アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2024年10月 >>
    1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31    
最新記事
最新コメント

2021年07月31日

ポール・ディラック
【1902年生まれ-2021/7/31原稿改定】

「ディラック」の原稿を投稿します。原稿文字数は1899文字です。また、読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。またオンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきます。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。定点記録を残すと、7/23と7/25でf/f数は、
コウジ改 SyvE.804/3599と826/3625.
バンドリ sv2F.810/2666と824/2682.
浩司   BLLp.578/2339と585/2340.
kouji kouji.1971/3298と1992/3309.
作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1902年8月8日生まれ ~ 1984年10月】



イギリスのディラックは


とても謙虚で無口な人でした。


ノーベル賞が決まった際には、


有名になる事を恐れて受賞の辞退を


考えていた様です。そんな人なのですが、


20世紀初頭の天才達がひしめく中で


ファインマンハイゼンベルクシュレディンガーなど


と量子力学を確立します。特にシュレディンガーとは


同じタイミングでノーベル賞を受賞します。


ディラックの人柄を考えるにあたり少し、


その家族について言及します。


ディラックが10代後半の時期にスイスから


家族は国籍を移しています。そしてディラックの


性格形成を語っていく上で家庭環境は大きな要素


だったようです。まず1924年にディラックの


兄が自ら命を断っています。


色々考えた末だったのでしょうか。


ディラック自身も、その父と会話し辛い


場面が多々あったようです。そして、


極端に無口な人になっていったようです。


しかしディラックは、闇に沈まずに数学を駆使して輝かしい成果を残しています。特にデルタ関数やブラケット記法は素晴らしいのです。そんな足跡を沢山残しました。
ブラケット記法とは日本語で「括弧」
の記号を使った表記です。その定式化では
カギカッコ<>の形の 「<」 の部分
だけを「ブラベクトル」と呼び
カギカッコ<>の形の 「>」 の部分
だけを「ケットベクトル」と呼びます。
非常に分り易い表現でブラの部分がベクトル量
に相当してケットの部分が、それと作用するベクトル量に相当する定式化です。作用する前のケットが固有値を持つ場合に固有状態を持つと表現されます。ここでのベクトルがヒルベルトベクトル(無限次元に対応)であることが学部時代の私にとって感動的でした。一瞬にして物理量に対応する状態が記述された気がしました。一次元が線で、二次元が平面で、三次元が立体空間だというくらいしか想像がつかなかった高校時代から想像は大きく膨らみ、いきなり無限次元に話が拡張したのです。一つのベクトルが多くの情報を担います。他方でデルタ関数は観測が一瞬にして波束の収縮を引き起こす様子を表現していると思います。こうした定式化をディラックは進め、理論から提唱される物質を考え出しています。具体的に反物質と呼ぶ存在がいくつも提唱され、見つかっています。反物質は寿命が通常の物質より若干短かったりしますので日常的ではありませんが、粒子の生成消滅を論じたりする際に大事な要素です。陽子には反陽子があり中性子には反中性子があります。


そして、何よりディラックは無口な人です。多くの成果を出していく中で各国の物理学会で招待する動きがあって日本にも来ていたようです。ただ性格が性格でですので余り逸話が残っていません。「仁科さんとお茶飲んだ時に・・・」みたいな話が残っていないのです。無論、歳下の朝永さんとか湯川さんは尚更の事、話しづらかったと思えます。話しかけても無言だったのでしょう。多分オランダでも日常会話はほとんどなかったと思われます。ケンブリッジでは「1Dirac」という単位を使われていました。仲間内での意味としては
「1Word/1Hours」が「1Dirac」に相当して
一時間あたりに単語二つを使ったら「2Dirac」消費されたとして換算されました。ディラックは一時間に数Dirac程度しか言葉を残さなかったそうです。


