アフィリエイト広告を利用しています

2017年04月11日

数学: 圏の骨格が圏になること, および HP-42S の数値の内部表現と表示方法について

圏の骨格の構成と, それが圏になることを証明する問題への解答を LaTeX で書いている. やっとここまできた.

これだけ時間がかかったのは, 書いている途中にどんどん解答の粗が見えてきて, そのたびに全部書き直していたからだ.
ずいぶん手間取ったが, 細かい部分にまで考えが及ぶようになってきた道すがらと思えば嬉しい.

$\mathscr{C}$ を任意の圏とする. $\mathscr{C}$ の対象の集まり $\mathrm{Ob}(\mathscr{C})$ は同型であることを同値関係 $\backsimeq_{0}$ として, その商空間 $\hat{O} = \mathrm{Ob}(\mathscr{C})\,\big/\!\backsimeq_{0}$ を考えることができる. また, $\mathscr{C}$ の 2 つの射 $(f : X \rightarrow Y), (g : X' \rightarrow Y') \in \mathrm{Ar}(\mathscr{C})$ が同型であることを, 2 つの同型射 $h : X \rightarrow X'$ と $k : Y \rightarrow Y'$ の対 $(h, k)$ が存在して図式
\[
\begin{xy}
\xymatrix@=48pt {
X \ar[r]^{h} \ar[d]_{f} & X' \ar[d]^{g} \\
X' \ar[r]_{k} & Y'
}
\end{xy}
\] が可換図式になることと定めると, これを同値関係 $\backsimeq_{1}$ として商空間 $\hat{A} = \mathrm{Ar}(\mathscr{C})\,\big/\!\backsimeq_{1}$ を考えることができる.
このとき, 圏 $\mathscr{C}$ の骨格 $\mathrm{sk}(\mathscr{C})$ を次のように構成できる.
(1) 商空間 $\hat{O}$ の各元 $o$ から 1 つ代表元 $X_{o}$ をとって族 $O = \left\{\, X_{o} \,\big|\, o \in \hat{O} \,\right\}$ を構成する;
(2) (1) の $O$ に対して, 商空間 $\hat{A}$ の各元 $\alpha$ から代表元を,
 (i) $\alpha$ がある $X \in O$ に対して恒等射 $\mathrm{id}_{X} : X \rightarrow X$ の同値類であるとき, $\alpha$ の代表元を $f_{\alpha} = \mathrm{id}_{X}$ とする.
 (ii) (i) 以外のとき, $\alpha$ の代表元 $f_{\alpha} = (f : X \rightarrow Y)$ を $X, Y \in O$ を満たすように選ぶことができる;
 (iii) (i), (ii) より $\hat{A}$ の各元 $\alpha$ から 1 つ代表元 $f_{\alpha}$ をとって族 $A = \left\{\, f_{\alpha} \,\big|\, \alpha \in \hat{A} \,\right\}$ を構成する;
(3) $O$ と $A$ の組を $\mathrm{sk}(\mathscr{C})$ とおく. これが圏 $\mathscr{C}$ の骨格となる.
(4) $O$ を対象の集まり, $A$ を射の集まりとして, 各々の射のソースとターゲット, 各々の対象の上の恒等射, 射の合成を適切に定義すれば $\mathrm{sk}(\mathscr{C})$ は圏になる.

こういう構成で証明を書いている. (3) の途中まで書いた. 焦らず慎重に進める.



HP-42S という電卓では, 数値は内部では 12 桁の数値部分と 3 桁の指数部分からなっている.
表示方法は次の 2 種類に分けられる.
(1) 数値を指定の桁数に丸めるフォーマット. 3 種類ある.
 ・ FIX (固定小数点表示)
 ・ SCI (科学向け指数表示)
 ・ ENG (工学式指数表示)
(2) 数値の全桁を表示するフォーマット. ALL フォーマットと呼ばれる.

これを現在一所懸命に理解しようとしているところ.
教科書にしている HP-42S のマニュアルではこれについて丁寧な説明があるのだが, なかなか理解できないでいる.
数値データの構造に関わる説明が頭に入ってこない.
何らかのイメージを頭の中に構築したいと思うのだがなぜだかとても難しい.

