アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2024年10月 >>
    1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31    
最新記事
最新コメント

2021年10月02日

小出昭一郎
【1927生まれ-10/2原稿改定】

「小出昭一郎」の原稿を投稿します。原稿文字数は989文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1927年3月25日生まれ ~ 2008年8月30日没】



小出昭一郎は多くの専門書を残した事
で知られています。東京に生まれ
東京帝大で学びました。第5回
ソルベー会議が開かれた年に生まれています。


教育に時間を捧げた人生だったのでしょうか。研究成果としては余り伝わっていません。ただ、金属錯塩の光スペクトルを研究していたようです。そこで手掛かりとして錯体について調べを進めてみます。錯体とは広義には、「配位結合や水素結合によって形成された分子の総称」(Wikipedia)狭義には、「金属と非金属の原子が結合した構造を持つ化合物」(Wikipedia)


何だか亀の甲羅みたいな記号が沢山出てきます。
そこからもう少し考えてみると、
光の吸光や発光に伴い対象物資
内の状態遷移に関する情報が得られるのです。
そしてそこから、電磁気特性や、
触媒の効果が理解出来るかと。


具体的に主な錯体としては
アンミン錯体_テトラアンミン銅錯体_[Cu(NH3)4]^2+
シアノ錯体_ヘキサシアニド鉄錯体_[Fe(CN)6]^4-[Fe(CN)6]^3+
ハロゲノ錯体-テトラクロリド鉄錯体_[Fe(CN)6]^4-[FeCl4]-
ヒドロキシ錯体 - アルミン酸_[Al(OH)4]-(または_[Al(OH)4(H2O)2]-
などがあるようです。ただ、当時の日本物理学は
本丸を攻めきれてはいなかったのですね。


プランクの黒体輻射理論発表から数十年がたち、
他国で議論が交わされていた時代に対して、
小出昭一郎の暮らした敗戦国日本は
戦前・戦後の混乱の中で
情報がどこまで取れていたのでしょうか。
リアルタイムで議論が進まない環境で、
ソルベー会議の成果をタイムラグのある中で
把握しています。学会誌を見る度に興奮した筈です。


小出昭一郎はそんな中でも量子力学の
理解を進め国内に広めていたのです。
そして、何より後進を育てていたのです。
小出昭一郎は多くの教科書で
物理の世界を紹介していました。






以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には適時、返信・改定をします。


nowkouji226@gmail.com


2020/11/20_初回投稿
2021/10/02_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】


詳しくはコチラへ→【テキストポン】

ゾンマーフェルト
【1868年生まれ-10/2原稿改定】

「ゾンマーフェルト」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話として、文章に主語が無く文脈から判断させたりしていたりしましたのです。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていて逆効果だったのです。以後この点は改善します。原稿文字数は2522文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1868年12月5日生まれ ~ 1951年4月26日没】




ドイツのゾンマーフェルトは


 

パウリハイゼンベルク の指導をして


育てあげた大きな実績があります。


 

 この二人は量子力学で大きな仕事をしていて


この二人が抜けていたら


量子力学の発展は大きく遅れていたでしょう。


「とても意義深い仕事」をしてきた人達でした。


パウリもハイゼンベルグも


ゾンマーフェルトの研究室を離れた後に


対象の深い部分に対しての考察を進めています。


個人的には積分の経路に工夫を凝らして展開計算していった手法が印象的でした。そこがまさに電子軌道の自由度を考える事に繋がっていたかと思えました。。


ゾンマーフェルトの考えは


単純な円軌道で電子が運動しないで


楕円の軌跡を描く筈だと言う物です。


より詳細にはボーアの提唱した量子化条件を


進化させてより高次の拡張を展開していった


と言えるでしょう。同時期の


ウィルソンや石原純の理論も特筆すべきです。


 

【以下2原論文はWikipediaより引用しました】



  • Wilson, W. (1915). “The Quantum Theory of Radiation and Line Spectra”. Phil. Mag.. Series 6 29 (174): 795-802. doi:10.1080/14786440608635362.