しかし、そんなディラックは真面目な性格、人を騙さない性格もあって周囲から大事にされていた様子が伺われます。このブログのTOP画面で使っている集合写真でも真ん中の列の中央に居ます。若き天才ディラックをアインシュタインやキューリ夫人が尊重して「君の研究は素晴らしい。これからも頑張って下さいよ!」といった気持で尊重しているような気がするのです。そして、
ディラックはイギリスの伝統を受け継いだ人でもあります。
ケンブリッジではルーカス教授職を務めました。この名誉は初代・アイザック・バローから始まり二代目・アイザック・ニュートンと続き、最近では宇宙論で名を成したS・W・ホーキング博士が受け継いでいます。





以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2020/08/17_初稿投稿
2021/07/31_改定投稿


詳しくはコチラへ→【テキストポン】


舞台別のご紹介へ】
時代別(順)のご紹介】

イギリスのご紹介へ】
ケンブリッジのご紹介へ】
オランダ関係の紹介へ】
ライデン大学のご紹介へ】

アメリカ関連のご紹介へ】
熱統計関連のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】

ジョン・A・フレミング
【1849年生まれ-2021/07/31-原稿改定】

「フレミング」の原稿を投稿します。原稿文字数は776文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】



まず、イギリスに生まれたフレミングはケンブリッジで


マクスウェルの師事を受けました。フレミング曰く、


マクスウェルの講義は


「逆説的で暗示的な言い方」(Wikipediaより引用)な表現


を含んでいて非常に分かり辛くて不明瞭であったそうです。


当然、そんな講義は学生に不人気で時には


講義を聴いていたのはフレミング一人の時もあったそうです。


物理屋さんにありがちなとぼけた類のエピソードですね。


酷いと言えば酷い話です。


 

フレミングは左手の法則で有名です。簡単に言えば


「左手で直交3軸を作った時に、長い指から・
電(でん)・磁(じ)・力(りょく)です。


より、細かく説明すると磁場中に電気が流れていると


その電気導線に対して力が生じます。


電(でん)・磁(じ)・力(りょく)をそれぞれ
q(でん)・B(じ)・F(りょく)で考えて


荷電粒子の速度をvとすると、


外積:×を使ってF=q(v×B) です。


高校レベルの天下り的な覚え方ですが、


現象として実験事実に即していると考えると


非常に洗練された結果であるとも言えますね。


また、真空管の発明者としても有名です。今日の電子工学の始まりだとも言われています。工学の世界で色々な発明を重ねました。そんなフレミングは子供にこそ恵まれませんでしたが2度の結婚をして、アメリカテレビジョン学会の初代会長を務めたりしながら余生を過ごしました。


 





以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/23_初稿投稿
2021/07/23_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
イギリス関係
ケンブリッジ関連
電磁気関係へ】


教科書買取専門店による教科書買取サービス【テキストポン】

アーネスト・ラザフォード【1871年生まれ‐2021/7/31原稿改定】

【1871年8月30日 ~ 1937年10月19日】


「ティコ・ブラーェ」の原稿を投稿します。原稿文字数は1261文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】



その名は正確にはアーネスト・ラザフォード_
Ernest Rutherford, 1st Baron
Rutherford of Nelson, OM, FRS,
初代のネルソン卿_ラザフォード男爵です。


ラザフォードはニュージーランドに生まれ数学で


マスターの学位をとった後に、奨学金を得てイギリスの


ケンブリッジ大学に進みます。そこでラザフォード


JJトムソンの指導のもとで


気体の電気伝導の研究をします。


導体ではない酸素や窒素などの「気体」中にも高い電圧を加えた時に放電現象が生じ、電気が流れます。雷を思い起こしてください。そんな、電気伝導の研究を進めるうちにラザフォードはウランから2つの放射線、α線とβ線が出ている事を発見します。ラザフォードは後に透過性の非常に強い放射線が電磁波である事を突き止め、半減期の概念を提唱します。


ラザフォードが考えた半減期の分かり易い例として、岩石の年代測定があります。特定の岩石に含まれる物質から出てくる放射線量を計測すれば、半減期の概念を使って形成から今迄、どのくらい時間が経っているか推定出来るのです。