それで気が付いたのは, 自分にとってアルゴリズム的な思考が未だに困難だという原因の一つに, ここで遭遇したデータ構造を把握する能力の欠如があるのではないかということである.

以前, 本を読むのが著しく困難だったときには, 文章を繫げている論理の連鎖を頭の中で辿ることができなかった.
それが去年の夏にやっとできるようになり, 読書が再びできるようになった.

同様にプログラミングを行うための思考・アルゴリズムの思考は, データ概念の認識が行えるようになったときに一段階進むのではないか.

さしあたりは, 根気よく考え続けるしか無い.
posted by 底彦 at 22:51 | Comment(0) | TrackBack(0) | 数学

2017年03月30日

数学: 圏の骨格 (skeleton)

今日は一日, 数学の問題を考えていた.
体調が安定せず, 細切れの時間を繋ぎ合わせて証明を考えていた問題である.

問題. $\mathscr{C}$ を任意の圏とする. このとき, $\mathscr{C}$ の射の全体 $\mathrm{Ar}(\mathscr{C})$ にも圏の構造が入る. 圏としての $\mathrm{Ar}(\mathscr{C})$ を $\mathscr{C}$ の射圏 (arrow category) と呼ぶ.
$\mathscr{C}$ の対象の全体 $\mathrm{Ob}(\mathscr{C})$ も射圏 $\mathrm{Ar}(\mathscr{C})$ の対象 (つまり $\mathscr{C}$ の射の全体) も, 圏において同型であることが同値関係となるので, その同値類を考えることができる.
$\mathrm{Ob}(\mathscr{C})$ の対象の各同値類から代表となる 1 つの対象を選んでその集まりを $O$ とする. 同様に $\mathrm{Ar}(\mathscr{C})$ の射の各同値類から代表となる 1 つの射を選んでその集まりを $A$ とする.
$A$ の各元に対して, そのソースとターゲットとなる $O$ の元, $O$ の各元に対して, その上の恒等射となる $A$ の元, および $A$ 上の部分 2 項演算 "$\circ$" を射の合成として適当に定めることにより, $O$ の元を対象, $A$ の元を射として新たな圏が構成されることを示せ.

このようにして構成された圏を, 圏 $\mathscr{C}$ の骨格 (skeleton) と呼び, $\mathrm{sk}(\mathscr{C})$ と表わす.

この問題は解けたと思っていた.
しかし, その証明が何だかぼんやりしてるなあと感じていて, どうにも気になるのであらためてその証明を見直した.
そうしたらやはり間違いがあった.
圏 $\mathscr{C}$ の骨格となる圏 $\mathrm{sk}(\mathscr{C})$ に入れる射の合成の定義が駄目だった.
今のやり方だと, 骨格の構成がうまくいかない圏の具体例が見つかったのである.
これでは駄目だ. 夜までかけて証明を書き直した. あと一歩のところで疲れて倒れたが.

脳の中の長く使っていなかった部位を本当に久々 (10 年振りくらい?) に動かした感覚があった.
大変だったが懐しいような新鮮なような感じもした.

数学では何かを定義する際に, それが全体の理論の枠組みの中で矛盾を起こさないようにすること (well-defined にすること) が大切で, だから証明もそういったことが起こらないように進めなければいけない.
鬱が悪くなって, こういう繊細な思考を張り巡らせることが非常に難しくなって, ぼんやりとした感じしか持てなくなっていた.
そのぼんやり感を打破できたかも知れない. デリケートな思考の感覚を取り戻せたかも知れない.
posted by 底彦 at 20:35 | Comment(0) | TrackBack(0) | 数学

2017年03月18日

数学: Hurewicz 変換が自然変換であること (入院中のメモより)

● Hurewicz 変換の定義
ずっと書き漏らしてきたことをまとめておく. 2016 年 5 月 29 日の記事: 入院中のメモ: 数学 ── Hurewicz 変換とは何だったか の続き.
$\mathbf{pcTop}$ を弧状連結な位相空間の圏, $\mathbf{Grp}$ を群の圏とする.
$\pi_1 : \mathbf{pcTop} \rightarrow \mathbf{Grp}$ を基本群関手, $H_1 : \mathbf{pcTop} \rightarrow \mathbf{Grp}$ を 1 次の特異ホモロジー群関手とする.

