アフィリエイト広告を利用しています

2018年09月14日

数学: 基本の復習 (6) ── 普遍元 (universal element) (続き)

普遍元を特徴付ける命題の証明の概略を辿ってみる.

証明中で米田の補題を使うので念のために挙げておく.

米田の補題 (The Yoneda Lemma). $\,$ $F : \mathscr{C} \rightarrow \mathbf{Set}$ を関手とし, 写像
\begin{equation*}
\newcommand{\Ar}[1]{\mathrm{Ar}(#1)}
\newcommand{\ar}{\mathrm{ar}}
\newcommand{\arop}{\Opp{\mathrm{ar}}}
\newcommand{\Colim}{\mathrm{colim}}
\newcommand{\CommaCat}[2]{(#1 \downarrow #2)}
\newcommand{\Func}[2]{\mathrm{Func}(#1,#2)}
\newcommand{\Hom}{\mathrm{Hom}}
\newcommand{\Id}[1]{\mathrm{id}_{#1}}
\newcommand{\Mb}[1]{\mathbf{#1}}
\newcommand{\Mr}[1]{\mathrm{#1}}
\newcommand{\Ms}[1]{\mathscr{#1}}
\newcommand{\Nat}[2]{\mathrm{Nat}(#1,#2)}
\newcommand{\Ob}[1]{\mathrm{Ob}(#1)}
\newcommand{\Opp}[1]{{#1}^{\mathrm{op}}}
\newcommand{\Pos}{\mathbf{Pos}}
\newcommand{\q}{\hspace{1em}}
\newcommand{\qq}{\hspace{0.5em}}
\newcommand{\Rest}[2]{{#1}|{#2}}
\newcommand{\Sub}{\mathrm{Sub}}
\newcommand{\Src}{d^{0,\mathrm{op}}}
\newcommand{\Tgt}{d^{1,\mathrm{op}}}
\varphi : \Nat{\Hom_{\Ms{C}}(B, -)}{F} \longrightarrow FB
\end{equation*} を任意の自然変換 $\lambda : \Hom_{\Ms{C}}(B, -) \rightarrow F$ に対して
\begin{equation*}
\varphi(\lambda) = \lambda B(\Id{B})
\end{equation*} として定義する. このとき, $\varphi$ は自然な同型である.

なお, 自然同型 $\varphi$ の逆となる自然同型 $\varphi^{-1} : FB \rightarrow \Nat{\Hom_{\Ms{C}}(B, -)}{F}$ は任意の $u \in FB$ に対して, 自然変換 $(\varphi^{-1}(u) : \Hom_{\Ms{C}}(B, -) \rightarrow F) \in \Nat{\Hom_{\Ms{C}}(B, -)}{F}$ を
\begin{equation*}
(\varphi^{-1}(u))C(g) = Fg(u) \qquad ((g : B \rightarrow C) \in \Hom_{\Ms{C}}(B, C))
\end{equation*} により与えるものである.

定義: 普遍元, 表現可能関手.$\,$ 米田の補題における自然同型 $\varphi$ に関して $\Ms{C}$ のある対象 $A$ と, ある自然変換
\begin{equation*}
(\beta : \Hom_{\Ms{C}}(A, -) \longrightarrow F) \in \Nat{\Hom_{\Ms{C}}(A, -)}{F}
\end{equation*} で自然同型になっているものが存在する場合を考える.

つまり, $\beta$ は $\Hom_{\Ms{C}}(A, -)$ から $F$ への自然変換かつ同型射であり, $\Ms{C}$ の任意の射 $f : C \rightarrow C'$ に対して図式
\begin{equation*}
\begin{xy}
\xymatrix@=48pt {
\Hom_{\Ms{C}}(A, C) \ar[d]_{\Hom_{\Ms{C}}(A, f)} \ar[r]^{{\beta C} \\ {\sim}} & FC \ar[d]^{Ff} \\
\Hom_{\Ms{C}}(A, C') \ar[r]^{\large\sim}_{\beta C'} & FC'
}
\end{xy}
\end{equation*} は可換になる.
このとき $FA$ の元
\begin{equation*}
u = \varphi(\beta) = \beta A(\Id{A})
\end{equation*} を $F$ に対する普遍元 (universal element)と呼ぶ. また $F$ を $A$ によって表現される表現可能関手 (representable functor)と呼ぶ.