  • Ishihara, J. (1915). “Die universelle Bedeutung dse Wirkungsquantums”. Tokyo Sugaku Buturigakkai Kizi. Ser. 2 8: 106–116. JOI:JST.Journalarchive/ptmps1907/8.106.


こういった話をしていて感じるのは
どうやっても見えない世界に何とか形を与える事は素晴らしい、という事実です。実際に形を与える事は文化的発展に繋がり世界を変えていくのです。ダイナミックな世界かと思います。日々の暮らしでは感じられない世界です。


 





以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/20_初稿投稿
2021/10/02_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
ドイツ関連のご紹介
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


 

Sommerfeld in Germany has a great track record


of growing up with the guidance of Pauli and Heisenberg. If these two people were missing, the development of quantum mechanics would have been greatly delayed. They were people who had done "very meaningful work". Both Pauli and Heisenberg have been thinking about the deeper parts of the subject after leaving Sommerfeld's laboratory.


Personally, I was impressed with the method of expanding and calculating the integral path. I thought that was exactly what led to thinking about the degree of freedom of electron orbits. ..


Sommerfeld's idea is that an electron should draw an elliptical locus without moving in a simple circular orbit. In more detail, it can be said that Bohr's proposed quantization conditions were evolved to develop higher-order extensions. The theory of Wilson and Jun Ishiwara at the same time is also noteworthy.



[The following two original papers are quoted from Wikipedia]


Wilson, W. (1915). “The Quantum Theory of Radiation and Line Spectra”. Phil. Mag .. Series 6 29 (174): 795-802. Doi: 10.1080 / 14786440608635362.
Ishihara, J. (1915). “Die universelle Bedeutung dse Wirkungsquantums”. Tokyo Sugaku Buturigakkai Kizi. Ser. 2 8: 106–116. JOI: JST.Journalarchive / plotms1907 / 8.106.


What I feel when talking about this is that it is wonderful to somehow give shape to the invisible world. Actually giving shape leads to cultural development and changes the world. I think it's a dynamic world. It's a world you can't feel in your daily life.



 

2021年10月01日

西島 和彦
【1926年生まれ10/1原稿投稿】

「西島和彦」の原稿を投稿します。原稿文字数は934文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【↑_Credit:Wikipedia】



西島和彦は茨城県に生まれました。
東大を卒業後に大阪市立大学で教鞭
をとります。その後イリノイ大学の後に
東京大学、京都大学で教鞭をとります。


そんな経歴の中において、西島和彦の業績として特筆すべきはストレンジネスの提唱でしょう。素粒子の性質を吟味していく中で当時は電荷量、バリオンといった値が知られていたようですが、それに加えてストレンジネスといったパラメターを西島和彦は導入して、素粒子の性質を語る礎を固めていったのです。


 西島和彦が素粒子を考えていく中で、特定の粒子と反粒子が対になって生成される場合が多く見受けられたりしましたが、そのメカニズムは説明されていませんでした。生成にかかる時間を考察して、反応の中間に存在するであろう中間子を考察していったのです。保存される量として質量の他に別の量を考えていき、散乱断面積の計算を追従し辻褄(つじつま)の合う理論を構築します。果てしない思考の作業です。


西島和彦は学生時代に中野董夫、
マレー・ゲルマンとストレンジネスを法則化
しました。強い相互作用や電磁相互作用
において反応の前後でストレンジネスが
保存されるのです。そうした物理量を一つ一つ
生み出していく事がとても大事です。


西島和彦らが考え出したストレンジネスは直接観測にかかるものでは無く、反応の前後で、ストレンジクォークと反ストレンジクォークの数を使って定義されます。そして、ストレンジネスを使った中野西島ゲルマン・モデルは坂田模型やSU3と呼ばれるモデルへ、クォークモデルと繋がり素粒子の振る舞いを明らかにしていくのです。


そして、統一的な現象理解へと繋がるのです。






以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/11/12_初稿投稿
2021/10/01_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
京大関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


テキストポンへの査定申込はコチラ

ロバート・ミリカン
【1868年生まれ-10/1原稿改定】

「ミリカン」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話として、文章に主語が無く文脈から判断させたりしていたりしましたのです。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていて逆効果だったのです。以後この点は改善します。原稿文字数は2692文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1868年3月22日 ~ 1953年12月19日】




