本を読む.
プラトン『国家』.
正義を尊重する人の生き方は, 自分の魂を高めてくれるような学問を尊重し, 思慮の健全さを維持するために放埒を避け, 自分の内面に気持ちを向けて財産の多寡に左右されないようにすることであると語られる.
これはある意味では理想だろう.
自分の場合はどうか.
残念なことだが, 欲望に流され金銭に卑しい部分があることを認めないわけにはいかない.
自分の中にはどこか自暴自棄な部分があり, いつ酒浸りの生活に戻ってしまってもおかしくない.
また, 金への欲望から大切な友人を無くした後悔にも苦しめられている.
それから数学をやる.
昨日書いた数学の問題の解答をチェックする. 昨日はあまり頭が働かない状態でまとめたため, 小さな間違いがいくつもあった.
解答を完成させる.
今日からモナド (monad) の章に入る.
モナドの定義について学ぶ.
圏 $\mathrm{C}$ におけるモナドとは, 自己関手 $T : \mathrm{C} \rightarrow \mathrm{C}$, unit と呼ばれる自然変換 $\eta : 1_{\mathrm{C}} \Rightarrow T$, 積 (multiplication) と呼ばれる自然変換 $\mu : T^2 \Rightarrow T$ の 3 つ組で, 図式
\begin{equation*}
\xymatrix@=24pt {
T^3 \ar@{=>}[d]_{\mu T} \ar@{=>}[r]^{T\mu} & T^2 \ar@{=>}[d]^{\mu} \\
T^2 \ar@{=>}[r]_{\mu} & T
}
\qquad
\xymatrix@=24pt {
T \ar@{=>}[r]^{\eta T} \ar@{=>}[dr]_{1_T}
& T^2 \ar@{=>}[d]^{\mu}
& T \ar@{=>}[l]_{T\eta} \ar@{=>}[dl]^{1_T} \\
& A_+ &
}
\end{equation*} を可換にするものである.
デイケアのスタッフさんが, アマチュア劇団で活動していて, 今日はその発表会がある.
観に行った.
楽しい舞台だった. 衣装なども凝っていてよかった.
以前のデイケアの友人が子ども連れで来ていた. 会うのは何年振りだろう.
帰り道は冷たい雨に降っている.
帰宅して食事.
蕎麦と大根おろし.
寒い.
布団に潜り込む.
【このカテゴリーの最新記事】
-
no image
-
no image
-
no image
-
no image
-
no image