、
この時にB星の内部で内部で核融合反応が起きて
外側方向に広がる力が働き、
C万有引力で集まる力と内部から核反応で
外側へ広がっていく力がつりあう」


と考えられています。


そして、重量が増えていき星の進化が進むと
恒星として光を発するようになり、
白色矮星、ブラックホールの段階を踏むだろうと考えます。


地球や木星などの光っていない星は現在内部からの
核融合の膨張と、内部への引力でが釣り合っている状態です。
地球の中でもマグマが沢山対流していて
中心の温度は6000度と推定されています。


また星の話とは別に、加速器で実現される様々な現象を
説明していく内に超高圧下・超高温下で起こり得る
原子核の崩壊状態をベーテは理論立てて説明して新たな知見としました。



ベーテとラムシフト


また、ベーテのもう一つの業績は
量子電磁気学に繋がっていくラムシフト
を非相対論的に厳密に突き詰めていって
極めて正確な計算をしていったのです。
この面でファインマンは弟子にあたります。


ベーテは大変な時代を生きた偉大な理論家でした。


「原子核反応理論への貢献、特に星の内部


におけるエネルギー生成に関する発見」で


ノーベル賞を受けています。




【スポンサーリンク】


以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。


nowkouji226@gmail.com


2020/11/23_初版投稿
2024/02/11_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介
ドイツ関係のご紹介へ
イギリス関係のご紹介へ

アメリカ関連のご紹介へ
イェール大学関連のご紹介へ
UCBのご紹介

熱統計関連
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Bethe fled to England


Bethe is of Jewish descent, so he has a hard time under the Nazi regime. He was driven out of the country and fled to England to get a job at the University of Manchester. He attends a special UCB (University of California, Berkeley) conference at the invitation of Oppenheimer during World War II. Bethe will oversee the theory department when the development of nuclear weapons begins there and the Los Alamos National Laboratory is established. After the war, Bethe continued to play an important role in the development of the hydrogen bomb as President Truman decided to develop it.



Bethe's advocated evolution of stars


In addition, I think there are two major achievements of Bethe. One is to point out that a fusion reaction can occur inside a star, and to consider the internal force that balances gravity. When he considered the evolution of stars, he foresaw possible phenomena under ultra-high pressure. Bethe's thinking is indispensable in the evolutionary process currently being considered. Roughly thinking about the evolution of stars,


"(1) gas and dust gather with universal gravitation, and gradually" cohesion "is formed toward the center, and (2) the mass of the cohesiveness increases steadily. At this time, (3) a nuclear fusion reaction occurs inside the star and the force that spreads outward works, and (4) the force that gathers by universal gravitation and the force that spreads from the inside to the outside by the nuclear reaction are balanced. "


Then, as the weight increases and the evolution of the star progresses, it will emit light as a star, and I think that it will go through the stages of white dwarfs and black holes. Non-shining stars such as Earth and Jupiter are currently in a state where the expansion of nuclear fusion from the inside and the attractive force to the inside are in balance. In addition to the story of stars, Bethe theoretically explained the decay state of atomic nuclei that can occur under ultra-high pressure and ultra-high temperature while explaining various phenomena realized by accelerators, and made new knowledge. bottom.



Bethe and Lamb shift


In addition, Bethe's other achievement was to rigorously and non-relativistically scrutinize the Lamb shift that leads to quantum electrodynamics, and to perform extremely accurate calculations. Feynman is his disciple in this respect.


Bethe was a great theorist who lived in difficult times. He has received the Nobel Prize for his "his contributions to his theory of nuclear reactions, especially his discoveries of energy generation inside the stars."


2024年02月10日

朝永 振一郎
2/10改訂【繰りこみ理論を駆使して素粒子間の反応を理論的に解明】

こんにちはコウジです!
「朝永 振一郎」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
朝永 振一郎が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


【↑_Credit:Wikipedia】


物理学とは何だろうか
【スポンサーリンク】
【1906年3月31日生まれ ~ 1979年7月8日没】



朝永振一郎の生い立ち


朝永振一郎は私が使っていた教科書


Diracの「量子力学」】の訳者でした。


また、朝永振一郎の著作では「スピンはめぐる」と
「物理学とは何だろうか」が有名です。(AmazonへGo)
沢山の著書を残しました。


 

他著書のご紹介@;鏡の中の物理学


朝永振一郎のご先祖様は大村藩


(現在の長崎県内にありました)の流れをくみます。


そして、そんな朝永振一郎の父は京都大学哲学科教授でした。そんな生い立ちをもった、朝永振一郎は現在の筑波大学の前身となった大学、東京教育大学で教鞭をとり、最終的には学長を務めます。東京に生まれ京都で育ち、世界で議論しました。



朝永振一郎の業績


朝永振一郎の研究業績で私が最も偉大であると思えるのは繰り込み理論です。
ファインマン・ダイアグラムと呼ばれる不可思議な模式図で
表現される
素粒子の反応がありますが、そこでの過程における
数学的矛盾を見事に説明しています。


ファインマンの経路積分にも数学的な美点を感じますが
朝永振一郎の理論の方が
直感に訴える説得力を持っています。


好みといえば好みの問題ですが、発散・∞という大問題に対して
ラムシフトを正しく吟味して相対論的に計算が出来た時に
一瞬にして話が繋がり
感覚的に
「正しかったんだ」と思えるのです。


朝永振一郎の理解で量子電磁気学の整理が進み、
素粒子物理学が大きく進歩したのです。


朝永振一郎は晩年、大学入学以前の若者に対し
科学的な啓蒙を進めていました


最後に、朝永振一郎は湯川秀樹


京都大学で同期でした。それぞれの形で


当時の物理学で完成形を作り上げたのですね。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/09/12_初稿投稿
2024/02/10_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
京大関連のご紹介
力学関係のご紹介
電磁気関係
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



The background of Shinichiro Tomonaga


Shinichiro Tomonaga was the translator of the textbook I was using [Dirac's "Quantum Mechanics"]. Its ancestors follow the flow of the Omura domain (currently in Nagasaki prefecture).


And Shinichiro Tomonaga's father was a professor of philosophy at Kyoto University. With such a background, Shinichiro Tomonaga teaches at Tokyo University of Education, the predecessor of the current University of Tsukuba, and eventually becomes the president. He was born in Tokyo, raised in Kyoto, and discussed around the world.



Achievements of Shinichiro Tomonaga


The greatest research achievement of Shinichiro Tomonaga is the renormalization theory. There is a reaction of elementary particles that is also expressed in a mysterious schematic diagram called the Feynman diagram, but it explains the mathematical contradiction in the process. Feynman's path integral also has a mathematical beauty, but Shinichiro Tomonaga's theory is more intuitive and convincing.


Speaking of taste, it is a matter of taste, but when the Lamb shift is correctly examined for the big problem of divergence and ∞ and the calculation can be done relativistically, the story is connected in an instant and it seems that it was "correct" sensuously. is.


With the understanding of Shinichiro Tomonaga, quantum electrodynamics was organized and particle physics made great progress. Shinichiro Tomonaga also promoted scientific enlightenment for young people before entering university in his later years.


Finally, Shinichiro Tomonaga was in sync with Hideki Yukawa at Kyoto University. Each form was completed by the physics of the time.