ラザフォードは更に研究を続けました。ガラス管にα線を集め、そのスペクトル分析からα線とはヘリウム原子核であると突き詰めています。そして、1911年にはガイガー・マースデンとα線の散乱実験を行いました。有名なラザフォードの原子模型が提唱されたのです。原子には中心に原子核がありその周りを電子が運動しているというもので、現代でも使えるモデルです。長岡半太郎が提唱していたような表現法ではなく、ラザフォードは実験結果をもとに理論を展開します。具体的にはこの時に金箔に対してβ線(電子線)を当てた時に断線散乱に相当する軌跡が観測されます。金箔を構成する内部物質と電子はそれぞれ剛体ではないのですが相互に働くクーロン力が同じ効果をもたらすのです。ビリヤードの玉みたいな剛体と微細な粒子間の運動が同じ弾性モデルで表せる事は、感動的ともいえる事実です。


またラザフォードはその人柄もあって、原子物理学の父と呼ばれています。キャンデビッシュ研究所では若い研究所員たちに「ボーイズ!」と呼びかけていたりするような人でした。また彼はイギリスに帰化した人ではありますが、紳士として夏の砂浜でもスーツのジャケットを脱がないスタイルも頑なに守っていたようです。そして、原子番号104の元素は今、彼を偲んでラザホージウムと呼ばれています。






以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/26_初回投稿
2021/07/22_改定投稿


纏めサイトTOP
舞台別のご紹介

時代別(順)のご紹介】
イギリス関係のご紹介
ケンブリッジ関連
電磁気関係へ】
量子力学関係へ】

熱統計関連のご紹介へ】


【このサイトはAmazonアソシエイトに参加しています】


詳しくはコチラへ→【テキストポン】

本多光太郎
【1870年生まれ‐2021/07/31原稿改定】

「本多光太郎」の原稿を投稿します。原稿文字数は1328文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1870年3月24日生まれ ~ 1954年2月12日没】


 



本多光太郎について


 

本多光太郎は日本の鉄鋼業界での研究土壌を作り上げ、


研究者として多くの人材を育て上げた先人です。


彼の逸話を聞けば聞くほど人間臭い所が感じられて、


本人に会ってみたくなります。古い着物を着て、


靴底が擦り切れるまで靴を履き、雑種の犬を引きながら


大学に出勤していたようです。そんな人です。


本多光太郎は子供時代は学校の成績も悪くて、大柄な割に何時も青ばなをたらしてて、「はなたらしの光さん」と呼ばれていた学校嫌いの子供でした。そんな本多光太郎が東大に進学して理学系の物理学科を卒業します。今は理物と物工(りぶつ、と、ぶっこう)があるのでしょうが、当時はどうだったのでしょうか。その後に本多光太郎はドイツとイギリスに留学します。帰国後、東北大学で教授を務め理化学研究所で研究を進める中で有名な「KS鋼」を発明します。本多光太郎は金属に対しての材料物性学の研究を世界に先駆けて始めていました。より性能の優れた材料を作り上げる為に所謂「冶金」の過程を研究していったのです。


KS鋼(新KS鋼)は発明時に世界最強の永久磁石でした。


現代での硬質磁性材料に繋がる研究の端緒をつけたのです。


それまで刀などの特定目的で鍛えられてきた日本の鉄が


工業生産に耐える性能を備えて差別化出来るように


なっていくのです。この発明がなされてから益々、


各種産業で多くの日本の鉄が使われていくのです。



本多光太郎と実験


 

なにより、本多光太郎は無類の実験好きでした。「今日は晴れているから実験しよう」と言いながら実験を始めたり、「今日は雨だから実験しよう」と言って実験を続けたりしていました。結婚式をあげた時に本多光太郎本人が居なかったので探しに行ったら実験室で実験をしていたという。とぼけたエピソードもあります。全般的に身の回りの細かい事は気にかけない大雑把な人でした。そんな本多光太郎は組織を育て人を育てたことで有名です。要職を務めたり創設に携わった研究機関を羅列すると、