ミリカンは非常に優れたアメリカの実験家でした。


コロンビア大学で物理学の博士号をとりますが、ミリカンが


同大学での初めての物理博士習得者だったそうです。


光に粒子性と波動性がある事を実証していく段階で


波動性を前面に出した理論を展開していきます。


ただ、実験事実として粒子性を前提に考えた実験が


非常につじつまの合う結果を出していたことに


ミリカン自身も自問自答を繰返したと思えます。


結果としてアインシュタインが論じた光電効果を


ミリカンも実験的に裏付けます。また、そうした


実験と光の波長からプランク定数を定めました。



加えて、電気素量を導き出した実験も見事です。


金属板の間を落下する液体の運動を考えミリカンらは


重力効果に対してクーロン力の兼ね合いを計算に取込み、


厳密に計測値が求まる油滴重量から電気素量を導きます。


この油滴の実験の素晴らしい所は量子化する事で電子の


粒子性を示した点です。電流が計測されるイメージを考え


みた時に、その担い手の電子が連続量なのか粒子のように


考えられるか、当時は不確かだったのです。


この2つの業績でミリカンはノーベル賞を受けました。



また、ミリカンは非常に優れた教育者として


多くの教科書を世に送り、その中で少し先んじた


概念を紹介しています。更にミリカンは


カリフォルニア工科大学の創設に大きく関わりました。


今でも同大学に彼の名を冠した建物があるそうです。


【そもそも米国の通例で、1号館と言う代わりに
ミリカン・ホールという名をつけたりします】





以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返事できていませんが
問題点に対しては適時、返信・改定をします。


nowkouji226@gmail.com


2020/09/12_初稿投稿
2021/10/01_改定投稿


旧サイトでのご紹介
舞台別のご紹介

時代別(順)のご紹介
アメリカ関連のご紹介

電磁気関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


詳しくはコチラへ→【テキストポン】




(2021年10月時点での対応英訳)


Millican was a very good American experimenter.


He holds a PhD in physics from Columbia University, and Millican was the first PhD in physics at Columbia University.


He develops a theory that puts wave nature in the foreground at the stage of demonstrating that light has particle nature and wave nature. However, it seems that Millican himself repeatedly asked himself that the experiment that assumed particle nature as an experimental fact produced very consistent results.


As a result, Millican also experimentally supports the photoelectric effect discussed by Einstein. We also determined Planck's constant from such experiments and the wavelength of light. In addition, the experiment that derived the elementary charge is also wonderful. Considering the movement of the liquid falling between the metal plates, Millican et al. Incorporated the balance of Coulomb force against the gravitational effect into the calculation.



The elementary charge is derived from the weight of the oil droplet


, for which the measured value can be obtained exactly. The great thing about this oil drop experiment is that it shows the particle nature of electrons by quantization. When I thought about the image of measuring the electric current, it was uncertain at that time whether the electrons of the bearer were considered to be continuous quantities or particles. Millican received the Nobel Prize for these two achievements.


Millican has also sent many textbooks to the world as a very good educator, introducing concepts that are a little ahead of the game. In addition, Millican was heavily involved in the founding of the California Institute of Technology. It seems that there is still a building bearing his name at the university.


[In the first place, it is customary in the United States to call it Millican Hall instead of Building No. 1.]


2021年09月30日

小柴昌俊
【1926年生まれ-9/30原稿改定】

「小柴昌俊」の原稿を投稿します。原稿文字数は1028文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1926年9月19日生まれ ~ 2020年11月12日没】



小柴昌俊は物理学の新しい分野を切り開いた先人でした。


2020/11/12の夜に老衰の為、東京都内の病院で


お亡くなりになりました。大きな仕事を


成し遂げた後での享年94歳の大往生です。


小柴昌俊は物質の基本元素を構成する素粒子の


1つであるニュートリノを観測にかける事に成功しました。


その結果をもとに今ではニュートリノ天文学


という新しい分野を確立しています。


ニュートリーノは星の進化過程で発生する基本粒子です。


驚いたことに、ニュートリーノを観測にかけたのは、小柴昌俊が東京大学を定年退官する一月前の観測でした。強運を指摘された小柴氏は「運はだれにでも等しく降り注ぐが、捕まえる準備をしているのか、していないのかで差がつく」(のですよ)、と反論しました。強運の一言で片づけられないほど沢山の実験をして、議論をして、下準備をしてきたから、
このように語れたのでしょう。
その前に沢山の知恵を巡らしてみたのでしょう。