2024年02月09日

J・ロバート・オッペンハイマー
2/9改訂【あだ名はオッピーとか原爆の父とか】

こんにちはコウジです!
「オッペンハイマー」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
オッペンハイマーが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


Blu-ray ※日本語無し](輸入版) OPPENHEIMER
【スポンサーリンク】
【1904年4月22日生まれ~1967年2月18日没】



 原爆の父オッペンハイマー


オッペンハイマーは原爆の父と呼ばれている側面
ありますが、UCB(カリフォルニア大学バークレー校)
では学生からオッピーという愛称で呼ばれていた
側面もありました。オッペンハイマーの人生は
喜怒哀楽に満ちています。


オッペンハイマーの人生を考えるにあたり、
筆者の第一の着眼点は彼もユダヤ系の血を
引いている
という部分です。


ヒットラーが民族としてのユダヤ人達に焦点を当て迫害し、
敵視していた現実は
動かしがたい事実です。
強制収容所に連行
されるような世相の中で
ユダヤ人達は非常な
危機感を感じていたはずです。


ユダヤ人たちが抱く危機感の中で20世紀初頭の歴史は進み、
天才達が育ち・団結して
新しい物を生み出していた
という側面があるのだと言えます。


そんな時代に兵器製造の行為は肯定される話ではないのですが、
当時の論客達はユダヤ人迫害
から話を初めて、
マンハッタン計画に進む流れ
を紹介していき、
大衆に納得し易い話を組み立て
られたでしょう。



ユダヤ系の物理学者達


世界大戦終結後、100年近くがたとうとしています。
ユダヤ人に対しての考えは幾多の人が繰り広げてきた
のではないかと思えますが、再度、私も強調します。


具体的な物理の世界での登場人物はアインシュタイン 、
シュテルンマックス・ボルンネイサン・ローゼン
D・J・ボームE・パウリ 、ランダウファインマン
ハンスベーテ


そして今回ご紹介するオッペンハイマーです。


(今は此処迄しか思い浮かびませんが
後日、思い付くたびに補記します。)


ユダヤ人メンバー中心に居てがもたらした今世紀初頭の
物理学の進展は急速でした。


その進展は物理学に留まらず、工学、産業、
果ては政治体制に繋がっていきました。


1917年ロシア革命に始まった社会体制の変化とも
同期していた、
と言えるのでは無いでしょうか。


20世紀初頭の閉塞感は、それを打ち破る様々な努力によって
大きく様変わりしていたと思えます。そして、昨今コロナで
不満が高まり、米中関係が緊張していく世相は、やもすれば
危ない世界に近づいてるようにも思えます。


各人で理性的な判断・発言をしましょう。
今、方向付けが重要です。



 オッペンハイマーの関心


さて実際、オッパンハイマーは経済的に恵まれた
家庭で育ち、沢山のお小遣いをもらいながら
すくすくと育ちます。そして、
オッペンハイマーは最終的に6つの言葉を操ります。
少年時代には
鉱物学・数学・地質学・化学に関心を示し
ハーバードを三年で終えてケンブリッジに留学します。


そこから理論物理学のゲッティンゲン大学に進み
ボルンと出会います。オッペンハイマーは
ボルンの指導の下で
研究を進め共同で
ボルン・オッペンハイマー近似等の業績を上げます。


若い時代にボルンと近似に関する仕事をする以外に
一度帰国した後に二度目の訪欧でエーレンフェストパウリボーア
等と交流し物理学での知見を育みます。
2023年に別記事にまとめました)。


その後、アメリカに戻りカリフォルニア工科大学やUCBで
教鞭をとりますが、第二次大戦勃発に伴い、
オッペンハイマーは
ロスアラモス国立研究所の
初代所長に任命されます。


ロスアラモス国立研究所で原爆を開発したのです。
この仕事は、世界のパワー・バランスを変え、
後の世界を大きく変えました。



晩年のオッペンハイマー


晩年、オッペンハイマーは成し遂げた仕事の意味を自問し、
後悔の言葉さえ残しています。


戦争時代の原爆開発・使用は国としての
アメリカの中で必要と判断されていましたが、
それ以後の時代では原爆を使わなくても各国が
持つだけで攻撃対象とされたりしますし、
外交で原爆が脅迫の道具として使われていたりします。


そういったことにつながった発明をオッペンハイマーは
「罪」として捉えていて、
水爆の開発には反対していたりもしました。


オッペンハイマーには別の罪(?)もあります。
オッペンハイマーの時代は冷戦時代なので
学生時代からの共産党とのつながりを指摘され、
最終的には赤狩りの標的とされ続けていました。


常時FBI(司法省管轄のアメリカ連邦捜査局)
監視下にあったのです。1965年、
がんの為に
ニュージャージーの自宅で
静かに生涯を終えました。


合掌。


そして、2023/8/19に追記します。
映画宣伝の思惑でこの夏に「バーベンハイマー騒動

が起きました。オッペンハイマーの伝記映画と
バービー人形の映画が同日に放映されていました。
その中で、
米国の配給会社が「忘れられない夏になりそう!
と発言した事に日本法人は遺憾の意を示しています。
米国の商戦主義が終戦記念日を控えた日本人の
感性に「カチン」ときたわけです。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。


nowkouji226@gmail.com


舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介へ
イギリス関係のご紹介
ドイツ関連のご紹介

ケンブリッジ大学のご紹介へ
UCBのご紹介へ
量子力学関係


AIでの作業(参考)


2020/09/21_初稿投稿
2024/02/09_改定投稿
【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Atomic bomb father Oppenheimer


Oppenheimer was sometimes called the father of the atomic bomb, but at UCB (University of California, Berkeley), he was also nicknamed Oppenheim by students. Oppenheimer's life is full of emotions. When thinking about Oppenheimer's life, the first point to look at is that he also has Jewish blood.


The reality that Hitler focused on and persecuted the Jews as an ethnic group and was hostile to them is an immovable fact. The Jews must have felt a great sense of crisis in the world of being taken to concentration camps. In that sense of crisis, the history of the early 20th century may have been that geniuses grew up and united to create new things. The act of manufacturing weapons is not affirmed in such an era, but the debaters at that time also started talking about the persecution of Jews and introduced the flow to the Manhattan Project, and assembled a story that is easy for the public to understand. Probably.



Jewish physicists


Almost 100 years have passed since then, and I suspect that many people have developed this idea, but I would like to emphasize it again. The characters in the concrete world of physics are Einstein, Stern, Max Born, DJ Baume, E. Pauli, Landau, Feynman,


And this is Oppenheimer. (I can only think of it here now, but I will add it later whenever I come up with it.) The progress of physics at the beginning of this century brought about by such members was rapid. Its progress went beyond physics to engineering, industry, and even the political system.


It can be said that it was in sync with the changes in the social system that began in the Russian Revolution in 1917. It seems that the feeling of obstruction at the beginning of this century was greatly changed by various efforts to overcome it. And it seems that the world, where dissatisfaction with Corona has increased and US-China relations have become tense these days, is approaching a dangerous world. Let's make rational judgments and remarks by each person. Direction is important now.



Oppenheimer's interest


Well, in fact, Oppanheimer finally manipulates six words. As a boy, he became interested in mineralogy, mathematics, geology and chemistry, finishing Harvard in three years and studying abroad in Cambridge. From there he goes to the University of Göttingen in theoretical physics and meets Born.


Oppenheimer conducts research under the guidance of Born and jointly achieves achievements such as the Born-Oppenheimer approximation. He then returned to the United States to teach at the California Institute of Technology and UCB, but with the outbreak of World War II, Oppenheimer was appointed as the first director of the Los Alamos National Laboratory. So he developed the atomic bomb. This work changed the power balance of the world and changed the world later.



Oppenheimer in his later years


In his later years, Oppenheimer asked himself what the work he had accomplished and even left a word of regret. It was judged that the development and use of the atomic bomb during the war was necessary in the United States as a country, but in the subsequent era, even if each country did not use the atomic bomb, it would be the target of attack, and diplomacy. The atomic bomb is used as a threatening tool. Oppenheimer saw the invention that led to that as a "sin," and he even opposed the development of the hydrogen bomb.


Oppenheimer also has another sin (?). Since Oppenheimer's era was the Cold War era, he was pointed out that he had a connection with the Communist Party since he was a student, and eventually continued to be the target of the Red Scare. He was always under the supervision of the FBI (Federal Bureau of Investigation under the Department of Justice). In 1965, he quietly ended his life at his home in New Jersey because of cancer. Gassho.