任意の弧状連結な位相空間 $X \in \mathrm{Ob}(\mathbf{pcTop})$ 上のループ $\alpha \in \Omega(X)$ をそのまま $X$ 上の特異 1-サイクル $\alpha \in Z_1(X)$ として考える.
この対応はホモトピー同値性を保存する.
すなわち, 2 つのループ $\alpha, \beta \in \Omega(X)$ がホモトピックならば, 特異 1-サイクルとしての $\alpha, \beta \in Z_1(X)$ に対して $\alpha - \beta$ は特異 1-境界サイクル, つまり $\alpha - \beta \in B_1(X) = \mathrm{ker}(\partial_2)$ となる.

これにより自然な群準同型 $h(X) : \pi_1(X) \rightarrow H_1(X) = Z_1(X)\,/\,B_1(X)$ が導かれるが, これを Hurewicz 準同型写像と呼ぶ.
参考にしたのはこの資料 → The Hurewicz Theorem

● Hurewicz 変換が自然変換であることの説明
各々の弧状連結な位相空間 $X \in \mathrm{Ob}(\mathbf{pcTop})$ に対して, Hurewicz 準同型 $hX : \pi_1(X) \rightarrow H_1(X)$ を対応させることにより, Hurewicz 準同型の族 $\left\{\, hX \,\mid\, X \in \mathrm{Ob}(\mathbf{pcTop}) \,\right\}$ が得られる. この族による基本群関手 $\pi_1$ から 1 次の特異ホモロジー群関手への対応を $h$ により表わし, Hurewicz 変換と呼ぶ.
この概念は, 位相空間の基本群から 1 次の特異ホモロジー群への群準同型として定義された Hurewicz 準同型を圏論的に解釈したものである.

このように定義した Hurewicz 変換は, 直接計算することによって次の性質を持つことがわかる.

基本群関手 $\pi_1 : \mathbf{pcTop} \rightarrow \mathbf{Grp}$ と 1 次の特異ホモロジー群関手 $H_1 : \mathbf{pcTop} \rightarrow \mathbf{Grp}$ (簡単のために弧状連結な位相空間の圏で考えている) に対する Hurewicz 変換 $h : \pi_1 \rightarrow H_1$ は弧状連結な位相空間の圏 $\mathbf{pcTop}$ における任意の射 (つまり連続写像) $g : X \rightarrow Y$ に対して, 図式
\[
\begin{xy}
\xymatrix {
\pi_1(X) \ar[d]_{\pi_1(g)} \ar[r]^{hX} & H_1(X) \ar[d]^{H_1(g)} \\
\pi_1(Y) \ar[r]_{hY} & H_1(Y)
}
\end{xy}
\] は可換図式である.

このことは Hurewicz 変換 $h : \pi_1 \rightarrow H_1$ の定義, それが基本群の関手 $\pi_1 : \mathbf{pcTop} \rightarrow \mathbf{Grp}$ から特異 1 次ホモロジー群の関手 $H_1 : \mathbf{pcTop} \rightarrow \mathbf{Grp}$ への自然変換になっていることを意味する.

ずっと Hurewicz 変換をもうちょっときれいに定義できないかと考えていたのだが, 進展が無い.
時間がかかりそうなのでこれは今後の課題にした.
ひとまず現在までにできたところを文章として残しておく. 進展があったらまた書く.
posted by 底彦 at 10:57 | Comment(0) | TrackBack(0) | 数学

2017年01月24日

午前中に数学をやる

8 時半起床.

体調が良かったので数学をやった.
感覚として, 自分の場合, 数学は朝が一番集中できる気がする.

圏論の初歩の練習問題を順番に解いている.
今やっているのは, 任意の圏 $\mathscr{C}$ に対する射圏 $\mathscr{C}^{\rightarrow}$ および捩れ射圏 $\mathscr{C}^{\leftarrow}$ における同型射, 始対象, 終対象が何かという問題.
同型射も始対象・終対象も基本的な概念だが, こういう基本的な問題を解いていく中でその意味が段々把握できていくのが楽しい.
(注意:「射圏」は arrow category を, 「捩れ射圏」は twisted arrow category を自分勝手に訳した語である. 一般に使われているわけではない. ネット上で調べているが, 日本語で広く使われている訳語があるのかまだわからない.)

