アフィリエイト広告を利用しています

2017年07月22日

数学: 圏の骨格が圏になることの証明

数学のノート,
数学: ばたばたする,
数学: 圏の骨格の構成
の続き.
圏 $\mathscr{C}$ に対する骨格 $\mathrm{sk}(\mathscr{C}) = (A, O, d^0, d^1, u, m)$ がそれ自身圏になることの証明.
(i) $\mathrm{sk}(\mathscr{C})$ における任意の対象 $X \in O$ に対して, その上の恒等射 $\mathrm{id}_{X} : X \to X$ のソースとターゲットが $X$ になる. すなわち
\begin{gather*}
d^0 \circ u(X) = d^0(\mathrm{id}_{X} : X \to X) = X = d^1(\mathrm{id}_{X} : X \to X) = d^1 \circ u(X) \\
\text{or} \\
d^0 \circ u = \mathrm{id}_{O} = d^1 \circ u
\end{gather*}
が成り立つ. これは図式
\begin{equation*}
\xymatrix@=48pt {
A \ar[dr]_{d^0} & O \ar[l]_{u} \ar[d]^{\mathrm{id}_{O}} \ar[r]^{u} & A \ar[dl]^{d^1} \\
~ & O &
}
\end{equation*}
が可換になることと同値である.
(ii) 集まり $P$ を
\begin{equation*}
P = \{\, (f, g) \mid f, g \in A,\, d^{0}(f) = d^{1}(g) \,\}
\end{equation*}
により定義する. $\mathrm{sk}(\mathscr{C})$ における任意の合成可能な射の対 $(f, g) \in P$ (ここで $f : Y \to Z$, $g : X \to Y$ とする) に対して, 合成 $m(f, g) = f \circ g$ のソースは $g$ のソース $d^0(g)$ に等しく, ターゲットは $f$ のターゲット $d^1(f)$ に等しい, すなわち
\begin{gather*}
d^0 \circ m(f, g) = d^0(f \circ g : X \to Z) = X = d^0(g : X \to Y) = d^0 \circ p_2(f, g), \\
d^1 \circ m(f, g) = d^1(f \circ g : X \to Z) = Z = d^1(f : Y \to Z) = d^1 \circ p_1(f, g), \\
\text{or} \\
d^0 \circ m = d^0 \circ p_2, \quad d^1 \circ m = d^1 \circ p_1
\end{gather*}
が成り立つ. これは図式
\begin{equation*}
\xymatrix@=48pt {
P \ar[d]_{m} \ar[r]^{p_2} & A \ar[d]^{d^0} & P \ar[d]_{m} \ar[r]^{p_1} & A \ar[d]^{d^1} \\
A \ar[r]_{d^0} & O & A \ar[r]_{d^1} & O
}
\end{equation*}
が可換になることと同値である.
※: $p_1, p_2 : P \to A$ は座標の各成分への射影を表わす. つまり $p_1(f, g) = f$, $p_2(f, g) = g$ となるような関数である.

今日はここまで.
posted by 底彦 at 23:08 | Comment(0) | TrackBack(0) | 数学
この記事へのコメント
コメントを書く

お名前:

メールアドレス:


ホームページアドレス:

コメント:

この記事へのトラックバックURL
https://fanblogs.jp/tb/6517503

この記事へのトラックバック
ファン
検索
<< 2024年11月 >>
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
最新記事
最新コメント
眼科の定期検査 〜 散歩 by コトタマ (02/15)
眼科の定期検査 by 三文字寄れば文殊のヒフミヨ (09/21)
本を読んで過ごす by 底彦 (12/13)
本を読んで過ごす by ねこ (12/12)
数学の計算をする by 底彦 (12/04)
タグクラウド
カテゴリアーカイブ
仕事(59)
社会復帰(22)
(44)
コンピューター(211)
(1441)
借金(8)
勉強(13)
(13)
数学(97)
運動(8)
日常生活(1403)
(204)
健康(38)
読書(21)
プロフィール

ブログランキング・にほんブログ村へ
にほんブログ村
にほんブログ村 メンタルヘルスブログ うつ病(鬱病)へ
にほんブログ村
にほんブログ村 科学ブログ 数学へ
にほんブログ村
にほんブログ村 IT技術ブログ プログラム・プログラマーへ
にほんブログ村