2024年02月08日

「フォン・ノイマン」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
フォン・ノイマンが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


フォン・ノイマンの生涯
【スポンサーリンク】
【1903年12月28日 - 1957年2月8日】



フォン・ノイマンの生い立ち


ノイマンはハンガリー系のドイツ人でアメリカに亡命します。
ハンガリー名ではナイマン・ヤーノシュ:nɒjmɒnˌjɑ̈ːnoʃ、
ドイツ名ではヨハネス・ルートヴィヒ・フォン・ノイマン
:Johannes Ludwig von Neumann,


そして、ノイマンは誰しもが認める天才です。
後述するプリンストン大学時代にアインシュタインが
ノイマンを評して天才と呼んでいたそうです。
(ノイマンもアインシュタインを天才と呼んでいたそうです)
ノイマンは少年時代から英才教育を受け、ディケンズの小説を
一字一句間違えず暗唱していたと言われます。
また、車を運転しながら読書していたと言われます。


数学・物理学・コンピューター科学で多才な才能を
発揮した人です。映画のモデルにもなっています。


冒頭に掲載した映画作品は
フォン・ノイマンをモデルにしたと言われています。




原子爆弾やコンピューターの開発


フォン・ノイマンは1930年にプリンストンに招かれ、
プリンストン高等研究所の所員に選ばれています。


因みに、その時に同時にメンバーとして選ばれた一人が
アルベルト・アインシュタインでした。
戦争へ向かうアメリカで軍事関係の研究を進めます。





特に、フォン・ノイマンはロスアラモス国立研究所で
アメリカ合衆国による原子爆弾開発のための
マンハッタン計画に参加します。アメリカという国家が
多くの才能をアメリカの理想の為に集めていました。
沢山の予算が動きます。


そして、
弾道研究所に関わるENIACのプロジェクトに参加して
ノイマンも電子計算機のプロジェクトを進めていくのです。


ノイマンの別の関心事として衝撃波の伝達の研究分野がありました。
所謂「FAT・MAN」(長崎に投ちたプルトニウム型原子爆弾)
のための爆縮レンズを開発していくのです。


兵器開発に科学者が関わっていく良い例です。
「(効率的に)人を沢山殺そう」という考えと
「科学的探究心」は瞬時に置き換える事が出来るのです。
結果として科学者に殺意がなくても効果的な兵器が作れます。



フォンノイマンの考え方を表す言葉



名言として残されている一つをご紹介します。

「思考こそが一次言語であり、
数学は二次言語である。

数学は、思考の上に作られた、
一つの言語に過ぎない。」


私的に考えてみても
実際に物理モデルを構築する前の「思考」が大事で、
それは掴み様の無い物です。幾何学的な図形で抽象的に
表現してみたり群論を使って整理してみたりします。
数学や物理モデルは思考を形作る道具となります。

見つかった「秩序」を数学的表現で表すのはその後の段階で、
さらには大衆に分かるように色々な言葉で肉付けします。


物理学者はこの作業を無限に繰り返さなければいけません。
そんなノイマンは1955年に骨腫瘍・あるいは、すい臓がん
と診断されました。


放射能に関わる研究を重ねた結果でもあります。
同僚のエンリコ・フェルミも1954年に
骨がんで亡くなっています。


科学の発展の為に晩年を捧げた人生でした、
ご冥福をお祈りいたします。



ワールドトーク|日本人講師とオンライン英会話の無料体験レッスン【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com


2021/10/01_初版投稿
2024/02/08_原稿改定


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介
電磁気関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



The background of von Neumann


Neumann is a Hungarian German who goes into exile in the United States. He is said to have been reciting Dickens' novels word for word, having been educated as a gifted boy in Hungary for Naiman Janos: nɒjmɒnˌjɑ̈ːnoʃ and in Germany for Johannes Ludwig von Neumann. increase.


He is also said to have been reading while driving a car. He is a versatile talent in mathematics, physics and computer science and is also a movie model. The movie work posted at the beginning is
It is said to have been modeled after von Neumann.



Development of atomic bombs and computers


Von Neumann was invited to Princeton in 1930 and was selected as a member of the Princeton Institute for Advanced Study. By the way, one of the members who was selected at the same time was Albert Einstein. He pursues military research in the United States heading for war.


In particular, von Neumann will participate in the United States' Manhattan Project for the development of an atomic bomb at the Los Alamos National Laboratory. And Neumann will also proceed with this computer project by participating in the ENIAC project related to the Ballistic Research Laboratory.


Another concern of Neumann was the field of study of shock wave transmission. He will develop a detonation lens for the so-called FAT MAN (plutonium-type atomic bomb thrown at Nagasaki). It's a good example of how scientists get involved in weapons development. The idea of ​​"killing a lot of people (efficiently)" and "scientific inquiry" can be instantly replaced.



A word that expresses the idea of ​​von Neumann


I would like to introduce one that remains as a saying.
"Thinking is the primary language,
Mathematics is a secondary language.
Mathematics was built on thought,
It's just one language. "


It is important to think before actually building a physical model, which is something that cannot be grasped. Try to express it abstractly with geometric figures or organize it using group theory. The mathematical expression of the found "order" will be expressed later, and will be fleshed out in various words so that the public can understand it.


Physicists have to repeat this task indefinitely. Neumann was diagnosed with bone tumor or pancreatic cancer in 1955. He is also the result of his repeated research on radioactivity. His colleague Enrico Fermi also died of bone cancer in 1954. I pray for the souls of his later life for the development of science.


2024年02月07日

セシル パウエル
2/7改訂【素粒子の軌跡を記録する方法 を改良|アンデス山脈でπ中間子を観測】

こんにちはコウジです!
「セシル パウエル」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
セシル パウエルが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


世界の発見
【スポンサーリンク】
【1903年12月5日生まれ ~ 1969年8月9日没】



パウエルとハイゼンベルグとゾンマーフェルト


単なる偶然の産物といえば偶然ですが、
今回ご紹介するセシル パウエルと
ハイゼンベルクとゾンマーフェルトは
同じ誕生日でした。また同様に
西川 正治も同じ誕生日でした。
(別の分野ではウォルトディズニー、小林幸子


さて、
今回の紹介は英国のセシル パウエルです。

素粒子の軌跡を記録する方法
を改良しました。


つまり、


Photographic Emulsionsの中での粒子軌跡を


直接記録する方法を採用したのです。


当時は未知なる粒子が次々と発見され様々に予想
されていたのですが、
観測手段も試行錯誤が成されていました。
例えば、霧箱で飛んでくる粒子の軌跡を捉えたり、
高い山の上で観測して飛来宇宙線の大気減衰を克服したり
写真技術を活用したりしました。


パウエルの手法は写真のイメージから考えるのでしょうか。
そもそも、
博士課程の指導教員が霧箱の実験で有名なウィルソンと
ラザフォードなのです。基本は感光のイメージですね。
もっとも一般的には「Geltin silver process(銀塩写真)
」。



 パウエルによるπ中間子の観測


またパウエルは湯川秀樹が予想したパイ中間子の
観測・発見の為に
研究スタッフを派遣しています。


生成後の寿命が短く地表に到達できないパイ中間子観測の為に
ボリビアにあるアンデス山脈の
標高5000mの山から
上記乾板を使って発見
しています。


ダイナミックな観測だったと言えるでしょう。
加えて、気球を使い
高度を確保したりもしています。
観測の為に様々な工夫をこらして結果を得ています。



【スポンサーリンク】


以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。


nowkouji226@gmail.com


2020/12/15_初稿投稿
2024/02/07_改定投稿


舞台別のご紹介
時代別(順)のご紹介

イギリス関連
ケンブリッジのご紹介
熱統計関連のご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Powell, Heisenberg and Sommerfeld


It's just a coincidence, but C. Powell, Heisenberg, and Sommerfeld have the same birthday. Similarly, Shoji Nishikawa had the same birthday.