東京大学宇宙線研究所に所属している梶田隆章は小柴昌俊の弟子にあたりますが、ニュートリーノに質量がある事を示しノーベル賞を受けています。また、戸塚洋二も小柴昌俊の弟子にあたります。小柴昌俊は朝永振一郎から可愛がられた若かりし時代を経て梶田隆章教授、戸塚洋二教授を育てたのです。


小柴昌俊は岐阜県飛驒市にある鉱山地下、1000メートルに3000トンの水を使った、巨大装置である通称「カミオカンデ」を建設し、天体からのニュートリノを観測することに世界で初めて成功しました。その装置ではニュートリーノが飛来する方向、観測した時刻、エネルギー分布を明確に検出します。その装置を使い小柴昌俊は実際に観測をしました。カミオカンデの主目的はニュートリーノではありませんでしたが、ニュートリーノも観測したい、という2段作戦で成功を得たのです。小柴昌俊はそうした結果を使いニュートリーノ物理学を進めたのです。何より彼は大変な努力家でした。そして情熱家でした。科学に対する限りない愛を感じます。そんな男が大きな仕事を成し遂げた後、静かな眠りに落ちたのですね。大きなお悔やみを申し上げます。合掌。






以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/11/12_初稿投稿
2021/09/30_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】



マリ・キュリー
【1867年生れ-9/30原稿改定】

「キューリ夫人」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話として、文章に主語が無く文脈から判断させたりしていたりしましたのです。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていて逆効果だったのです。以後この点は改善します。原稿文字数は8486文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1867年11月7日生れ ~ 1934年7月4日没】


 



マリア・スクウォドフスカ=キュリー


:Maria Salomea Skłodowska-Curieですが


フランス語でマリ・キューリと呼ばれる事が多いです。


彼女は物理学と化学で2度ノーベル賞を受けています。マリ・キューリの父は研究者でしたが貴族階級の出身だった為に、帝政ロシアの支配下の元で教壇に立つことを禁じられていました。マリ・キューリは10歳をなる前に大変苦労します。父の非合法の講義が発覚して職・住を失い、母の結核による他界があり、更には投機での失敗もあり、


マリーは親戚等の世話になります。


 

そんな苦しい時期にマリ・キューリにも


恋をした時間がありました。


当時、マリ・キューリは家庭教師を生業としていましたが、


カジュミェシュ・ゾラフスキという青年と恋仲に落ちます。


共に避暑旅行に出かけたりして幸せな時間を過ごしますが、


最終的には破局を迎えました。この事がマリ・キューリの


パリ行きに繋がった様です。


 

パリでもマリ・キューリは苦労します。


屋根裏部屋に住んで寒い時には


持っている全ての服を着ながら勉学に励みます。


そんなパリ生活は大学の学部を卒業する迄、続きました。


 

そんなマリ・キューリに


光明がさします。知り合いを通じて


ピエール・キューリと出会ったのです。


 

そのピエール・キューリは国外で


評価を受けていて1893年には英国の


ケルヴィン卿が訪ねてくる程でした。


ところが、ピエール・キューリは


勲章を辞退してしまうような性格で


ひたすら研究に励んでいました。


 

そんな二人が惹かれ合い、認め合い、


マリの帰国後もピエールは恋文を


贈り続け、遂にはマリの心が動き、


2人は簡素な結婚式をあげます。


幸せな結婚だったと思います。


祝いの宴もなく、結婚指輪も無い、


つつましい形式でしたが


祝い金で買った自転車に乗り、


フランスの片田舎へと新婚旅行に旅立ちます。


ピエールが自転車をこぎ、


その後ろにマリが乗り、長閑な道を


語りながら進んでいった事でしょう。


料理を頑張り、長女に恵まれながら学問を続け、


ベクレルの見出した放射線に対して


二人は研究していきました。


そこで。光や温度といったパラメターではなくウラン含有量の「量」が放射現象には本質的であるとの結論を得ます。その後、マリとピエールの夫妻は元素の精製に心血を注ぎます。純度をあげる事で
同位体の存在に近づいていったのです。関心のある精製にキューリー夫妻は全てを注ぎ込みます。結果として、夫ピエールは度重なる発作に苦しみ、妻マリは神経衰弱から睡眠時遊行症に陥ります。そんな中で