東北帝国大学附属鉄鋼研究所、

東北帝国大学総長、

千葉工業大学設立、

}東京理科大学初代学長、

日本金属学会創設初代会長、

後の電磁研初代理事長


です。
指導している仲間に対しては毎日のように「どんな状況?」と実験の具合を尋ねていき、論文に対して細かく意見を加えていたそうです。


最後に本多光太郎の言葉を残します
「今が大切」「つとめてやむな」


私にはトーマス・マンの
「くよくよするな働け」という言葉と重なります。
各人の人生・やりがいと、つながる言葉です。
本多光太郎は仕事として、人生として「実験を
何時までも考えていた人」だったのでしょう。






〆最後に〆


 

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


テキストポンへの査定申込はコチラ


nowkouji226@gmail.com


2021/04/05_初稿投稿
2021/07/22_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
【日本関連のご紹介】
【東大関連のご紹介】
力学関係のご紹介へ】
熱統計関連のご紹介へ】


【このサイトはAmazonアソシエイトに参加しています】




ロバート・ミリカン
【1868年生まれ‐2021/7/31原稿改定】

「ミリカン」の原稿を投稿します。原稿文字数は842文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】



ミリカンは非常に優れたアメリカの実験家でした。


コロンビア大学で物理学の博士号をとりますが、ミリカンが


同大学での初めての物理博士習得者だったそうです。


光に粒子性と波動性がある事を実証していく段階で


波動性を前面に出した理論を展開していきます。


ただ、実験事実として粒子性を前提に考えた実験が


非常につじつまの合う結果を出していたことに


ミリカン自身も自問自答を繰返したと思えます。


結果としてアインシュタインが論じた光電効果を


ミリカンも実験的に裏付けます。また、そうした


実験と光の波長からプランク定数を定めました。


加えて、電気素量を導き出した実験も見事です。


金属板の間の液体の運動を考え、ミリカンらは


重力の効果に対してクーロン力の兼ね合いを考えて厳密に


計測値が求まる油滴の重量から電気素量を導きます。


この油滴の実験の素晴らしい所は量子化する事で電子の


粒子性を示した点です。電流が計測されるイメージを考えて


みた時に、その担い手の電子が連続量なのか粒子のように


考えられるか、当時は不確かだったのです。


この2つの業績でミリカンはノーベル賞を受けました。


また、ミリカンは非常に優れた教育者として


多くの教科書を世に送り、その中で少し先んじた


概念を紹介しています。更にミリカンは


カリフォルニア工科大学の創設に大きく関わりました。


今でも同大学に彼の名を冠した建物があるそうです。


【そもそも米国の通例で、1号館と言う代わりに
ミリカン・ホールという名をつけたりします】





以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返事できていませんが
問題点に対しては適時、返信・改定をします。


nowkouji226@gmail.com


2020/09/12_初稿投稿
2021/07/22_改定投稿


旧サイトでのご紹介へ】
舞台別のご紹介へ】

時代別(順)のご紹介】
アメリカ関連のご紹介へ】

電磁気関係へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】


詳しくはコチラへ→【テキストポン】

L・E・ボルツマン【2021/7/31-原稿改定】

「ボルツマン」の原稿を投稿します。原稿文字数は1186文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1844年2月20日生まれ 〜 1906年9月5日没】




ボルツマンの生い立ち


その名はLudwig Eduard Boltzmann。


ボルツマンはオーストリア・ウィーン出身の


物理学者にして哲学者です。カノニカルな(統計的な)


議論の他に電磁気学や熱力学、それらを扱う


数学の研究で業績を残しました。ウィーン生まれ。


子供時代にはピアニストであるA・ブルックナー


からピアノを学んでいます。


 

指導者としてのボルツマンの業績としては


エーレンフェストが博士論文を書く時の


指導が挙げられます。


エーレンフェストの定理にはボルツマンの


信念が込められていると言えるでしょう。また、


科学史から見てもボルツマンの原子認識の流れ


は大きな一歩だったと言えます。ここでの一歩が無ければ


素粒子やブラウン運動のイメージは湧かなかったでしょう。


 