By the way, this time I would like to introduce you to Cecil Powell in the United Kingdom. The method of recording the trajectory of elementary particles has been improved. In other words, we adopted the method of directly recording the particle trajectory in Photographic Emulsions. At that time, unknown particles were discovered one after another and various expectations were made, but the observation method was also trial and error. For example, we captured the trajectory of particles flying in a cloud chamber, observed them on a high mountain to overcome the atmospheric attenuation of flying cosmic rays, and used photographic technology. Do you think of Powell's method from the image of a photograph? I will check further if there is an opportunity.



Observation of pions by Powell


Powell also dispatches research staff to observe and discover the pions predicted by Hideki Yukawa. It has been discovered using the above-mentioned dry plate from a mountain at an altitude of 5000 m in the Andes Mountains in Bolivia for the purpose of observing pions that have a short life after formation and cannot reach the surface of the earth. It can be said that it was a dynamic observation. In addition, we also use balloons to secure altitude. We have obtained results by making various efforts for observation.


2024年02月06日

ユージン・ポール・ウィグナー
‗2/6改訂【ディラックの義理のお兄さん|バーディンの指導教官】

こんにちはコウジです!
「ウィグナー」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
ウィグナーが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


素粒子と時空
【スポンサーリンク】
【1902年11月17日 ~ 1995年1月1日】



その名を書き下すと


ユージン・ポール・ウィグナー


(Eugene Paul Wigner)。


ハンガリー生まれのユダヤ人です。


後程詳しくご紹介しますが、ウィグナーは


ポール・ディラックの義理のお兄さんで、


BCS理論の作成者3人組の中心人物、


バーディーンの指導教官です。


物凄い人脈を持っている人ですね。


また、「原子核と素粒子の理論における対称性の発見」
に対して1963年のノーベル物理学賞を受賞しています。


対称性に着目した素粒子の整理は有効でその分類方法が
無ければ
進まなかった話が沢山あります。


 

 ドイツでのウィグナー


ユージン・ウィグナーは現在のベルリン工科大学
卒業後にベルリン工科大学で
勤務していましたが
ナチスドイツのユダヤ人迫害に対して研究継続の困難
を感じアメリカに亡命をします。


米国に亡命後はウィスコンシン大学で物理学の教授を務め、
その後にプリンストン大学で数学の教授を務めました。


そんなウィグナーはレオ・シラードエドワード・テラーらと、
ナチスドイツが原子爆弾を開発した時の危険性を
アメリカ政府に対して訴えていきました。


ならでは、の表現を使ってユダヤ人として
ナチスの脅威を政府に伝えられたはずです。
実際にベルリンを追われた過去を持つウィグナーは
現実に当時の状況を分析していたのだろうと思います。


実際、当時のドイツの科学の水準を分かっていて
ナチスが有していた兵器を理解していたから、
ナチスによる原爆開発の危険を強く感じていたのだと思えます。
ただし、
その後の歴史を知っている今の我々にとって見たら取り越し苦労です。


ノルマンディー上陸作戦以降の連合軍の通常兵器での反攻を思えば、
優秀とはいえ、
一国のドイツがヨーロッパ大陸を長期間占領
し続ける
事は出来なかったでしょう。政治のバランス。


現在で考えると強大化する中国に対して
欧米諸国
がどういった対応をするか気になる所ですよね。


何はともあれ、
英米が原爆を所有するきっかけをウィグナー達は作ったのです。



 原爆とウィグナー


又、ウィグナーはアメリカの原爆開発のきっかけとなった
アインシュタイン名による大統領宛書簡の起草対して
シラードや
テラーと連名で加わりました。


加えて、
原爆を開発するマンハッタン計画
にはメンバーとして加わりました。


晩年にウィグナーは哲学的な傾向を深め、
講演録
「自然科学における数学の理不尽な有効性」
を残しています。
著名なこの著作は多分野に影響を与えています。


最後にウィグナーの妹は食事の席にディラックを招いた縁で、
彼の奥さんになっています。とても意外な取り合わせですね。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をしていきます。


nowkouji226@gmail.com


2021/04/06_初版投稿
2024/02/06_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
ドイツ関連のご紹介

アメリカ関連のご紹介へ
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


 

(2021年11月時点での対応英訳)



If you write down the name


Eugene Paul Wigner.


He is a Hungarian-born Jew. As I will explain in detail later, Wigner is Paul Dirac's brother-in-law and the supervisor of Bardeen, the center of the trio of creators of BCS theory. He has a tremendous network of contacts, isn't he? He also received the 1963 Nobel Prize in Physics for his "discovery of symmetry in the theory of nuclei and elementary particles". There are many stories that the arrangement of elementary particles focusing on symmetry is effective and would not have progressed without the classification method.



Wigner in Germany


Eugene Wigner worked there after graduating from the current Berlin Institute of Technology, but found it difficult to continue his research on the persecution of Jews in Nazi Germany and went into exile in the United States.


After his exile in the United States, he was a professor of physics at the University of Wisconsin and then a professor of mathematics at Princeton University. Wigner, along with Leo Szilard and Edward Teller, appealed to the US government about the dangers of Nazi Germany developing an atomic bomb.


I think Wigner, who had a past of being ousted from Berlin, was actually analyzing the situation at that time. In other words, he knew the level of German science at the time and understood the weapons that the Nazis had, so it seems that he was strongly aware of the danger of the Nazis developing an atomic bomb. However, for those of us who know the actual history, it is a difficult move. Given the counterattack of the Allied forces with conventional weapons since the Invasion of Normandy, Germany would not have been able to continue to occupy the continent for a long time, albeit excellent. When you think about it now, you are wondering how Western countries will respond to the growing power of China. In any case, the Wigners created the opportunity for Britain and the United States to own the atomic bomb.



Atomic bomb and Wigner


Wigner joined Szilard and Teller jointly in drafting a letter to the president in the name of Einstein, which triggered the development of the American atomic bomb. In addition, he joined the Manhattan Project to develop the atomic bomb as a member.


In his later years Wigner deepened his philosophical tendencies, leaving behind his lecture "The Unreasonable Effectiveness of Mathematics in the Natural Sciences". His prominent work has influenced many disciplines. Wigner's sister is also his wife because he invited Dirac to his dining table. It's a very surprising combination.



2024年02月05日

和達清夫
2/5改定【マグニチュードの概念を考え始めて、気象台長を務めた】

こんにちはコウジです!
「和達清夫」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
和達清夫が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


自然の恵み
【スポンサーリンク】
【1902年(明治35年)9月8日 - 1995年1月5日】


愛知県に生まれた和達(わだち)清夫は和達三樹のお父様です。
(和達三樹の名は教科書でおなじみなのではないでしょうか)
和達清夫は地球科学に足跡を残し、特に気象学や地震学で
有名です。いわゆる「マグニチュード」の概念は和達清夫の研究が
ヒントとなったと言われています。


個々の地点で感じられる(観測される)
「震度」に対して地震そのものの大きさ(震源地での大きさ)を
表す指標が「マグニチュード」です。

マグニチュードの概念はその後、地震が起きるたびに活用されて
非常に重宝な概念として使われています。あたり前に使われています。
先進的な研究を続けて震源の深さから範囲も考えてマグニチュード
の概念に至ります。