第2子を流産してしましました。


そうした犠牲を払い、



新しい概念の提唱に至ります。


即ち、


「特定元素は別の元素へ変化する」


という事実です。


そして、その過程で放射線を放出して一見エネルギー保存の法則に相反する変化を起こしますが、それを追ってラザフォードらが研究成果を次々に発表します。原子核の崩壊過程では素粒子の結合に関わる様々なエネルギーが関与します。現在では簡素にダイヤグラムで理解する手法が確立されていますが、当時は手探りの状況理解でした。そして夫ピエールが放射線に医学的効果を期待出来ると発見をしていくのです。ラジウムの効果でした。微量のラジウムならば古くから「ラジウム温泉」の効果は広く知られていました(ただし、明確に「ラジウム」という言葉は使われていませんでした)。また、現在では分かっているのですが過度のラジウムは身体に悪影響を与えます。放射線の影響を直接・装置で患者に対して考慮し始めたのです。ピエールの発見は大きな人類の知見へと繋がっていきます。


当初は、妻マリーの博士学位習得が放射線研究の目的であったのですが最終的にはマリー・ピエール・ベクレルの3人に対してノーベル賞が贈られます。苦労してきた二人にとって、まさに栄誉の極みでした。


所が、その後突然の不幸が訪れました。夫ピエールが46歳の若さにして交通事故で命を落とすのです。妻マリーは悲痛にくれます。当然でした。その後、傷が癒えるまでに多くの言葉と時間が必要でしたが、最終的に妻マリーは夫ピエールの大学での職位と実験室の後任を引き継ぎます。研究者として活動を始めたのです。



ケルビン卿との議論


マリー・キューリ―はケルヴィン卿と対峙します。夫を認めてくれていた恩人でもあるのですがケルビン卿はラジウムを元素ではなく化合物であると考えていたのです。マリーは実験事実で論破してケルビン卿の誤りを正しました。そしてカメリーオネスと低温状態のラジウム放射線を研究していこうと話を進めます。第一回ソルベー会議で論文を発表していた若き日のアインシュタインを評価して、チューリッヒ大学教職への推薦状を書いています。そうした当時の綺羅星の物理学者が彼女と交流を持ちました。反面、ゴシップ騒動に追われていた部分も有、マリーはマスコミを嫌います。二度目のノーベル賞を受ける際にはスウェーデン側からも授与を見合せる打診がありましたがマリーは毅然と対応して、ゴシップネタとされた関係を
「成果をあげた関係」であると語りました。
旦那様の教え子、ランジュバンとの成果でした。


そして、、、語らなければなりません。何より悲しかったのは放射線のもたらした弊害です。研究の過程で放射線被曝が重なりマリーは頭痛・耳鳴り・怪我がなかなか治らないといった障害に悩まされ続けます。そして終には死に至りますが、当時はまだその関連性が明確ではなかったようです。


波乱に満ちたマリー・キューリの人生は幕を閉じましたがその後人々は彼女の残した物を高く評価しています。1995年、夫妻の墓はパリのパンテオンに移されました。フランス史の偉人の一人として今でも祭られています。そして、物理の世界の偉人として世界中で語り継がれています。







以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/14_初稿投稿
2021/09/30_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
量子力学関係

力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】


 

(2021年9月時点での対応英訳)


Maria Salomea Skłodowska-Curie
She is often called Mari Cucumber in French.


She has received two Nobel Prizes in physics and chemistry. Mari Cucumber's father was a researcher, but because he was from the aristocratic class, he was forbidden to teach under the rule of imperial Russia. Mari Cucumber has a hard time before she turns 10. Marie takes care of her relatives and others as her father's illegal lectures are discovered and she loses her job and residence, her mother died of tuberculosis, and her speculative failure. Become.