とりあえずの目標は米田の補題である.
理解している人にとっては明確なイメージがあるのだろうが, 自分にとってはこの命題はまだ不思議な何かという印象にとどまる.
去年の入院中に勉強して一度はわかったつもりになったのだが, 今は自分の理解は表面をなぞっているだけだという気がしている.
非常に素晴らしい命題だと思うので何とか深く理解したい.
posted by 底彦 at 20:56 | Comment(2) | TrackBack(0) | 数学

2017年01月19日

数学: スライス圏における同型射

このところ取り組んでいた圏論の練習問題をどうにか解けたと思う.
自分なりの内容の見直しも終わったので, 解いた問題について概要をまとめておく.
以下の通り:

問題. $\mathscr{C}$ を任意の圏とし, $A \in {\mathrm{Ob}}({\mathscr{C}})$ を任意の対象とする.
($a$) 圏 $\mathscr{C}$ の $A$ 上の対象からなる圏 ${\mathscr{C}}\,\big/\,{A}$ おいて, 射 $h : f \rightarrow g$ が同型射であるための必要十分条件は, $h$ が $\mathscr{C}$ における同型射で $g \circ h = f$ を満たすことである. これを示せ.
($b$) $\mathscr{C}$ の対象 $A, B, C$ と射 $f : B \rightarrow A$ と $g : C \rightarrow A$ で $B$ と $C$ は $\mathscr{C}$ 内で同型だが, $f$ と $g$ が ${\mathscr{C}}\,\big/\,{A}$ 内で同型でない例を与えよ.

注: ${\mathscr{C}}\,\big/\,{A}$ を $\mathscr{C}$ の $A$ 上のスライス圏と呼ぶ. $f : B \rightarrow A$ と $g : C \rightarrow A$ を ${\mathscr{C}}\,\big/\,{A}$ の対象とするとき, $\mathscr{C}$ の射 $h : B \rightarrow C$ で図式
\[
\begin{xy}
\xymatrix@=48pt {
B \ar[d]_{f} \ar[r]^{h} & C \ar[dl]^{g} \\
A &
}
\end{xy}
\]
を可換図式にするものをスライス圏 ${\mathscr{C}}\,\big/\,{A}$ における $f$ から $g$ への射 $h : f \rightarrow g$ と呼ぶ.

($a$) はスライス圏 ${\mathscr{C}}\,\big/\,{A}$ の射 $h : f \rightarrow g$ が同型射であるということと, 圏 $\mathscr{C}$ における 3 つの射 $f : B \rightarrow A$, $g : C \rightarrow A$, $h : B \rightarrow C$ の関係とを照らし合わせてみることによって解ける.

($b$) は以下のような例を作った.

(i) 集合の圏 $\mathbf{Set}$ を考える. $\mathbb{Z}$ を整数全体の集合とし,
\[
A = B = C = \mathbb{Z}
\]
とおく. 写像 $f : B \rightarrow A$ と $g : C \rightarrow A$ を
\[
\begin{alignat}{2}
f(n) &= 2n & \quad & (n \in B), \\
g(n) &= 2n + 1 & & (n \in C)
\end{alignat}
\]
により定義する.
このとき, $\mathscr{C}$ における任意の同型写像 $h : B \rightarrow C$ に対して $g \circ h \neq f$ となる.
したがって $f$ と $g$ はスライス圏 ${\mathscr{C}}\,\big/\,{A}$ において同型ではない.

(ii) 可換体 $k$ 上のベクトル空間の圏 $k$-$\mathbf{Vect}$ を考える.
$B \in \mathrm{Ob}(k$-$\mathbf{Vect})$ を $k$ 上の任意の有限次元ベクトル空間, $C$ を $B$ の双対ベクトル空間とする. すなわち

 C = $B^{*} = \{\, \varphi \mid \varphi : B \rightarrow k$ は線形写像 $\,\}$

ベクトル空間 $B$ と $C$ は互いに他の双対ベクトル空間となっているので $k$-$\mathbf{Vect}$ においてこれらは同型である.
$n = \dim(B) = \dim(C)$ とし $\{\, v_1,..., v_{n} \,\}$ を $B$ の基底, $\{\, v^{*}_1,..., v^{*}_{n} \,\}$ を $\{\, v_1,..., v_{n} \,\}$ に対する $C$ の双対基底とする.