地震について更に深く考えてみたいと思います。
今では子供でも知っていますが地震は波で震源から
遠ざかれば遠ざかる程に減衰します。


そして具体的には初期微動と本震から構成され(P波とS波から構成され)、
其々が 振動数と振幅を持ちます。
2つの構成波が、それぞれパラメターを持つのです。


そもそも和達清夫の博士論文は
「Shallow and deep earthquakes」
でした。


和達清夫の経歴を振り返れば、


東京帝國大学理学部物理学科を卒業


後に中央気象台に勤務していきます。


気象台では第6代気象台長を務めました。


和達清夫の時代から物理学が


実学として活用されていきます。


地球物理学を実務に適用したのです。


和達清夫は気象観測の黎明期において


指導的な役割を果たしました。


1960年から(第5代)日本学術会議議長


(第17代)日本学士院院長、


埼玉大学学長、日本環境協会会長


などを歴任しました。


和達清夫は1985年には


文化勲章を受勲しています。


そして92歳で亡くなっています。


 



テックアカデミー無料メンター相談
【スポンサーリンク】



〆最後に〆


以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。、


nowkouji226@gmail.com


2022/10/07_初回投稿
2024/02/05_改訂投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


 (2021年10月時点での対応英訳)


Wadachi Kiyoo born in Aichi is father of Miki Wadachi.(whether the name of Miki Wadachi is not familiar with a textbook)
Kiyoo Wadachi leaves a footprint for earth science and is famous for meteorology in particular and seismology.


It is said that a study of Kiyoo Wadachi became the hint as for the concept of so-called "magnitude". Whenever an earthquake gets up afterwards, the concept of the magnitude to express size (size at the epicenter) of the earthquake itself for "the seismic intensity" that is felt to be individual points (is observed) is utilized and is used as a very useful concept. It is used in front of the area.
Wadachi continue an advanced study and think about the range from the depth of the seismic center and lead to a concept of the magnitude.


In the first place the doctoral dissertation of Kiyoo Wadachi
"Shallow and deep earthquakes"
I did it in this.


If look back on a career of Kiyoo Wadachi, Tokyo emperor country University department of science physics subject


After graduating from this, the Central Meteorological Observatory works.


Wadachi acted as Mayor of the sixth meteorological observatory in the meteorological observatory.


Physics is utilized as practical science from the times of Kiyoo Wadachi.


Wadachi applied geophysics to business.


Kiyoo Wadachi played a leading role in the dawn of the weather observation.


In 1960 (the fifth) Chairperson of Science Council of Japan (the 17th) Japan Academy's director,


Wadachi successively held Saitama University's president, Japanese environmental association's chairperson.


As for Kiyoo Wadachi, Conforment of honor is doing the Order of Culture in 1985.


Wadachi die at 92 years old.


 

2024年02月04日

ポール・ディラック
2/4改定【数々の数学と逸話を生んだケンブリッジの天才】

こんにちはコウジです!
「ディラック」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
ディラックが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


超関数入門
【スポンサーリンク】
【1902年8月8日生まれ ~ 1984年10月20日】



無口なディラック


イギリスのディラックは


とても謙虚で無口な人でした。


ノーベル賞が決まった際には、


有名になる事を恐れて受賞の辞退を


考えていた様です。そんな人なのですが、


20世紀初頭の天才達がひしめく中で


エーレンフェストボーアパウリ、 


ファインマンハイゼンベルクシュレディンガーなど


と量子力学を確立します。特にシュレディンガーとは


同じタイミングでノーベル賞を受賞します。


ディラックの人柄を考えるにあたり少し、


その家族について言及します。


ディラックが10代後半の時期にスイスから


家族は国籍を移しています。そしてディラックの


性格形成を語っていく上で家庭環境は大きな要素


だったようです。まず1924年にディラックの


兄が自ら命を断っています。


色々考えた末だったのでしょうか。


ディラック自身も、その父と会話し辛い


場面が多々あったようです。そして、


極端に無口な人になっていったようです。



ディラックと数学


しかしディラックは、闇に沈まずに数学を駆使して
輝かしい成果を残しています。


特にデルタ関数やブラケット記法は素晴らしいのです。
独自の足跡を沢山残しました。


デルタ関数は超関数の仲間で積分を使って定義されます。


多分野で有用である関数ですが、物理の分野では観測に伴い、


波束が収束する様子が表現出来るのです。


数学上ではヘビサイド関数を表現出来ます。
現象は捉え方次第で色々な観測が出来て
周波数軸の観点で物事を考える時と
実座標軸(長さの観点)で考える時と
数式上の表現が異なります。
工学的にこの視点を応用した解析も
実用上で非常に便利に利用されていて
市販品のアナライザーで簡単に
業務解析をする事が出来ます。


ブラケット記法とは日本語で「括弧」
の記号を使った表記です。その定式化では
カギカッコ<>の形の 「<」 の部分
だけを「ブラベクトル」と呼び
カギカッコ<>の形の 「>」 の部分
だけを「ケットベクトル」と呼びます。


非常に分り易い表現でブラの部分がベクトル量
に相当してケットの部分が、
それと作用するベクトル量に相当する定式化です。


作用する前のケットが固有値を持つ場合に
固有状態を持つと表現されます。


そしてなんと、ケット・ブラの順番で並べると
その塊は行列相当の働きをします。
なんとも見事な定式化です。
数学の素養があれば上記文章が味わえます。
そして凄さが伝わるはずです。
あえて言葉にすることで数学の凄さが伝わります。


ここでのベクトルがヒルベルトベクトル(無限次元に対応)
であることが学部時代の私にとって感動的でした。
一瞬にして物理量に対応する状態が記述された気がしました。


一次元が線で、二次元が平面で、三次元が立体空間だ
というくらいしか想像がつかなかった高校時代から
想像は大きく膨らみ、いきなり無限次元に話が拡張したのです。


一つのベクトルが多くの情報を担います。
他方でデルタ関数は観測が一瞬にして
波束の収縮を引き起こす様子を表現していると思います。


こうした定式化をディラックは進め、
理論から提唱される物質を考え出しています。


具体的に反物質と呼ぶ存在がいくつも提唱され、
見つかっています。反物質は寿命が通常の物質より
若干短かったりしますので日常的ではありませんが、
粒子の生成消滅を論じたりする際に大事な要素です。


陽子には反陽子があり中性子には反中性子があります。



ディラック来日


そして、何よりディラックは無口な人です。


多くの成果を出していく中で各国の物理学会で招待する
動きがあって日本にも来ていたようです。


ただ性格が性格でですので余り逸話が残っていません。
「仁科さんとお茶飲んだ時に・・・」みたいな話が
残っていないのです。無論、歳下の朝永さんとか湯川さんは
尚更の事、話しづらかったと思えます。


話しかけても無言だったのでしょう。
多分オランダでも日常会話はほとんどなかったと思われます。
私見では「彼は言葉をとても大事に使いたがります。」
そして出てくる言葉が綺羅星だったり残念だったりします。



ディラックの笑い話


そんなディラックについて伝わっている有名な話があります。
ディラックの無口な性格を表す逸話です。


周りの人々が奇妙に思いながらも尊重していた様子が伺えます。
ケンブリッジでは「1Dirac」という単位を使われていました。
仲間内での意味としては

「1Word/1Hours」が「1Dirac」に相当して
一時間あたりに単語二つを使ったら「2Dirac」消費
されたとして換算されました。


ディラックは一時間に数Dirac程度しか言葉を残さなかったそうです。 



その他、ディラックに対する逸話


ディラックの人柄を感じさせる暖かいやりとりです。
例えば以下。





⓪1928年の春ライデンに居た頃に…すぐに答えが出ない

 ような質問があった。ディラックは黒板に非常に小さい文字で

 それをかくすようにしてすばやく計算した。それを見て 

 エーレンフェストは興奮して「彼が実際にどうやって研究を

 するか垣間見ることが出来る!」といった。しかし、

 みんながそれをよく見ない内にディラックは直ぐにその計算を消して

 何時ものスタイルでエレガントな表式を書き進めた。

(以上、カシミールの経験)