I had a time when I fell in love with Mari Cucumber during such a difficult time. At the time, Mari Cucumber was a tutor, but she fell in love with a young man named Kajumjesh Zorafski. She spends a happy time together on a summer trip, but in the end it was catastrophic. This seems to have led to Mari Cucumber going to Paris.


Mari Cucumber has a hard time even in Paris. She lives in the attic and works hard at her studies while wearing all her clothes she has when it's cold. Her life in Paris continued until she graduated from college.


Her light shines on such Mari Cucumber. I met Pierre Cucumber through her acquaintance. The Pierre Cucumber was well received abroad, and in 1893, Sir Kelvin of England visited him. However, Pierre Cucumber was devoted to his research with a personality that would decline his medal.


The two were attracted to each other and acknowledged each other, and even after her return to Japan, Pierre continued to give her a love story, and finally Mali's heart moved, and the two had a simple wedding ceremony. I think it was a happy marriage. There was no celebration party, no wedding ring, and although it was a humble format, I rode a bicycle I bought for the celebration and set out on my honeymoon to a remote country in France. Pierre would ride a bicycle, and Mali would ride behind him, talking about a quiet road. They worked hard on cooking, continued their studies while being blessed with her eldest daughter, and studied the radiation found by Becquerel.


Therefore. We conclude that the "amount" of uranium content, rather than parameters such as light and temperature, is essential for radiation phenomena. After that, Mari and Pierre devoted themselves to the purification of the elements. By increasing the purity, we approached the existence of isotopes. The Curie and his wife put everything into the refinement of interest. As a result, her husband Pierre suffers from repeated seizures and his wife Mari suffers from sleepwalking due to memory weakness. Meanwhile, I had a miscarriage of my second child. At that cost, we come up with a new concept. That is, "a specific element changes to another element"
The fact is.


Then, in the process, it emits radiation and causes changes that seemingly contradict the law of conservation of energy, but Rutherford et al. Will announce their research results one after another. Various energies involved in the bonding of elementary particles are involved in the decay process of atomic nuclei. Nowadays, a simple method of understanding with a diagram has been established, but at that time it was a fumbling understanding of the situation. And her husband Pierre discovers that radiation can be expected to have a medical effect. It was the effect of radium. The effect of "radium hot springs" has long been widely known for trace amounts of radium (although the word "radium" was not explicitly used). Also, as we now know, excessive radium has a negative effect on the body. We began to consider the effects of radiation on patients directly and with equipment. The discovery of Pierre will lead to great human knowledge.


Initially, the purpose of radiation research was to obtain a doctoral degree from his wife Marie, but in the end, the Nobel Prize will be given to three people, Marie Pierre Becquerel. It was a great honor for the two who had a hard time.


However, sudden misfortune came after that. Her husband, Pierre, died in a car accident at the young age of 46. Her wife Marie is in pain. It was natural. After that, it took a lot of words and time for her wounds to heal, but eventually her wife Marie took over her husband Pierre's college position and laboratory successor. She started her career as a researcher.


Discussion with Sir Kelvin


Marie Cucumber confronts Sir Kelvin. Sir Kelvin, who was also her benefactor who acknowledged her husband, considered radium to be a compound rather than an element. Marie argued with her experimental facts and corrected Sir Kelvin's mistakes. She then goes on to study Cameriones and cold radium radiation. She wrote a letter of recommendation for the University of Zurich teaching profession in recognition of her youthful Einstein, who had published her treatise at the first Solvay Conferences. The physicist of Kirasei at that time had an exchange with her. On the other hand, she has been chased by the gossip turmoil, and Marie hates the media. When she received her second Nobel Prize, the Swedish side also asked her to forgo her award, but Marie responded resolutely and described her relationship as her gossip story as "successful." "It's a relationship," she said.
It was an achievement with her husband's student, Langevin.


And ... I have to talk. The most sad thing was the harmful effects of radiation. In the process of her research, radiation exposure overlaps and Marie continues to suffer from disabilities such as her headaches, tinnitus and injuries that are difficult to heal. She and she eventually died, but it seems that the relevance was not yet clear at the time.