ボルツマンの研究業績


そんなボルツマンの墓には


S=k LogWと書かれています。


そこでいうSとはエントロピーというパラメターで


対象系の乱雑さを表します。


k(またはkBと記載します)というパラメターを定めて


ボルツマンが定量化した概念です。


クラウジウスが使ったエントロピーを


ボルツマンが再定義した、とも言えます


「乱雑さ」は統計力学において


温度T、容積V、圧力P等と関連して


ボルツマンの関係式として定式化されました。


 

ボルツマンの研究業績の中で特に私が関心をもつのは


原子論に関しての現象把握です。観測に直接かからない


原子は色々な見方をされていました。そんな原子に対して


ボルツマンは「乱雑さ」または「無秩序」の度合いという


新しい物理量である「エントロピー」を使い


原子の実在に近づいていったのです。


結果として


対立する考えが物理学会で生じていて


原子モデルを使うボルツマンと、


実証主義で理論を進める


エルンスト・マッハの間で論争が続きます。


原子論モデルを大きく進めるプランクの登場まで


その後、何年間も必要なのです。


そして、残念なことに、、


ボルツマンは晩年に精神障害に悩み


自ら命を絶つという悲しい最期を遂げています。


ここで、暫し物理学は大きな


壁に突き当たってしまったように思えます。


沢山の天才達が問題の大きさに畏怖したのでしょう。


 

ボルツマンはピアノが好きでした。


花を手向ける場所がありますよね。



〆最後に〆





以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に関しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/09/05_初回投稿
2021/07/16_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
オーストリア関連のご紹介へ】
ウィーン大関連のご紹介へ】
熱統計関連のご紹介へ】


【このサイトはAmazonアソシエイトに参加しています】


教科書買取専門店による教科書買取サービス【テキストポン】


ゾンマーフェルト
【2021/7/31原稿改定】

「ゾンマーフェルト」の原稿を投稿します。原稿文字数は1022文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1868年12月5日生まれ ~ 1951年4月26日没】



ドイツのゾンマーフェルトは


パウリハイゼンベルク の指導をして


育てあげた大きな実績があります。


この二人が抜けていたら


量子力学の発展は大きく遅れていたでしょう。


「とても意義深い仕事」をしてきた人達でした。


パウリもハイゼンベルグも


ゾンマーフェルトの研究室を離れた後に


対象の深い部分に対しての考察を進めています。


個人的には積分の経路に工夫を凝らして展開計算していった手法が印象的でした。そこがまさに電子軌道の自由度を考える事に繋がっていたかと思えました。。


ゾンマーフェルトの考えは


単純な円軌道で電子が運動しないで


楕円の軌跡を描く筈だと言う物です。


より詳細にはボーアの提唱した量子化条件を


進化させてより高次の拡張を展開していった


と言えるでしょう。同時期の


ウィルソンや石原純の理論も特筆すべきです。


【以下2原論文はWikipediaより引用しました】




  • Wilson, W. (1915). “The Quantum Theory of Radiation and Line Spectra”. Phil. Mag.. Series 6 29 (174): 795-802. doi:10.1080/14786440608635362.

  • Ishihara, J. (1915). “Die universelle Bedeutung dse Wirkungsquantums”. Tokyo Sugaku Buturigakkai Kizi. Ser. 2 8: 106–116. JOI:JST.Journalarchive/ptmps1907/8.106.