@ディラックは「パウリには一個の砂糖で十分だと思う」と言った。

 しばらくして「誰にも一個の砂糖で十分だと思う。」

 更にしばらくして

「一個で十分なように砂糖は作られていると思う。」

(こればボーアがカシミールに話したことだという。


Aディラックと研究所の図書館の脇で立ち話をしている

 時のことです。仁科はディラックに 貴方の論文には

 符号の誤りがあるのをみつけました。」と言ってから、

 次のような会話が仁科とディラックの間で交わされました。

 ディラック「しかし結果は正しいですよ。」

 それに対して仁科は「では二つあやまりがあるにちがいありません。」

 するとディラック「偶数個の過ちがあるといわなければなりませんね。」


B1933年のボーア・コンファレンスで恐らくディラックだけが

 エーレンフェストの相当なうつ状態に気付いていた。その事を

 心配してボーア夫人に話したが、誰も何もできなかったという

 (後にボーア婦人がカシミールに話したこと。)エーレンフェストが

 命を絶ったのはそのすぐ後であった。



 



 伝統を受け継ぐディラック


しかし、そんなディラックは真面目な性格、心を重んじる性格
もあって周囲から大事にされていた様子が伺われます。


本ブログのTOP画面で使っている集合写真でも
真ん中の列の中央に居ます。若き天才ディラックに
アインシュタインキュリー夫人が気を遣って
「君の研究は素晴らしい。これからも頑張って下さいよ!」
といった気持で尊重しているような気がするのです。


そして、写真の真ん中にニュートンの伝統を受け継ぐ
ケンブリッジで研究をするディラックが居て、共に
時代を重ねていくパウリハイゼンベルクが居るのです。


そして、
ディラックはイギリスの伝統を受け継いだ人でもあります。
ケンブリッジではルーカス教授職を務めました。


この名誉は初代・アイザック・バローから始まり
二代目・アイザック・ニュートンと続き、ディラックが継ぎ、
最近では宇宙論で名を成したS・W・ホーキング博士
が受け継いでいます。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2020/08/17_初稿投稿
2023/08/08_改定投稿
2024/02/04‗改訂投稿


舞台別のご紹介へ
時代別(順)のご紹介へ

イギリスのご紹介へ
ケンブリッジのご紹介へ
オランダ関係の紹介へ
ライデン大学のご紹介へ

アメリカ関連のご紹介へ
熱統計関連のご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Quiet Dirac


Dirac in England was a very humble and reticent person. When the Nobel Prize was decided, he seemed to be thinking about declining the award for fear of becoming famous. Although he is such a person, he establishes quantum mechanics with Feynman, Heisenberg, Schrodinger, etc. in the midst of the geniuses of the early 20th century. In particular, he won the Nobel Prize at the same time as Schrodinger. In considering Dirac's personality, I would like to mention his family for a moment.


His family transferred nationality from Switzerland when Dirac was in his late teens. And it seems that the family environment was a big factor in talking about Dirac's personality formation. First, in 1924, Dirac's brother died himself. Was he the end of many thoughts? It seems that Dirac himself had many difficult conversations with his father. And he seems to have become an extremely reticent person.



Dirac and math


However, Dirac has achieved brilliant results by making full use of mathematics without sinking into the darkness. Especially the delta function and bracket notation are great. I left a lot of such footprints.


The delta function is a family of generalized functions defined using integrals. It is a useful function in many fields, but in the field of physics, it is possible to express how the wave packet converges with observation. Heaviside functions can be expressed mathematically. Various observations can be made depending on how the phenomenon is perceived, and the mathematical expression differs between when thinking about things from the perspective of the frequency axis and when thinking from the perspective of the actual coordinate axis (from the perspective of length). Analysis that applies this viewpoint engineeringly is also very convenient in practical use, and business analysis can be easily performed with a commercially available analyzer.


Bra-ket notation is a notation that uses the "parentheses" symbol in Japanese. In that formulation
Only the "<" part in the shape of the key bracket <> is called the "bra vector".
Only the ">" part in the shape of the key bracket <> is called the "ket vector".
The bra part is a vector amount in a very easy-to-understand expression
The part of the ket corresponding to is the formulation corresponding to the amount of vector acting on it.



Eigenstate and dirac


It is expressed as having an eigenstate when the pre-acting ket has an eigenvalue. It was impressive to me when I was an undergraduate that the vector here is a Hilbert vector (corresponding to infinite dimensions). I felt that the state corresponding to the physical quantity was described in an instant. From high school, when I could only imagine that one dimension was a line, two dimensions were a plane, and three dimensions were a three-dimensional space, my imagination expanded greatly, and the story suddenly expanded to infinite dimensions. One vector carries a lot of information. On the other hand, I think that the delta function expresses how the observation causes the wave function collapse in an instant.


Dirac is proceeding with this formulation and has come up with substances proposed by theory. A number of specific antimatter entities have been proposed and found. Antimatter is not routine because it has a slightly shorter lifespan than normal matter, but it is an important factor when discussing the formation and annihilation of particles. Protons have antiprotons and neutrons have antineutrons.



Dirac visits Japan


And above all, Dirac is a reticent person. While he has produced many achievements, he seems to have come to Japan as he was invited to the Physical Society of Japan. He just doesn't have much anecdotes because he has a personality. There is no such thing as "when I drank tea with Nishina-san ...". Of course, it seems that Mr. Tomonaga and Mr. Yukawa, who are younger, were even more difficult to talk to.


He would have been silent when he spoke. Perhaps there was little daily conversation in the Netherlands. In Cambridge, the unit "1 Dirac" was used. As for the meaning within the group, "1 Word / 1 Hours" is equivalent to "1 Dirac", and if two words are used per hour, it is converted as "2 Dirac" consumed. Dirac left only a few words per hour.


However, it seems that such Dirac was taken care of by the people around him because of his serious personality and personality that does not deceive people. The group photo used on the TOP screen of this blog is also in the center of the middle row. I feel that Einstein and Mrs. Curie care about the young genius Dirac and respect him with the feeling that "Your research is wonderful. Please continue to do your best!"


And Dirac is also a man who inherited the British tradition.
He was a Lucas professor in Cambridge. This honor begins with the first Isaac Barrow, continues with the second Isaac Newton, and has recently been inherited by Dr. SW Hawking, who has made a name for himself in cosmology.



2024年02月03日

ハイゼンベルク
【白いユダヤ人と呼ばれ乍らも不確定性関係を構築】

こんにちはコウジです!
「ハイゼンベルク」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
ハイゼンベルクが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)

初見の人が検索結果を見て記事内容が分かり易いように再推敲します。

SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

https://amzn.to/3Ofv25X
【スポンサーリンク】
【1901年12月5日生まれ ~ 1976年2月1日没】

 ハイゼンベルグの不確定性関係

ハイゼンベルクは行列形式の導入や、

不確定性関係等の適用で、

量子論を形作った一人です。

バイエルン王国に生まれミュンヘン大学でゾンマーフェルトに学び
マックス・ボルンの下で助手を務め、コペンハーゲンの
ニールス・ボーアの下で修業します。
そうした一線級の議論の中で理論の形式を整えます。

量子論の本質的な概念である不確定性原理はボルンや
ヨルダン、ハイゼンベルクによって確立されました。
具体的に、ハイゼンベルグは1925年の
「運動力学及び力学の関係式の量子論的再解釈について」
において新しい発想を開きます。

 論文を読んだボルンが論文中の「遷移振幅」が
 行列であることに気付いたのです。

そこで、ボルンとヨルダンは「量子力学について」で
座標と運動量の交換関係を考えていきます。
それの続いてボルン、ヨルダン、ハイゼンベルグの3人で
「量子力学についてU」という論文を纏め行列力学が完成しました。
「量子力学は多くの人間で作られている」
と改めて感じさせるストーリーですね。

