アフィリエイト広告を利用しています

2019年07月26日

数学: 小さな計算問題を考える

現在考えている問題の証明の中で, $0 < p < 1$ であるような有理数 $p$ に対して, 有理数 $q>0$ で
\begin{equation*}
\DeclareMathOperator{\Ar}{Ar}
\DeclareMathOperator{\Arr}{Arr}
\DeclareMathOperator{\Card}{card}
\DeclareMathOperator{\Codomain}{cod}
\DeclareMathOperator{\Cone}{Cone}
\DeclareMathOperator{\Domain}{dom}
\DeclareMathOperator{\Ob}{Ob}
\newcommand{\Cdot}{\,\cdot^{\mathrm{op}}}
\newcommand{\Cocone}{\mathrm{Cocone}}
\newcommand{\Cone}{\mathrm{Cone}}
\newcommand{\Colim}{\mathrm{colim}\,}
\newcommand{\CommaCat}[2]{(#1/#2)}
\newcommand{\Eqclass}[4]{{#1#2#3}_{#4}}
\newcommand{\EqCls}[2]{{\left[#1\right]}_{#2}}
\newcommand{\Eqcls}[1]{\left[#1\right]}
\newcommand{\FnRest}[2]{{#1}|{#2}}
\newcommand{\Func}[2]{\mathrm{Func}(#1,#2)}
\newcommand{\g}{\varg}
\newcommand{\Hom}{\mathrm{Hom}}
\newcommand{\Id}[1]{\mathrm{id}_{#1}}
\newcommand{\In}{\mathrm{incl}}
\newcommand{\Inc}[2]{\mathrm{incl}\left(#1,#2\right)}
\newcommand{\Incl}[2]{\mathrm{incl}_{#1}^{#2}}
\newcommand{\InclArrow}[2]{\morphism(0,0)/>->/<450,0>[\Incl{#1}{#2} : {#1}\,\,`{#2};]}
\newcommand{\Lb}[1]{\mathrm{lb}(#1)}
\newcommand{\Lowerset}[1]{\downarrow\!\!{#1}}
\newcommand{\Mb}[1]{\mathbf{#1}}
\newcommand{\Mbb}[1]{\mathbb{#1}}
\newcommand{\Mlb}[1]{\mathrm{mlb}(#1)}
\newcommand{\Mr}[1]{\mathrm{#1}}
\newcommand{\Ms}[1]{\mathscr{#1}}
\newcommand{\Mt}[1]{\mathtt{#1}}
\newcommand{\Mub}[1]{\mathrm{mub}(#1)}
\newcommand{\Nat}{\mathrm{Nat}}
\newcommand{\Opp}[1]{{#1}^{\mathrm{op}}}
\newcommand{\Prj}[2]{\mathrm{proj}\left(#1,#2\right)}
\newcommand{\Proj}[2]{\mathrm{proj}^{#1}_{#2}}
\newcommand{\Pw}{\mathbf{P}}
\newcommand{\Rn}[1]{{\bmdefine{R}}^{#1}}
\newcommand{\q}{\hspace{1em}}
\newcommand{\qq}{\hspace{0.5em}}
\newcommand{\Rel}[1]{\langle{#1}\rangle}
\newcommand{\Rest}[2]{{#1}|{#2}}
\newcommand{\SkelCat}[1]{\mathrm{sk}(#1)}
\newcommand{\Slash}[1]{{\ooalign{\hfil/\hfil\crcr$#1$}}}
\newcommand{\SliCat}[2]{{#1}\,\big/\,{#2}}
\newcommand{\Src}{d^{0,\mathrm{op}}}
\newcommand{\Sub}{\mathrm{Sub}}
\newcommand{\ssqrt}[1]{\sqrt{\smash[b]{\mathstrut #1}}}
\newcommand{\Tgt}{d^{1,\mathrm{op}}}
\newcommand{\TwArCat}[1]{\mathrm{Tw}(#1)}
\newcommand{\Ub}[1]{\mathrm{ub}(#1)}
\newcommand{\Upperset}[1]{\uparrow\!\!{#1}}
\newcommand{\VectCat}[1]{#1 \mathchar`- \mathbf{Vect}}
\newcommand{\Grp}{\mathbf{Grp}}
\newcommand{\Mon}{\mathbf{Mon}}
\newcommand{\POs}{\mathbf{Poset}}
\newcommand{\Psh}{\mathbf{Psh}}
\newcommand{\Set}{\mathbf{Set}}
\newcommand{\Sh}{\mathbf{Sh}}
\newcommand{\Top}{\mathbf{Top}}
\newcommand{\A}{\mathscr{A}}
\newcommand{\B}{\mathscr{B}}
\newcommand{\C}{\mathscr{C}}
\newcommand{\D}{\mathscr{D}}
\newcommand{\E}{\mathscr{E}}
\newcommand{\F}{\mathscr{F}}
\newcommand{\sH}{\mathscr{H}}
\newcommand{\I}{\mathscr{I}}
\newcommand{\J}{\mathscr{J}}
\newcommand{\K}{\mathscr{K}}
\newcommand{\sL}{\mathscr{L}}
\newcommand{\M}{\mathscr{M}}
\newcommand{\N}{\mathscr{N}}
\newcommand{\sO}{\mathscr{O}}
\newcommand{\sP}{\mathscr{P}}
\newcommand{\R}{\mathscr{R}}
\newcommand{\sS}{\mathscr{S}}
\newcommand{\T}{\mathscr{T}}
\newcommand{\U}{\mathscr{U}}
\newcommand{\V}{\mathscr{V}}
\newcommand{\W}{\mathscr{W}}
\newcommand{\X}{\mathscr{X}}
\newcommand{\Y}{\mathscr{Y}}
\newcommand{\Z}{\mathscr{Z}}
0 < p < q^2 < 1
\end{equation*} を満たすものを使う. このような有理数は存在するのだが, 実際にどうやれば求まるのか考えてみた.

