アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2021年07月 >>
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
最新記事
最新コメント

2021年07月28日

E・O・ローレンス
_【1901年生まれ-2021/7/28原稿改定】

「ローレンス」の原稿を投稿します。原稿文字数は789文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。定点記録を残すと、7/23と7/25でf/f数は、
コウジ改 SyvE.804/3599と826/3625.
バンドリ sv2F.810/2666と824/2682.
浩司   BLLp.578/2339と585/2340.
kouji kouji.1971/3298と1992/3309.
作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1901年8月8日 ~ 1958年8月27日】



その名はErnest Orlando Lawrence。


ローレンスは優れた実験家で今でも頻繁に


応用されているサイクロトロンを発明した事


で広く知られています。


 

ノルウェー系の両親に生まれ少年時代はMerle Tuve


共に簡易無線装置を作成したりしていました。


その後、


サウスダコタ大学時代は医学を志望してましたが、


化学の学士号、物理学の修士号を習得


します。Tuveと共にスワン先生の下で学びます


ローレンスがイェール大学で博士号をとった時


には光電効果に関する研究をしていたようです。


その後、恩師だったスワン先生がイェール大学


を去るタイミングでカリフォルニア大


に移ります。ローレンスは実験家として大変、


有望視されていました。


サイクロトロンを使った実験で、
ローレンスがその装置を活用
した応用例が人工放射性元素でした。
ローレンスと彼の率いる
バークレー国立研究所は
自然界に存在する元素だけでなく、
不安定な元素を作り出したのです。


強い磁場を使い帯電しているイオンを


ビーム状に出す事が出来るので


ローレンスの作ったサイクロトロンは


イオンが反応する状態を作れるのです。


日本、イギリスが同様な措置を計画していきます。


サイクロトロンを使えば特定金属にイオンビームを


当て続ける事が出来たりする訳です。


こうした装置の開発を通じて
ローレンスは人類に新しい知見を
もたらしたのです。






以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/31_初回原稿
2021/07/28_改定投稿


舞台別のご紹介へ】
舞台別のご紹介へ】

アメリカ関連のご紹介へ】
イェール大学関連のご紹介へ】
UCBのご紹介へ】

熱統計関連へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】


ルイ・ド・ブロイ
【1892年生れ-2021/07/28原稿改定】

「ド・ブロイ」の原稿を投稿します。原稿文字数は1117文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/23(金)朝の時点でフォロワーは合計【11902】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】 

【1892年8月15日生れ~1987年3月19日没】



ルイ・ド・ブロイはフランス貴族、公爵の血を引いてます。


その血筋は由緒正しいのです。そもそも、


フランス国王ルイ14世により授爵頂いていた


名門貴族・ブロイ家の血筋であって、ルイ・ド・ブロイは


直系子孫です。兄の没後は兄に子供が居なかった


事情もあって、正式に侯爵家の当主を務めています。


ルイ・ド・ブロイはフランスの首相を二期務めた第4代の


当主であるアルベール・ド・ブロイの孫です。それだから、


ルイの生誕時に、その父は当時公子でした。


こんな逸話が沢山あるのですね。


そんなルイ・ド・ブロイは独自に優れた仮説を進め、


ド・ブロイ波(物質波)の考えにたどり着くのです。


そのルイ・ド・ブロイの考えは初め、


中々理解されませんでした。


関連して超有名なエピソードがあります。


ルイ・ドブロイの博士論文の審査過程で教授達が


ド・ブロイの考えを理解出来ず、


有名なアインシュタインに意見を求めたたのです。


すると、「ド・ブロイの考えは博士論文よりも


ノーベル賞に値する」とアインシュタインから評価され、


絶賛され、更に物質波の考えを進めていく事が出来たのです。


その考えはパラダイムシフトでした。粒子の二面性の考えは


現在の量子力学の根幹をなしていて、とても大事な考えです。


ドブロイを含めた学者達が議論を重ね、


当時の物理学の常識を変えていったのです。


 

波が粒子性を持つのと同時に、粒子である


と考えられていた電子も、実際には波動性を持つだろう


という考えがドブロイ波の本質です。


現代の量子力学の理解ではこの二面性は当たり前ですが、


波動性を持つ故に特定元素の周りを周期的に運動する


電子は特定波長の整数倍のみ許された軌道を描きます。


逆に考えれば特定波長の整数倍の運動しか、


その電子には許されないのです。


特定原子核の周りを回る電子は


特徴的な波長の整数倍を定常状態として周期運動を続け、


定常状態間の遷移が起きる際に放射線が生じる事実は、


ドブロイを初めとする考えがあってこそ


成立する概念なのです。それこそが電子の存在なのです。


 