 

可視化で想像できる世界が
「どこまで細かく考えていけるか」
という命題に対しての一つの回答が
不確定性関係を含む量子力学の体系です。

 ハイゼンベルグと同時代の偉人達

加えて、ハイゼンベルクはシュレディンガーやポール・ディラック
と同じ時代に生き、積極的に行動すればアインシュタインや
ボースとも議論が出来ました。。そうした天才達がミクロの原理を
一つ一つ解きほぐしたのです。

まだ見えない原子レベルの大きさの事象を推察する
手法が色々と試みられて、その結果を説明する理論が発展したのです。
不確定性関係の発表が1927年なのですが、同時期には数多くの
革新的な発表がされて量子力学の対象の理論と応用技術が
飛躍的に発展した時代でした。

同時に大変な時代背景として(流れとして)、
先ず第一次世界大戦(1914/7/28 - 1918/11/11)
そして
第二次世界大戦(1939-45)があったのです。
ハイゼンベルクはアインシュタインが作った
相対論を駆使したりユダヤ人物理学者を養護
していたので、ナチス党員の物理学者から
「白いユダヤ人」と呼ばれ苦労しています。
プランクからの指摘もあり
戦後の体制を見据えてハイゼンベルクはドイツ
に残りました。

 サイクロトロンとハイゼンベルグ

しかし戦時下ですので物理の知識を
ナチスの為に使う事になり、色々考えたようです。
実際にハイゼンベルクのシンクロトロンが火災を起こし
世界でニュースとなったと聞き、アメリカに亡命していた
アインシュタインは大変驚いたと言われています。

実際にその事件が彼に原爆開発を決意させたとも言われています。
そして、
大戦が深まる中でナチス側も原子力爆弾の実用化を模索していた中で
当時のドイツ内でのハイゼンベルグの立場は極めて苦しくなります。

実際にハイゼンベルグが積極的な態度をとった
としたら恐ろしい事です。歴史には「たら・れば」
はよく語られていて、、仮にナチスが原爆を持っていたら、
連合国との原爆の応酬でとても恐ろしい状況になっていた筈です。

私自身も量子力学の計算を進めていて感じたのですが、
オブザーバブルに対する状態の時間発展を表す表式は
数学的な厳密さを持つ半面で、
状態を表している物理表現として洗練されてます。

ハイゼンベルク等の提唱した行列形式はそこにつながっていきます。
又、いくつかの思考実験で裏打ちされた不確定性関係は
量子力学の現象理解の中では本質的です。

またハイゼンベルクはピアノの名手
だったと言われていています。
聞いてみたかったですね。



コスパ最強・テックジム|プログラミング教室の無料カウンセリング
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。

nowkouji226@gmail.com

2020/08/19_初回投稿
2024/02/03_改訂投稿

旧舞台別まとめへ
舞台別の纏めへ
時代別(順)のご紹介
オランダ関係へ
ライデン大学へ
ドイツ関係のご紹介へ
デンマーク関係へ
量子力学関係へ

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021/10月時点での対応英訳)

Heisenberg's Uncertainty Principle

Heisenberg is one of the people who shaped quantum theory by introducing the matrix form and applying the uncertainty relation. Born in the Kingdom of Bavaria, he studied under Sommerfeld at the University of Munich, worked as an assistant under Max Born, and trained under Niels Bohr in Copenhagen. He formalizes his theory in such first-class discussions. The uncertainty principle, which is an essential concept of quantum theory, was established by Born, Jordan, and Heisenberg. One answer to the proposition of how finely the world that can be imagined by visualization can be considered is the system of quantum mechanics including the uncertainty relation.

Heisenberg and his contemporaries

In addition, Heisenberg lived in the same era as Schrodinger and Paul Dirac, and if he acted positively, he could argue with Einstein and Bose. .. These geniuses unraveled the micro-principles one by one. Various methods have been tried to infer events of atomic level that are not yet visible, and the theory that explains the results has been developed. The Uncertainty Principle was announced in 1927, and at the same time, many innovative announcements were made and the theory and applied technology of the object of quantum mechanics developed dramatically.

At the same time, due to the difficult historical background and World War II, Heisenberg used the relativity created by Einstein and cared for Jewish physicists, so he was called "white Jew" by Nazi physicists. I'm having a hard time. Heisenberg remained in Germany in anticipation of the postwar regime, as pointed out by Planck.

Cyclotron and Heisenberg

However, since it is during the war, knowledge of physics
It was decided to use it for the Nazis, and it seems that he thought about various things.
The Heisenberg synchrotron actually ignited
Einstein, who was in exile in the United States, is very surprised to hear that he has become news in the world.
It is said that the incident actually made him decide to develop the atomic bomb.

And as the war deepened, the Nazi side was also searching for the practical application of nuclear bombs, and Heisenberg's position in Germany at that time became extremely difficult. It would be scary if Heisenberg actually took a positive attitude. "Tara, if" is often spoken in history, and if the Nazis had an atomic bomb, it would have been a very scary situation due to the exchange of the atomic bomb with the Allies.

He felt that he was proceeding with the calculation of quantum mechanics, but the expression that expresses the time evolution of the state with respect to the observable is mathematically rigorous, but it is refined as a physical expression that expresses the state. .. The matrix format proposed by Heisenberg and others will lead to that. Also, the uncertainty relation backed by some thought experiments is essential in understanding the phenomenon of quantum mechanics.

Heisenberg is a master of the piano
It is said that it was.
I want to listen.

2024年02月02日

エンリコ・フェルミ
2/2改訂【マンハッタン計画に参画し排他律に従う原理を構築した一人】

こんにちはコウジです!
「フェルミ」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
フェルミが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


↑Credit:Jimmy in unsplash↑


角運動量とスピン
【スポンサーリンク】
【1901年9月29日生まれ ~ 1954年11月28日没】



イタリア生まれのフェルミ


フェルミはイタリアのローマに生まれアメリカで没してます。


アメリカではフェルミの名前を冠した研究所が今でも


シカゴ大学内にあって、そこで議論が交わされています。
「フェルミの講義」について他の方のブログへリンクします。
少しでも「臨場感」を味わって下さい。。


フェルミはご紹介しているC.N,Yangをはじめ
多くの物理学者を育て上げました。
その業績は社会的側面が大きいものもある一方で
純理論を突き詰めた後世の多くの
物理学者が使う
原理・概念もあります。


まさにパラダイムシフトを起こした
立役者です。ミクロの世界を切り開きました。


 

そもそも、フェルミは学生時代から抜きん出た優秀さを備えています。
一歩一歩、フェルミは議論を展開して
ノーベル賞を受け、その授賞式
の際にイタリアから
アメリカに亡命しました。


フェルミの時代にはナチスが猛威をふるっていて、
奥様がユダヤ人
だつた為もフェルミは迫害されていたのです。



フェルミとマンハッタン計画


アメリカ移住後にフェルミは有名なマンハッタン計画に参画し、
原子力発電所の創設に携わり社会を大きく変えていきます。


そもそも、計画への参加はオットー・ハーンがドイツで
核分裂実験に成功した事情が大きいです。


フェルミを初めとした物理学者達が時代に危惧感を抱いたのです。
アメリカを中心とする
資本主義圏が自由を謳歌した点で
フェルミの業績は
計り知れないです。


反面でスリーマイル島の事故や福島での原発事故を思い起こすと、
気楽に賞賛ばかりはしていられません。


このブログの中で私が何回か主張しているように
識者が知恵を集結して問いかけなければいけません。


かってのラッセルーアインシュタイン宣言を思い起こしたいです。
一方で我々、大衆も皆で分かる範囲の言葉を使い
意見を交わさねばなりません


可能な範囲で意見を交わして民衆の英知を集結させるべきです。
個人個人が平和に対して
語る時に少しでもしっかりした
考えをもって
話さないといけないのです。


色々な人と語る時に話が繋がっていく様な議論の土壌を、
少しずつ育んでいかないといけないです。その為には
会話をする個人それぞれが、より平和と現実に対して
しっかりした考えを持ってほしいです。
そんな人が話しやすい雰囲気を
出していけるような人になって下さい。
自分が話を広げるだけではなくて、
相手の意見や気分を理解する力も大きいです。