$k$ 上の $2n$ 次元ベクトル空間 $A$ を任意にとり, $\{\, w_1,..., w_{2n} \,\}$ を $A$ の基底とする.
線形写像 $f : B \rightarrow A$ を $f(v_i) = w_i \; (i = 1,..., n)$ により定義し, 線形写像 $g : C \rightarrow A$ を $g(v^{*}_i) = w_{n+i} \; (i = 1,..., n)$ により定義すると, 任意の線形写像 $h : B \rightarrow C$ に対して常に $g \circ h \neq f$ となる. したがって $B$ と $C$ は $k$-$\mathbf{Vect}$ において同型だが, $f : B \rightarrow A$ と $g : C \rightarrow A$ はスライス圏 $k$-$\mathbf{Vect}\,\big/\,{A}$ において同型ではない.

(iii) 群の圏 $\mathbf{Grp}$ を考える.
集合 $B$ を
\[
B = \left\{\, \left(\cos\left(\frac{n}{3} \pi\right),
\sin\left(\frac{n}{3} \pi\right)\right) \,\Big|\,
n \in \mathbb{Z} \,\right\}
\]
と定義する.
各 $i \in \mathbb{Z}$ に対して
\[
a_{i} = \left(\cos\left(\frac{i}{3} \pi\right),
\sin\left(\frac{i}{3} \pi\right)\right)
\quad (i \in \mathbb{Z})
\]
とおき, $B$ 上の 2 項演算 $\cdot$ を
\[
a_{i} \cdot a_{j} = a_{i+j}
= \left(\cos\left(\frac{i+j}{3} \pi\right),
\sin\left(\frac{i+j}{3} \pi\right)\right)
\quad (i, j \in \mathbb{Z})
\]
により定義すると $B$ はこの 2 項演算を積, $a_{0} = (1, 0)$ を単位元として Abel 群になる.
混乱の恐れが無い場合には $\cdot$ を省略して
\[
a \cdot b = a b \quad (a, b \in B)
\]
と書く.

$B$ の定義より, 任意の $i \in \mathbb{Z}$ に対して $a_{i} = a_{i+6}$ が成立するので, 代表元をとることによって群 $B$ は
\[
B = \left\{\,a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\,\right\}
\]
と表わされる.

集合 $C$ を
\[
C = \mathbb{Z} / 6 \mathbb{Z}
\]
により定義する. $C$ には整数環 $\mathbb{Z}$ から導かれる加法が定義される. この加法と単位元 $0 = 0 \bmod 6$ によって $C$ は Abel 群となる. $C$ の定義により, 代表元をとることによって群 $C$ は
\[
C = \left\{\, 0, 1, 2, 3, 4, 5 \,\right\}
\]
と表わされる.

$B$ と $C$ は $\mathbf{Grp}$ において同型である. 同型射としてたとえば射 $h : B \rightarrow C$ を
\[
h(a_{i}) = i \quad (i = 0,..., 5)
\]
と定義すればよい.

集合 $A$ を
\[
A = \mathbb{Z}/12\mathbb{Z}
= \left\{\, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 \,\right\}
\]
により定義する. $A$ には整数環 $\mathbb{Z}$ から導かれる加法が定義されるが, この加法と単位元 $0 = 0 \bmod 12$ によって $A$ は Abel 群になる. これより群の圏 $\mathbf{Grp}$ において, $A$ 上のスライス圏 ${\mathbf{Grp}}\,\big/\,{A}$ を考えることができる.

群の準同型写像 $f : B \rightarrow A$ を
\[
f(a_{i}) = 3 i \bmod 12 \quad (i = 0,..., 5)
\]
と定義する.
また, 群の準同型写像 $g : C \rightarrow A$ を
\[
g(i) = 4 i \bmod 3 \quad (i = 0,..., 5)
\]
と定義する.