Her turbulent life with Marie Cucumber ended, but people have since appreciated her leftovers. In 1995, the tombs of the couple were moved to the Pantheon in Paris. She is still celebrated as one of the great men of French history. And she has been handed down all over the world as she is a great man in the physical world.

2021年09月29日

長岡半太郎
【1865年生まれ-9/29原稿改定】

「長岡半太郎」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話として、文章に主語が無く文脈から判断させたりしていたりしましたのです。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていて逆効果だったのです。以後この点は改善します。原稿文字数は4279文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1865年8月19日生まれ ~ 1950年12月11日没】


 



長岡半太郎の豊かな人脈


 

この長岡半太郎も湯川秀樹同様に大村藩の流れ


に生まれます。学生時代は東大で山川 健次郎


田中舘愛橘に学び、助教授としてドイツ留学していた


時期にボルツマンに学びます。それだから実証主義


の考え方も、留学以後は踏まえながら議論をしていった


のでしょうか。どこまで核心に迫っていったか


論じる際には当時の日本における量子論での


現象把握を考えると良いでしょう。そんな事を考えながら、


科学史の観点から論文を読んでみたくなりました。


別の面から調べてみたら話は進む時があると


思えるからです。そして長岡半太郎の子供時代は


学業成績は芳しくなかったようです。


この点は同時期の本多光太郎を思い出します。因みに、この二人に加わえて鈴木梅太郎の三人は理化学研究所の三太郎と呼ばれて居たそうです。携帯電話のコマーシャルで似たような人達居ましたね。



長岡半太郎の研究業績


長岡半太郎は田中舘愛橘と地震の論文を纏めたり、


本多光太郎と磁気の論文を纏めたりしていますが、


長岡半太郎の研究業績として大きいのは、


なんと言っても原子モデルでしょうボルツマン仕込みで


ミクロへの探求を進めていたのです。トムソン


ブドウパンの中のブドウのような形で


中心からの距離や軌跡と無関係に


電子の存在を仮定していたのに対し、


長岡半太郎は原子の周りを電子が回転する


土星のようなモデルを提唱しました。


この話は、不確定性関係と合わせて論じてみたいと思います。後に確立された不確定性関係では対象粒子の位置と運動量の関係が論じられます。この二要素が関連して論じられる訳です。その考え方の枠組みでは運動量が確定している電子に対して位置は不確定であって当然です。具体的には個体原子の位置は止まっていると見なせそうですが、動き回る電子の位置の確定が難しいのです。「運動量」の観測精度を高めている電子に対して位置情報はどんどんぼやけてきてしまいます。


時代を戻して長岡半太郎の時代に電子を観測


することを考えてみて、電子の挙動をとらえる


帯電物質を想定してみても帯電体の中を


動き回る電子の動きを止める事は出来ません。


電子とは何時も動いている物体だからです。


それだから、初めの時点での


モデル化の難しさが出てくるのです。


今日の物理学、特に量子力学的な知見では不完全なモデルとも言えますが、長岡半太郎のモデルは当時の原子モデルを大きく変えた点で高く評価出来ると思えます。全く知見の無かった原子という存在をに対して初期的なイメージを作る事が出来たのです。そのモデルをもとに帯電物質である電子の挙動が議論できたのです。
素晴らしいパラダイムシフトでした。



〆最後に〆





以上、間違いやご意見があれば
以下アドレスまでお願いします。
問題点に関しては適時、
改定や返信を致します。


nowkouji226@gmail.com


2020/09/13_初回投稿
2021/09/21_改訂投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年9月時点での対応英訳)



Hantaro Nagaoka's rich personal connections


This Hantaro Nagaoka was born in the flow of the Omura domain as well as Hideki Yukawa. He studied with Kenjiro Yamakawa and Aikitsu Tanaka at the University of Tokyo when he was a student, and with Boltzmann when he was studying abroad in Germany as an assistant professor. So did he discuss the idea of ​​positivism based on his study abroad? When discussing how close he was to the core, it would be good to consider the phenomenon grasp in quantum theory in Japan at that time. With that in mind, I wanted to read the treatise from the perspective of the history of science. If you look at it from another side, it seems that there are times when the story goes on. And it seems that his academic performance was not good when he was a child of Hantaro Nagaoka.