普遍元は次の命題によって特徴付けられる.

命題: 普遍元. $\,$ $F : \Ms{C} \rightarrow \Mb{Set}$ を関手, $A$ を $\Ms{C}$ をの対象, $u \in FA$ とする. $u$ が $F$ に対する普遍元となるための必要十分条件は, 任意の $B \in \Ob{\Ms{C}}$ と $t \in FB$ に対して, 写像 $g : A \rightarrow B$ で
\begin{equation*}
Fg(u) = t
\end{equation*} を満たすものが一意的に存在することである.

命題の大まかな証明をまとめておく.

まず, $u$ が $F$ に対する普遍元であると仮定する. 普遍元の定義より, ある自然同型 $\beta : \Hom_{\Ms{C}}(A, -) \rightarrow F$ が存在して,
\begin{equation*}
u = \beta A(\Id{A})
\end{equation*} が成立する.
ここで任意の $B \in \Ob{\Ms{C}}$ と $t \in FB$ に対して $g \in \Hom_{\Ms{C}}(A, B)$ を $t$ の ${\beta}^{-1}B : FB \rightarrow \Hom_{\Ms{C}}(A, B)$ による像として
\begin{equation*}
g = ({\beta}^{-1}B)(t) : A \longrightarrow B
\end{equation*} とおくと, $\beta$ が自然変換であることより図式
\begin{equation*}
\begin{xy}
\xymatrix@=48pt {
\Hom_{\Ms{C}}(A, A) \ar[d]_{\Hom_{\Ms{C}}(A, g)} \ar[r]^{\beta A} & FA \ar[d]^{Fg} \\
\Hom_{\Ms{C}}(A, B) \ar[r]_{\beta B} & FB
}
\end{xy}
\end{equation*} は可換になる. これより普遍元 $u$ に対して
\begin{align*}
Fg(u) &= Fg(\beta A(\Id{A})) \\
&= (Fg \circ \beta A)(\Id{A}) = (\beta B \circ \Hom_{\Ms{C}}(A, g))(\Id{A}) \\
&= \beta B(g \circ \Id{A}) = \beta B(g) = \beta B(({\beta}^{-1}B)(t)) \\
&= t
\end{align*} が成り立つ. さらに $\beta$ が自然同型であることより, このような $g$ は一意的に定まる. したがって, $u \in FA$ が $F$ に対する普遍元ならば, 任意の $B \in \Ob{\Ms{C}}$ と任意の $t \in FB$ に対して写像 $g : A \rightarrow B$ で
\begin{equation*}
Fg(u) = t
\end{equation*} を満たすものが一意的に存在する.