このとき, 任意の群の同型写像 $h : B \rightarrow C$ に対して, 常に $g \circ h \neq f$ となる.
同型写像 $h$ の任意性により, $B$ と $C$ は圏 $\mathbf{Grp}$ においては同型だが, ライス圏 ${\mathbf{Grp}}\,\big/\,{A}$ においては $f$ と $g$ は同型ではない.

(iv) 位相空間の圏 $\mathbf{Top}$ を考える.
$\mathbb{R}^2$ 内の半径 1 の単位円周
\[
B = S^1 = \left\{\, (x, y) \,\big|\,
(x, y) \in \mathbb{R}^2, \; x^2 + y^2 = 1 \,\right\}
\]
と, 半径 $\sqrt{2}$ の円周
\[
C = \left\{\, (x, y) \,\big|\,
(x, y) \in \mathbb{R}^2, \; x^2 + y^2 = 2 \,\right\}
\]
に $\mathbb{R}^2$ から導かれる位相を入れる. このとき, $B$ と $C$ は $\mathbf{Top}$ において同型である. 同型射となる同相写像として, たとえば $h : B \rightarrow C$ を
\[
h(x, y) = \left(\!\sqrt{2}\,x, \sqrt{2}\,y\right) \quad
((x, y) \in B)
\]
と定義すればよい.

$A = [-1, 1]$ とおき, $A$ に $\mathbb{R}^1$ から導かれる位相を入れることによって $A$ は $\mathbf{Top}$ の対象となる.
写像 $f : B \rightarrow A$ と $g : C \rightarrow A$ を
\begin{alignat*}{2}
f(x, y) &= x & \qquad & ((x, y) \in B), \\
g(x, y) &= \frac{1}{2} (x^2 - y^2) & ~ & ((x, y) \in C)
\end{alignat*}
と定義する. 定義より $f$, $g$ は共に連続写像, つまり $\mathbf{Top}$ における射である.

このとき, $h : B \rightarrow C$ で $g \circ h = f$ を満たす任意の連続写像に対して, $f$, $g$ の定義から $h$ が常に全射ではない連続写像であることが導かれる. よって $g \circ h = f$ を満たすような同型写像 $h : B \rightarrow C$ は存在しない.
以上より, 位相空間の圏 $\mathbf{Top}$ において $B$ と $C$ は同型であるが, $g \circ h = f$ を満たす同型射 $h$ が存在しないことからスライス圏 ${\mathbf{Top}}\,\big/\,{A}$ においては $f$ と $g$ は同型ではない.
posted by 底彦 at 21:07 | Comment(0) | TrackBack(0) | 数学

2017年01月08日

数学: 9384

午後, 本棚を整理していたら, 本の隙き間から一枚の紙ぺらが出てきた.

病院の受付票である.

2009 年か 2010 年だったと思うが, 右目の下瞼の脇に小さなできものができたことがある.

最初は直径 0.5 ミリくらいだったのが, 数年で直径 1 センチくらいまで膨らんだ.
表皮嚢腫 (ひょうひのうしゅ) というできもので, 結局, 手術でそれを切除した.
2013 年のことで, その手術日にもらったのが受付番号 9384 番の受付票である.

手術の時間まで待つ間, やることが無いので 9384 を素因数分解してみたら $9384 = 2^3 \cdot 3 \cdot 17 \cdot 23$ だった.
何だか愛着が湧いて (特に 17 の倍数であり 23 の倍数でもあるところ), 御守り代わりに持っていてその後まで取っておいたのだろう.

あらためて見返してみると 9384 が何だか恰好良く見えてきて, 捨てる気になれない.
現在数学を勉強中だが, その中でまた出てくるかも知れない.

この受付票は本の栞に使ったりしてこれからも持っていようと思う.
タグ:素因数分解
posted by 底彦 at 21:34 | Comment(0) | TrackBack(0) | 数学

2016年12月02日

補足: 今日の数学のこと

今日は以前やった練習問題の証明の LaTeX での清書を印刷したものの内容のチェックを行った.
このプリントアウトは, 一番最初の清書に加えた修正を反映させたものだ.
つまり清書の第 2 版.

所々にまだ論理の飛躍があったので加筆した.
加筆した箇所は, 論理の飛躍があって自分にはまだ理解できないと感じられた部分である.