$0 < p < 1$ だから $1-p > 0$ である. このことにより, 正の整数 $n$ で
\begin{equation*}
n(1-p) \ge 2
\end{equation*} を満足するものが存在する (アルキメデスの公理). これより
\begin{align*}
1-p & \ge \frac{2}{n} = \frac{2n}{n^2} > \frac{2n-1}{n^2}, \\
p & < 1-\frac{2n-1}{n^2}=\frac{n^2-2n+1}{n^2} = \left(\!\frac{n-1}{n}\!\right)^2 < 1
\end{align*} が成り立つ. したがって
\begin{equation*}
q=\frac{n-1}{n}
\end{equation*} とおけばよい.

簡単にまとめたが考え付くまでに結構苦労している. 長い間使っていなかった脳の部分を久し振りに動かした感じがする. この感覚が続いてくれるといい.
posted by 底彦 at 23:30 | Comment(0) | TrackBack(0) | 数学
この記事へのコメント
コメントを書く

お名前:

メールアドレス:


ホームページアドレス:

コメント:

この記事へのトラックバックURL
https://fanblogs.jp/tb/9010235

この記事へのトラックバック
ファン
検索
<< 2024年12月 >>
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        
最新記事
最新コメント
眼科の定期検査 〜 散歩 by コトタマ (02/15)
眼科の定期検査 by 三文字寄れば文殊のヒフミヨ (09/21)
本を読んで過ごす by 底彦 (12/13)
本を読んで過ごす by ねこ (12/12)
数学の計算をする by 底彦 (12/04)
タグクラウド
カテゴリアーカイブ
仕事(59)
社会復帰(22)
(44)
コンピューター(211)
(1463)
借金(8)
勉強(13)
(13)
数学(97)
運動(8)
日常生活(1407)
(204)
健康(38)
読書(21)
プロフィール

ブログランキング・にほんブログ村へ
にほんブログ村
にほんブログ村 メンタルヘルスブログ うつ病(鬱病)へ
にほんブログ村
にほんブログ村 科学ブログ 数学へ
にほんブログ村
にほんブログ村 IT技術ブログ プログラム・プログラマーへ
にほんブログ村