考えを作るうえで政治家には頼れない昨今です。
各人、しっかりした考えを育んで下さい。



 フェルミトとスピン


さてフェルミに話を戻します。フェルミは純理論の中で
スピン角運動量に関して議論を進めました。


別のご紹介でボゾン・アインシュタインの系を紹介しましたが、
フェルミとディラックは別の粒子群に着目します。


後世の理解ではスピン角運動量が半整数(1/2とか3/2とかいった数)
の粒子はフェルミ粒子(フェルミオン)と呼ばれボゾンとは
別の振る舞いを示します。
具体的なフェルミオンとしてはクォークや電子、
ミュー粒子、
ニュートリノ、陽子、中性子もフェルミ粒子の仲間です。
こうした概念は電気伝導率の物性を議論するときには欠かせません。


フェルミの排他律に従う電子の集団を統計的に扱い、
フェルミ統計を確立したのです。
例えばこの理論で金属他の熱伝導が非常によく説明されます。


こうして沢山の業績を世に残し、フェルミは天に召されました。


彼は病床で点滴が落ちるのを眺めて、


その流速を出していたと言われています。


フェルミこそ、生粋の物理学者でした。


謹んでご冥福をお祈り致します。




【スポンサーリンク】


以上、間違いやご意見があれば
以下アドレスまでお願いします。
問題点に会しては適時、
改定・訂正を致します。


nowkouji226@gmail.com


2020/09/13_初回投稿
2024/02/02_改定投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
イタリア関係のご紹介

オランダ関係の紹介へ
ライデン大学のご紹介へ
アメリカ関連のご紹介へ
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Italian-born Fermi


Fermi was born in Rome, Italy and died in the United States. In the United States, there is still a research institute named after Fermi at the University of Chicago, where discussions are held. While some of its achievements have a large social aspect, there are also principles and concepts used by many posterity physicists who have pursued pure theory. He is the driving force behind the paradigm shift. He opened up the micro world.


In the first place, Fermi has outstanding excellence since his school days. Step by step, Fermi developed his discussions, received the Nobel Prize, and went into exile from Italy to the United States at the award ceremony. At his time, his wife was persecuted because he was Jewish.



Fermi and Manhattan Project


After moving to the United States, Fermi participated in the famous Manhattan Project and was involved in the creation of a nuclear power plant, which would significantly change society. In the first place, participation in the project is largely due to Otto Hahn's successful nuclear fission experiment in Germany. Fermi and other physicists were worried about the times. Fermi's achievements are immeasurable in that the capitalist sphere centered on the United States enjoyed freedom. On the other hand, when he recalls the Three Mile Island accident and the nuclear accident at Fukushima, he cannot easily praise him. As I have argued several times in this blog, wisdom must be gathered and questioned. I want to recall the old Russell-Einstein Declaration. On the other hand, we, the general public, must exchange opinions using words that everyone can understand.


We should exchange opinions to the extent possible and bring together the wisdom of the people. When an individual talks about peace, he or she must have a firm idea. We have to gradually nurture the ground for discussions that will connect the conversations when talking to various people. I want each individual who has a conversation to have a firmer idea of ​​peace and reality. Please become a person who can create an atmosphere that makes it easy for such people to talk. Not only do I spread the story, but I also have a great ability to understand the opinions and moods of the other person. Nowadays, we cannot rely on politicians to make ideas. Please nurture a solid idea for each person.



Fermit and spin


Now let's get back to Fermi. Fermi proceeded with the discussion on spin angular momentum in pure theory. He introduced the Boson Einstein system in another introduction, but Fermi and Dirac focus on different particle swarms. In later understanding, particles with a half-integer spin angle momentum (numbers such as 1/2 and 3/2) are called fermions and behave differently from bosons. As specific fermions, quarks, electrons, muons, neutrinos, protons, and neutrons are also fermions. These concepts are indispensable when discussing the physical characteristics of electrical conductivity.


He established the Fermi statistics by statistically treating the group of electrons that obey the Fermi exclusion principle. For example, this theory explains the heat conduction of metals and others very well. .. In this way, Fermi was called to heaven, leaving many achievements in the world.


Fermi is said to have watched the drip drop on the bed and set the flow velocity. Fermi was a true physicist. He humbly prays for his soul.



 

2024年02月01日

E・O・ローレンス
2/1改訂【サイクロトロンを発明し人工放射性元素を実現】

こんにちはコウジです!
「ローレンス」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
ローレンスが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。











 



【スポンサーリンク】
【1901年8月8日~1958年8月27日】



 優れた実験家ローレンス


その名はErnest Orlando Lawrence。


ローレンスは優れた実験家で今でも世界中で


応用されている「サイクロトロン」を発明した事


で広く知られています。


 

米サウスダコタでノルウェー系の両親に生まれ少年時代は
Merle Tuveと
共に簡易無線装置を作成したりしていました。


その後、サウスダコタ大学時代は医学を志望してましたが、
化学の学士号、物理学の修士号を習得します。


Tuveと共にスワン先生の下で学びますローレンスがイェール大学で
博士号をとった時には光電効果に関する研究をしていたようです。


その後、恩師だったスワン先生がイェール大学を去るタイミングで
カリフォルニア大
に移ります。ローレンスは実験家として大変、
有望視されていました。



ローレンスの業績 


サイクロトロンを使った実験で、ローレンスがその装置を
活用
した応用例が人工放射性元素でした。


ローレンスと彼の率いるバークレー国立研究所は自然界に
存在する元素だけでなく、
不安定な元素を作り出したのです。


強い磁場を使い帯電しているイオンをビーム状に出す事が出来るので
ローレンスの作ったサイクロトロンはイオンが
反応する状態を作れるのです。


数メートル・オーダーの装置を使って原子を加速させて
コンマナノ・オーダーの原子の反応を調べていきます。


日本、イギリスが発展形の措置を計画していきます。
サイクロトロンを使えば特定金属にイオンビームを
当て続ける事が出来たりする訳です。


こうした装置の開発を通じてローレンスは
人類に新しい知見を
もたらしたのです。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/31_初回原稿
2024/02/01_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関連のご紹介へ
イェール大学関連のご紹介へ
UCBのご紹介

熱統計関連
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Excellent experimenter Lawrence


Its name is Ernest Orlando Lawrence. Lawrence is a well-known experimenter and widely known for inventing the cyclotron, which is still frequently applied.


Born to Norwegian parents, he worked with Merle Tuve as a boy to create simple radios.


Later, Lawrence aspired to medicine when he was at the University of South Dakota, but he earned a bachelor's degree in chemistry and a master's degree in physics. He studies with Tuve under Dr. Swan. When Lawrence got his PhD at Yale University, he seems to have been studying the photoelectric effect.


After that, his teacher, Swan, will move to the University of California when he leaves Yale University. Lawrence was very promising as an experimenter.



Lawrence's achievements


In his cyclotron experiments, Lawrence's application of using the device was an artificial radioactive element. Lawrence and his Berkeley National Laboratory created unstable elements as well as those that exist in nature.


Since it is possible to emit charged ions in the form of a beam using a strong magnetic field, the cyclotron made by Lawrence can create a state in which the ions react. Japan and the United Kingdom will plan similar measures.


If you use a cyclotron, you can keep shining an ion beam on a specific metal.


Through the development of such equipment
Lawrence gives humanity new insights
he brought it.