数学の証明は, たとえば「条件 $A$ が成り立つならばその結果として $B$ が成り立つ」といった推論を積み上げて最終的な結果に辿り着く.
様々な証明のパターンはあるが, 少なくとも自分にとって数学の証明とは一般的にそういうもの.
どんなに複雑な証明であっても, 独創的な証明であっても, そういった小さな論理の歩みを重ねた結果と考えている.
そういう証明を見出だし, 閃く瞬間に数学の静かな美しさを感じる.

証明を行う中で, 前述のように $A$ から $B$ を導く根拠が (数学にある程度親しんだ者にとって), それをわざわざ書いて説明する必要が無いくらい単純明快だったり簡単な計算で確かめられるような場合,「$A$ からは明らかに $B$ が導かれる」とか「$A$ によって $B$ が成り立つことは自明である」などと書いて詳細を書かずに済ますことがある.

そんな子細なことまですべて書いていたら全体が冗長になり過ぎてしまうから.
自明なことの細かくて長過ぎる説明があることで, 読むための余分な時間を強いてしまう可能性があるから.
等々.

けれど今回, 自分はそういう子細な論理の流れもすべて事細かに書いている.
理由ははっきりしている.
現在の自分の想像力・思考力ではそこまで書かないと理解できないからだ.
それに, これは人に読んでもらうためのものではなく, 自分の鬱からの回復のためのものでもあるから.

鬱はゆっくりと回復している.
これは確かに実感できる.

だが想像する能力, 考える能力の回復という点でまだまだ先がある.
タグ:数学 証明
posted by 底彦 at 22:13 | Comment(0) | TrackBack(0) | 数学

2016年11月14日

数学: 証明の見直しと LaTeX の設定

おとといクリニックの待ち合い室で書き上げた練習問題の証明を見直した.

小さいが無視できない論理の飛躍が一つあったのでそれをきちんと書き直す.
また, 議論の流れを少しすっきりとまとめられる部分があったのでそこも書き直す.

これで証明としては完成したと思う.

解いたのは, 圏の定義に関する以下の練習問題である.
問題中, 「本節で与えた圏の定義」とあるのは, 教科書の本文で与えている通常使われる圏の定義を指す.
$\mathbf{問題.}$ 以下に示す圏の定義が本節で与えた圏の定義と同等であることを示せ. ここで行う定義において, 元 $e$ が $\textbf{恒等性 (identity property)}$ を持つとは, 任意の $f$ と $g$ に対して, $e \circ f$ が定義されるならば常に $e \circ f = f$ が成り立ち, $g \circ e$ が定義されるならば常に $g \circ e = g$ が成り立つことである.

以下に定義を述べる: 圏とは, 記号 "$\circ$" によって表わされる部分 2 項演算を持った集合で以下の条件を満たすものである.
  • ($a$) 以下の各々の条件は同値である.
    •  (i) $f \circ g$ と $g \circ h$ が定義される;
    •  (ii) $f \circ (g \circ h)$ が定義される;
    •  (iii) $(f \circ g) \circ h$ が定義される;
  • ($b$) $(f \circ g) \circ h$ が定義されるならば, $(f \circ g) \circ h =
    f \circ (g \circ h)$ が成り立つ;
  • ($c$) 任意の $f$ に対して, 恒等性を持った元 $e$, $e'$ が存在して $e
    \circ f$ と $f \circ e'$ が定義される.


この問題について考えたことがあるが, それは清書が終わってから書く.

使っている Mac で現在 LaTeX が使えるかどうか試してみた.

簡単な LaTeX のファイルを作成してコンパイルしてみたらエラーになる.
何というか, 2 年以上使っていなかったからなあ.

MacPorts から最新の texlive をインストールしたら, テストファイルはコンパイルできるようになった.

ここで力尽きた.

証明の清書は明日にする.
タグ:圏論 LaTeX
posted by 底彦 at 18:42 | Comment(0) | TrackBack(0) | 数学

2016年11月09日

数学の練習問題をやってみた

10 時起床.

午後, 何となく体調がいい.
頭を使ってみたい気がする.
なので思い切って数学の練習問題をやってみることにした.

体調を崩すのが心配だったのでとりあえず 30 分と時間を決めた.

圏論・トポス理論の教科書 "Toposes, Triples and Theories" にある練習問題で, 圏の定義に関する基本的な問題をやる.