実際に数年後にルイ・ド・ブロイはノーベル賞


を受賞します。いつの時代も中々、


新しい考えは理解出来されないものですね。







以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。


nowkouji226@gmail.com


2020/08/19_初回投稿
2021/07/28_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
フランス関連のご紹介へ】
熱統計関連のご紹介へ】
力学関係のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】



 

ニールス・ボーア
【1885年生まれ‐2021/7/28原稿改定】

「ボーア」の原稿を投稿します。原稿文字数は1510文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/23(金)朝の時点でフォロワーは合計【11902】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1885年10月7日生まれ ~ 1962年11月18日没】



TOP画で使っている写真では中列右端に立っています。


北海に面したユトランド半島および、その近辺の多くの島々


からなる立憲君主制国家である、デンマーク王国に


ボーアは生まれました。


若い時代にはアマチュアサッカー選手リーグの


ABコペンハーゲンでゴールキーパーを務めていた


という一面もあります。ボーアはそんな人でもあるんです。


そしてボーアは前期量子論において先駆的な理論


を提供し続けました。ボーアは当時、不完全であった


原子像を洗練させて独自の原子模型を提唱します。


先ず1911年にイギリスへ留学し、J・J・トムソン


ラザフォード_の元で原子核に対する基礎知識を吸収して


先進的な考察を進めていきます。そもそも光学顕微鏡で


見えないほど小さいレベルにまで議論が進んでいくのですが、


その世界に対して、考察を止めることなく幾多の議論を重ね、


量子力学を確立していきます。例えば今でも原子の大きさを


議論する時に「ボーア半径」という言葉を使います。


この言葉はこの時代に確立された概念です。


その後、ボーアはイギリスから帰国後に幾多の仲間を


コペンハーゲンに集め、コペンハーゲン学派と呼ばれた


仲間を形成します。そこでまとまった解釈は


コペンハーゲン解釈と呼ばれるようになり、


それまでの物理学でのスタイルを変えていきます。


コペンハーゲン解釈は微視的世界での


「観測に対する考え方」です。光学顕微鏡で


微細な世界を覗いても分解能の問題でどうしても


画像がぼやけてしまう「限界」にいきつきます。


アルファー線やベータ―線といった粒子線を純度の高い物質に当てて光路から内部構造を予想しようとする試みも色々な形で繰り広げられました。日本では寺田寅彦の時代にそうした解析が行われています。そうした蓄積を辻褄(つじつま)の合う理論で結びつける体系が必要とされていたのです。目で見て取れる現象は顕微鏡の分解能の範囲で終わってしまいます。実際にはそれ以下の大きさで繰り広げられる現象が存在していて、観測しようとして光を当てると(光子を作用させると)、「観測する事情」で「状態をかき乱してしまう」のです。位置と運動量の微視的分解能の限界をA・アインシュタインと論じた話などが残っています。また段々に分かってくるのですが、後にパウリが示すスピンの自由度も電子は持っていて、軌道半径だけをイメージして議論すれば話が終わる訳ではないのです。


その中でボーアは本質的な「ボーアの量子化条件」を用いて様々な現象を説明してみせます。長さスケールで10の‐23乗メートルのスケールでの議論では「位置等の観測値」が「とびとびの値」を示すのですが、その事象を現実世界での本質的な性質であると提唱したのです。原子半径、磁気的性質も現代では、その形式で考えるが方がわかりやすい訳です。師であるラザフォードの原子モデルに改良を加えてボーアモデルを作りあげます。


そして晩年、


ボーアはデンマーク最高の勲章である


エレファント勲章を受けています。


その際には東洋密教で使う陰陽のマーク


を模してボーア家の紋章をデザインした、


と言われています。また、


英国の王立協会では外国人会員の栄誉を受けていました。






以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/08/31_初版投稿
2021/07/28_改定投稿


纏めサイトTOP
舞台別のご紹介
舞台別のご紹介へ】
時代別(順)のご紹介】
デンマーク関係へ】
イギリス関係

ケンブリッジ関連
熱統計関連のご紹介へ】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】


 