こういった話をしていて感じるのは
どうやっても見えない世界に何とか形を与える事は素晴らしい、と云うことですね。実際に形を与える事は文化的発展に繋がり世界を変えていくのです。ダイナミックな世界かと思います。日々の暮らしでは感じられない世界です。


 





以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/20_初稿投稿
2021/07/21_改定投稿


纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
ドイツ関連のご紹介へ】
熱統計関連のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】

マリ・キュリー
【1867年生まれ‐2021/07/31原稿改定】

「キューリ夫人」の原稿を投稿します。原稿文字数は2611文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1867年11月7日生れ ~ 1934年7月4日没】


 


その名はマリア・スクウォドフスカ=キュリー


:Maria Salomea Skłodowska-Curieですが


フランス語でマリ・キューリと呼ばれる事が多いです。


彼女は物理学と化学で2度ノーベル賞を受けています。マリ・キューリの父は研究者でしたが貴族階級の出身だった為に、帝政ロシアの支配下の元で教壇に立つことを禁じられていました。マリ・キューリは10歳をなる前に大変苦労します。父の非合法の講義が発覚して職・住を失い、母の結核による他界があり、更には投機での失敗もあり、


マリーは親戚等の世話になります。





そんな苦しい時期にマリ・キューリにも


恋をした時間がありました。


当時、マリ・キューリは家庭教師を生業としていましたが、


カジュミェシュ・ゾラフスキという青年と恋仲に落ちます。


共に避暑旅行に出かけたりして幸せな時間を過ごしますが、


最終的には破局を迎えました。この事がマリ・キューリの


パリ行きに繋がった様です。


 

パリでもマリ・キューリは苦労します。


屋根裏部屋に住んで寒い時には


持っている全ての服を着ながら勉学に励みます。


そんなパリ生活は大学の学部を卒業する迄、続きました。


 

そんなマリ・キューリに


光明がさします。知り合いを通じて


ピエール・キューリと出会ったのです。


 

そのピエール・キューリは国外で


評価を受けていて1893年には英国の


ケルヴィン卿が訪ねてくる程でした。


ところが、ピエール・キューリは


勲章を辞退してしまうような性格で


ひたすら研究に励んでいました。


 

そんな二人が惹かれ合い、認め合い、


マリの帰国後もピエールは恋文を


贈り続け、遂にはマリの心が動き、


2人は簡素な結婚式をあげます。


幸せな結婚だったと思います。


祝いの宴もなく、結婚指輪も無い、


つつましい形式でしたが


祝い金で買った自転車に乗り、


フランスの片田舎へと新婚旅行に旅立ちます。


ピエールが自転車をこぎ、


その後ろにマリが乗り、長閑な道を


語りながら進んでいった事でしょう。


料理を頑張り、長女に恵まれながら学問を続け、


ベクレルの見出した放射線に対して


二人は研究していきました。


そこで。光や温度といったパラメターではなくウラン含有量の「量」が放射現象には本質的であるとの結論を得ます。その後、マリとピエールの夫妻は元素の精製に心血を注ぎます。純度をあげる事で
同位体の存在に近づいていったのです。関心のある精製にキューリー夫妻は全てを注ぎ込みます。結果として、夫ピエールは度重なる発作に苦しみ、妻マリは神経衰弱から睡眠時遊行症に陥ります。そんな中で


第2子を流産してしましました。


そうした犠牲を払い、新しい概念の提唱に至ります。


即ち、


「特定元素は別の元素へ変化する」


という事実です。


そして、その過程で放射線を放出して一見エネルギー保存の法則に相反する変化を起こしますが、それを追ってラザフォードらが研究成果を次々に発表します。原子核の崩壊過程では素粒子の結合に関わる様々なエネルギーが関与します。現在では簡素にダイヤグラムで理解する手法が確立されていますが、当時は手探りの状況理解でした。そして夫ピエールが放射線に医学的効果を期待出来ると発見をしていくのです。ラジウムの効果でした。微量のラジウムならば古くから「ラジウム温泉」の効果は広く知られていました(ただし、明確に「ラジウム」という言葉は使われていませんでした)。また、現在では分かっているのですが過度のラジウムは身体に悪影響を与えます。放射線の影響を直接・装置で患者に対して考慮し始めたのです。ピエールの発見は大きな人類の知見へと繋がっていきます。


当初は、妻マリーの博士学位習得が放射線研究の目的であったのですが最終的にはマリー・ピエール・ベクレルの3人に対してノーベル賞が贈られます。苦労してきた二人にとって、まさに栄誉の極みでした。