とりあえず圏の定義を復習した.
数学の勉強に使っているノートを開くと, 前回書き込んだ時の日付は 6 月 9 日になっている.
つまりノートに書くという形で数学をやるのは 5 か月振りということだ.
はあ...

ノートに圏の定義を書き写して, その意味を考えた.

ところが始めて 20 分くらいしたら動悸が激しくなってきた.
苦しい.
ノートを閉じて横になる.

この動悸は何だろう?
恐怖のような気もするが, ちょっと違う.

しばらく横になってノートに書いた圏の定義を頭の中で反芻して考えるうち, この動悸は興奮だとわかった.
楽しくて興奮しているのだ.
そう言えば, 数学をやるのって楽しかったよなあと思い出した.

使っていない脳の部分を久し振りに使ったので知恵熱のような感じで動悸が激しくなったのかも知れない.
嬉しかった.

明日も続きをできるだろうか.
続けられれば良いが.
posted by 底彦 at 22:19 | Comment(0) | TrackBack(0) | 数学

2016年06月05日

数学: 随伴関手

2 時半起床.

随伴関手の節を読む.

2 つの関手 $L : \mathscr{C} \rightarrow \mathscr{D}$, $R : \mathscr{D} \rightarrow \mathscr{C}$ を考える.

任意の対象 $A \in \text{Ob}(\mathscr{C})$, $B \in \text{Ob}(\mathscr{D})$ に対して同型写像
\[
\beta(A, B) : \text{Hom}_\mathscr{D}(LA, B) \rightarrow \text{Hom}_\mathscr{C}(A, RB)
\] が存在して, 任意の $\mathscr{C}$ の射 $f : A \rightarrow A'$ と $\mathscr{D}$ の射 $g : B \rightarrow B'$ に対して図式
\[
\begin{xy}
\xymatrix {
\text{Hom}_\mathscr{D}(LA, B') \ar[r]^-{\beta(A, B')}
& \text{Hom}_\mathscr{C}(A, RB') \\
\text{Hom}_\mathscr{D}(LA', B) \ar[r]_-{\beta(A', B)} \ar[u]^-{\text{Hom}_\mathscr{D}(Lf, g)}
& \text{Hom}_\mathscr{C}(A', RB) \ar[u]_-{\text{Hom}_\mathscr{C}(f, Rg)}
}
\end{xy}
\] が可換になるとき, $L$ を $R$ の左随伴関手, $R$ を $L$ の右随伴関手と呼ぶ.

このとき $\beta(A, LA) : \text{Hom}_\mathscr{D}(LA, LA) \rightarrow \text{Hom}_\mathscr{C}(A, RLB)$ となるが, これを用いて定義される射
\[
\eta{A} = \beta(A, LA)(\text{id}_{LA}) : A \rightarrow RLA
\] は恒等関手 $\text{id}_\mathscr{C}$ から $ R \circ L$ への自然変換になっていると書いてある.

このことを示そうとしているのだがうまくいかない.

本にはこれが当たり前のように記述してあるので, 自分が基本的なところをよく理解していないのだ.
タグ:数学 圏論
posted by 底彦 at 11:33 | Comment(0) | TrackBack(0) | 数学
ファン
検索
<< 2024年12月 >>
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        
最新記事
最新コメント
眼科の定期検査 〜 散歩 by コトタマ (02/15)
眼科の定期検査 by 三文字寄れば文殊のヒフミヨ (09/21)
本を読んで過ごす by 底彦 (12/13)
本を読んで過ごす by ねこ (12/12)
数学の計算をする by 底彦 (12/04)
タグクラウド
カテゴリアーカイブ
仕事(59)
社会復帰(22)
(44)
コンピューター(211)
(1463)
借金(8)
勉強(13)
(13)
数学(97)
運動(8)
日常生活(1407)
(204)
健康(38)
読書(21)
プロフィール

ブログランキング・にほんブログ村へ
にほんブログ村
にほんブログ村 メンタルヘルスブログ うつ病(鬱病)へ
にほんブログ村
にほんブログ村 科学ブログ 数学へ
にほんブログ村
にほんブログ村 IT技術ブログ プログラム・プログラマーへ
にほんブログ村