逆に, $u$ が $FA$ の元であって, 任意の $B \in \Ob{\Ms{C}}$ と任意の $t \in FB$ に対して, $\Ms{C}$ の射 $g_t : A \rightarrow B$ で
\begin{equation*}
Fg_t(u) = t
\end{equation*} となるものが一意的に存在する, という性質を満たしていると仮定する. 米田の補題による自然同型を
\begin{equation*}
\varphi : \Nat{\Hom_{\Ms{C}}(A, -)}{F} \longrightarrow FA
\end{equation*} とおく. $u \in FA$ だから, 自然変換
\begin{equation*}
(\beta = \varphi^{-1}(u) : \Hom_{\Ms{C}}(A, -) \rightarrow F) \in \Nat{\Hom_{\Ms{C}}(A, -)}{F}
\end{equation*}
は, 任意の $C \in \Ob{\Ms{C}}$ と $f : A \rightarrow C$ に対して
\begin{equation*}
\beta C(f) = (\varphi^{-1}(u))C(f) = Ff(u)
\end{equation*} を満たす. この式における $f : A \rightarrow C$ として上で定義した $g_t : A \rightarrow B$ をとると, $g_t$ が $Fg_t(u) = t$ を満たすことから
\begin{equation*}
\beta B(g_t) = (\varphi^{-1}(u))B(g_t) = Fg_t(u) = t
\end{equation*} が成り立つ.
一方, $g_t$ の一意性より, 写像
\begin{equation*}
\gamma B : FB \longrightarrow \Hom_{\Ms{C}}(A, B)
\end{equation*} を任意の $t \in FB$ に対して
\begin{equation*}
\gamma B(t) = g_t
\end{equation*} により定義する. 定義により,
\begin{equation*}
\beta B \circ \gamma B(t) = \beta B(g_t) = Fg_t(u) = t.
\end{equation*} となり, $t$ の任意性から
\begin{equation*}
\beta B \circ \gamma B = \Id{FB}
\end{equation*} が成り立つ. 同様に, 任意の $g : A \rightarrow B$ に対して $t_g = Fg(u) = \beta B(g)$ とおけば,
\begin{equation*}
\gamma B \circ \beta B(g) = \gamma B(Fg(u)) = \gamma B(t_g) = g
\end{equation*} なので
\begin{equation*}
\gamma B \circ \beta B = \Id{\Hom_{\Ms{C}}(A, B)}
\end{equation*} となる. 以上のことから $\beta B$ と $\gamma B$ は互いに他の逆写像, すなわち次の 2 つの図式
\begin{equation*}
\begin{xy}
\xymatrix@=48pt {
\Hom_{\Ms{C}}(A, B) \ar[r]^{\beta B} & FB & \Hom_{\Ms{C}}(A, B) \ar[r]^{\beta B} \ar[d]_{\Id{\Hom_{\Ms{C}}(A, B)}} & FB \ar[ld]^{\gamma B} \\
& FB \ar[lu]^{\gamma B} \ar[u]_{\Id{FB}} & \Hom_{\Ms{C}}(A, B) &
}
\end{xy}
\end{equation*} は共に可換になる. さらに $B$ の任意性と $\beta$ が自然変換であったことから $\beta$ は自然同型である. したがって, $u$ は $F$ に対する普遍元である.

次の文章以降においては, 圏における極限 (limit) と余極限 (colimit) について述べる.
posted by 底彦 at 22:28 | Comment(0) | TrackBack(0) | 数学
この記事へのコメント
コメントを書く

お名前:

メールアドレス:


ホームページアドレス:

コメント:

この記事へのトラックバックURL
https://fanblogs.jp/tb/8096306

この記事へのトラックバック
ファン
検索
<< 2024年11月 >>
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
最新記事
最新コメント
眼科の定期検査 〜 散歩 by コトタマ (02/15)
眼科の定期検査 by 三文字寄れば文殊のヒフミヨ (09/21)
本を読んで過ごす by 底彦 (12/13)
本を読んで過ごす by ねこ (12/12)
数学の計算をする by 底彦 (12/04)
タグクラウド
カテゴリアーカイブ
仕事(59)
社会復帰(22)
(44)
コンピューター(211)
(1441)
借金(8)
勉強(13)
(13)
数学(97)
運動(8)
日常生活(1403)
(204)
健康(38)
読書(21)
プロフィール

ブログランキング・にほんブログ村へ
にほんブログ村
にほんブログ村 メンタルヘルスブログ うつ病(鬱病)へ
にほんブログ村
にほんブログ村 科学ブログ 数学へ
にほんブログ村
にほんブログ村 IT技術ブログ プログラム・プログラマーへ
にほんブログ村