所が、その後突然の不幸が訪れました。夫ピエールが46歳の若さにして交通事故で命を落とすのです。妻マリーは悲痛にくれます。当然でした。その後、傷が癒えるまでに多くの言葉と時間が必要でしたが、最終的に妻マリーは夫ピエールの大学での職位と実験室の後任を引き継ぎます。研究者として活動を始めたのです。


マリー・キューリ―はケルヴィン卿と対峙します。夫を認めてくれていた恩人でもあるのですがケルビン卿はラジウムを元素ではなく化合物であると考えていたのです。マリーは実験事実で論破してケルビン卿の誤りを正しました。そしてカメリーオネスと低温状態のラジウム放射線を研究していこうと話を進めます。第一回ソルベー会議で論文を発表していた若き日のアインシュタインを評価して、チューリッヒ大学教職への推薦状を書いています。そうした当時の綺羅星の物理学者が彼女と交流を持ちました。反面、ゴシップ騒動に追われていた部分も有、マリーはマスコミを嫌います。二度目のノーベル賞を受ける際にはスウェーデン側からも授与を見合せる打診がありましたがマリーは毅然と対応して、ゴシップネタとされた関係を
「成果をあげた関係」であると語りました。
旦那様の教え子、ランジュバンとの成果でした。


そして、、、語らなければなりません。何より悲しかったのは放射線のもたらした弊害です。研究の過程で放射線被曝が重なりマリーは頭痛・耳鳴り・怪我がなかなか治らないといった障害に悩まされ続けます。そして終には死に至りますが、当時はまだその関連性が明確ではなかったようです。


波乱に満ちたマリー・キューリの人生は幕を閉じましたがその後人々は彼女の残した物を高く評価しています。1995年、夫妻の墓はパリのパンテオンに移されました。フランス史の偉人の一人として今でも祭られています。そして、物理の世界の偉人として世界中で語り継がれています。






以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/14_初稿投稿
2021/07/21_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
フランス関連のご紹介へ】
熱統計関連のご紹介へ】
量子力学関係へ】

力学関係のご紹介へ】


【このサイトはAmazonアソシエイトに参加しています】

長岡半太郎
【1865年生まれ‐2021/7/31原稿改定】

「長岡半太郎」の原稿を投稿します。原稿文字数は1535文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1865年8月19日生まれ ~ 1950年12月11日没】



長岡半太郎の豊かな人脈


 

この長岡半太郎も湯川秀樹同様に大村藩の流れ


に生まれます。学生時代は東大で山川 健次郎


田中舘愛橘に学び、助教授としてドイツ留学していた


時期にボルツマンに学びます。それだから実証主義


の考え方も、留学以後は踏まえながら議論をしていった


のでしょうか。どこまで核心に迫っていったか


論じる際には当時の日本における量子論での


現象把握を考えると良いでしょう。そんな事を考えながら、


科学史の観点から論文を読んでみたくなりました。


別の面から調べてみたら話は進む時があると


思えるからです。そして長岡半太郎の子供時代は


学業成績は芳しくなかったようです。


この点は同時期の本多光太郎を思い出します。因みに、この二人に加わえて鈴木梅太郎の三人は理化学研究所の三太郎と呼ばれて居たそうです。携帯電話のコマーシャルで似たような人達居ましたね。



長岡半太郎の研究業績


長岡半太郎は田中舘愛橘と地震の論文を纏めたり、


本多光太郎と磁気の論文を纏めたりしていますが、


長岡半太郎の研究業績として大きいのは、


なんと言っても原子モデルでしょうボルツマン仕込みで


ミクロへの探求を進めていたのです。トムソン


ブドウパンの中のブドウのような形で


中心からの距離や軌跡と無関係に


電子の存在を仮定していたのに対し、


長岡半太郎は原子の周りを電子が回転する


土星のようなモデルを提唱しました。


この話は、不確定性関係と合わせて論じてみたいと思います。後に確立された不確定性関係では対象粒子の位置と運動量の関係が論じられます。この二要素が関連して論じられる訳です。その考え方の枠組みでは運動量が確定している電子に対して位置は不確定であって当然です。具体的には個体原子の位置は止まっていると見なせそうですが、動き回る電子の位置の確定が難しいのです。「運動量」の観測精度を高めている電子に対して位置情報はどんどんぼやけてきてしまいます。