南部 陽一郎 【2021/07/28-原稿改定】

「南部陽一郎」の原稿を投稿します。画像は銀杏並木を使いました。また、また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。規約は可能な限り守ます。アマゾン関連の作業は嫁に任せていましたがサイトの運営としては記載すべきだという判断です。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事です故、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/4(日)朝の時点でフォロワーは合計【11530】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1921年1月18日生まれ ~ 2015年7月5日没】




南部 陽一郎は第二次世界戦時に研究を志しました。所が、時は戦時中。彼の頭脳は武器製造に貢献できると判断されて、陸軍のレーダー研に配属されました。戦時下ではどんな研究をしていたんでしょうね。そして、どんな気持ちだったのでしょうね。戦争の前後で東京帝国大学で研究を進めます。


戦後、南部 陽一郎は朝永 振一郎のグループで研究を続けます。そして物質を構成する
原子を考えていき、今に続く素粒子論を完成させていきます。中間子をひもとき、素粒子間の総合作用を考え、その形成に関して実験事実と、つじつまの合う理論を展開していきます。そうした研究を重ね南部陽一郎は「自発的対称性の破れ」でノーベル賞を受賞しています。南部陽一郎の話の組み立てとしては、強磁性体の自発磁化状態(外部からの磁場無しで内部磁気モーメントを揃えている状態)が温度上昇に伴い磁化を失う状態を考え、ラグラジアンを巧みに使い素粒子に適用しているのです。また彼は量子色力学や紐理論でも成果を上げています。


そういえば、南部洋一郎は私が学生時代に使っていた教科書の著者でした。その時点で米国の国籍を得ていた記憶
があり、研究者に対しての日本での待遇に疑問を抱いたものです。私は理論物理学の研究室に所属して居ましたが、卒業後も研究を続けて研究者として身を立てている仲間は今では数えるほどしかいません。多くは私のように、民間の会社に所属して物理学とは全く関係のない業務に従事しています。


少子化という流れもありますが名誉職としての教授に対して日本社会の扱いは低いとも感じていました。狭き門である事に加えて扱いが低いのです。それだから
南部 陽一郎がアメリカに帰化した気持ちは少しは理解出来る気がするのです。



以上、間違い・ご意見は
以下アドレス迄お願いします。
適時、返信改定をします。


nowkouji226@gmail.com


2020/09/10_初版投稿
2021/07/05_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
時代別(順)のご紹介】
【日本関連のご紹介】
【東大関連のご紹介】
量子力学関係へ】


【このサイトはAmazonアソシエイトに参加しています】




G・S・オーム 【2021/07/28-原稿改定】

「オーム」の原稿を投稿します。画像はドイツの街並みを使いました。また、また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別に再考しています。この後、時代別のリライトを行います。また学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。作業としてフォロワー増は暢気に続けます。それよりも紹介の内容を吟味します。【以下原稿です】


【1789年3月16日生れ ~ 1854年7月6日没】



その名はGeorg Simon Ohm。オームの法則で有名です。


オームの法則は定量的に回路を論じるときに不可欠で


非常に明快なので小学生レベルから説明出来ます。


子供に科学を教える時に理解しやすく、


実験的と原理がつながる事例として明快です。


電圧値は電柱値と抵抗値の積なのです。E=RI。


 

オームは独学で数学、特に幾何学を習得していて


研究生活に入る前に教師として生計を立てている


時期がありました。その後、プロイセン王に幾何学に関する


原稿を送り、評価を受け、ケルンのギムナジウムで


物理学を教える機会を得ます。


そこでの実験室で設備が充実していたことは


その後のオームにとってとても良かったと思います。


 

オームの法則は、実の所はイギリスのキャヴェンディッシュ


が先に発見しているようですが存命中に発表しませんでした。


オームはキャヴェンディッシュと意見交換することなく


独自に法則を確立していて論文にまとめました。


 

また、オーム自身は導体内での電子の挙動に関して


近接作用の結果として論じていたようですが


そんなエピソードからも目に見えないミクロな現象を


組み立てていく為に検証をしていく難しさを感じます。


 

そんな困難の中、原理を確立して社会に意義を問いかけ


現代に多大な功績を遺したオームの名は抵抗値の単位


として今後も使われていきます。






以上、間違い・ご意見は
以下アドレスまでお願いします。
最近、返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/09/30_初稿投稿
2021/07/28_改定投稿


(旧)舞台別のご紹介
纏めサイトTOPへ】
舞台別のご紹介へ】
ドイツ関係へ】

時代別(順)のご紹介】
電磁気関係へ】


【このサイトはAmazonアソシエイトに参加しています】