時代を戻して長岡半太郎の時代に電子を観測


することを考えてみて、電子の挙動をとらえる


帯電物質を想定してみても帯電体の中を


動き回る電子の動きを止める事は出来ません。


電子とは何時も動いている物体だからです。


それだから、初めの時点での


モデル化の難しさが出てくるのです。


今日の物理学、特に量子力学的な知見では不完全なモデルとも言えますが、長岡半太郎のモデルは当時の原子モデルを大きく変えた点で高く評価出来ると思えます。全く知見の無かった原子という存在をに対して初期的なイメージを作る事が出来たのです。そのモデルをもとに帯電物質である電子の挙動が議論できたのです。
素晴らしいパラダイムシフトでした。



〆最後に〆





以上、間違いやご意見があれば
以下アドレスまでお願いします。
問題点に関しては適時、
改定や返信を致します。


nowkouji226@gmail.com


2020/09/13_初回投稿
2021/07/21_改訂投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
【日本関連のご紹介】
【東大関連のご紹介】
力学関係のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】

ピーター・ゼーマン
【1865年生まれ‐2021/7/31原稿改定】

「ゼーマン」の原稿を投稿します。原稿文字数は1060文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1865年5月25日生まれ ~ 1943年10月9日没】



その名の綴りはPieter Zeeman。ゼーマンは


オランダの小さな町ゾンネメレに生まれます。


ゼーマンはローレンツと同じ時代の理論家で


ローレンツと同時にノーベル賞を受賞してます。


当然、アインシュタインとも交流をもちます。


ゼーマンにとって幸運だったのは


ローレンツとカメリー・オンネスに師事した事


です。稀代の理論家と実験家の指導のもと、


ゼーマンは素晴らしい環境で育ちます。


そんなゼーマン等が出した結果がゼーマン効果です。


具体的には磁場中に置かれたナトリウム原子のスペクトル


を観察した時に、それが分裂していたのです。


ローレンツとゼーマンによってなされた説明は


ナトリウム原子の内部構造についてのものでした。


細かくは原子内部の電子が電荷を持ち、


磁場中では今で言う縮退状態からの開放される


ので(スピンの性質から)放射特性が変化するのです。


更には、その電荷の物理量が別に理論を進めていたJ.J.トムソンのそれと近しい値をとった事でローレンツとゼーマンの理論は説得力をもちました。結果、ノーベル賞が贈られます。


また、ノーベル賞受賞後に
ゼーマンはアムステルダムで
研究所を運営し、そこで電磁光学
の研究を進めています。特に、
移動する媒質の中での光の伝播
に関しても研究していますが、
それは相対論の形成に有益
ローレンツアインシュタイン
も評価していたと言われています。
因みにこの3人を考えると年齢順で
ローレンツ(1853年生まれ)
ゼーマン(1865年生まれ)
アインシュタイン(1879年生まれ)
の順番です。実験事実が確立していき、
相対性理論が熟成されていくのです。


ローレンツとゼーマンの素晴らしい
点はナトリウム原子の構造を
解明した手法にあったと思います。
実験結果の積み重ね、仮設の設定、
そして全てを使った理論構築の
モデルはその後に多くの学者が
活用可能な手法だったかと思えます。
その後に他の原子も次々と性格が
明らかにされていきます。






以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
適時、返信・改定をします。


nowkouji226@gmail.com


2020/10/31_初版投稿
2021/07/21_改定投稿


舞台別のご紹介へ】
時代別(順)のご紹介】

オランダ関係の紹介へ】
ライデン大学のご紹介】

熱統計関連のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】


教科書買取専門店による教科書買取サービス【テキストポン】