This point reminds me of Kotaro Honda at the same time. By the way, in addition to these two people, Umetaro Suzuki was called Santaro of RIKEN. There were similar people in mobile phone commercials.



Research achievements of Hantaro Nagaoka


Hantaro Nagaoka has compiled papers on earthquakes with Tanakadate Aikitsu and papers on magnetism with Kotaro Honda, but the major research achievement of Hantaro Nagaoka is probably the atomic model. I was pursuing a quest for the micro. Whereas Thomson assumed the existence of electrons in the shape of grapes in grape bread regardless of the distance or trajectory from the center, Hantaro Nagaoka created a Saturn-like model in which electrons rotate around an atom. Advocated.


I would like to discuss this story together with the uncertainty relation. The uncertainty relation established later discusses the relationship between the position of the target particle and the momentum. These two factors are discussed in relation to each other. In the framework of that idea, it is natural that the position is uncertain with respect to the electron whose momentum is fixed. Specifically, it seems that the position of a solid atom is stopped, but it is difficult to determine the position of moving electrons. The position information becomes more and more blurred for the electrons that improve the observation accuracy of "momentum".



Considering going back in time


and observing electrons in the time of Hantaro Nagaoka, even if we imagine a charged substance that captures the behavior of electrons, we cannot stop the movement of electrons moving around in the charged body. Because an electron is an object that is always moving. That's why it's difficult to model at the beginning.


Although it can be said that it is an incomplete model in today's physics, especially in quantum mechanics, Hantaro Nagaoka's model can be highly evaluated because it changed the atomic model at that time. I was able to create an initial image of the existence of an atom that I had no knowledge of. Based on that model, we were able to discuss the behavior of electrons, which are charged substances.
It was a wonderful paradigm shift.

江崎玲於奈
【1925年生まれ-9/29改定】

「江崎玲於奈」の原稿を投稿します。原稿文字数は994文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1925年3月12日生まれ ~ 【ご存命中】 】



 

概説


江崎玲於奈は先の世界大戦時代の物理学者です。電子デバイスを発明してスゥエーデンのグスタフ国王からノーベル賞を受けています。量子力学を深く理解して、その原理を応用したトンネル効果を応用したデバイスを作り出しています。因みに、このグスタフ国王って面白い人で、結婚式の披露宴にABBAを呼んだら新曲のダンシング・クィーンを披露してくれて、それが世界的な大ヒットになったという逸話なんかがあります。その国王が26歳で初めてノーベル賞を手渡した一人が江崎玲於奈だったのです。別の一人はブライアン・ジョゼフソンとでした。1973年、江崎玲於奈48歳の時でした。そこで彼は国王に『自然科学の成果を称える式典では「人種や差別無く」違った国から人々が集まってくるのだ』、と喜びを伝えました。



江崎玲於奈の業績


デバイス工学においてミクロの性格を応用することはとても重要です。対象としているデバイスの中で量子的な性格が顕著に表れる部分を応用すると従来の考えでは予測できなかったような機能が使えるようになったのです。具体的にはゲルマニウムを対象として考えた時に、そのPN接合幅に注目します。そこにおける伝導電子の波動的側面が伝導率に関わり、接合幅を薄くしていった時に量子効果が表れたのです。ポテンシャルを考えた時に通過できない筈の場所を電子が通過するイメージです。実空間で想像して、「ポテンシャルの壁」を何故か通過してしまう系を考えてみて下さい。まさに量子的な効果なのです。



晩年の江崎玲於奈


江崎玲於奈は学者という立場で活躍した後、筑波大学等で教育者として活躍しています。第2の人生をしっかり歩んでいて、とても尊敬出来ます。更に語りたい部分はありますが、江崎玲於奈氏はご存命中なのでここまでと致します。書き足したい気持ちはありますが、半面で今は少しでも静かに長生きして頂きたいと思っています。



〆最後に〆





以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。


nowkouji226@gmail.com


2020/08/27_初版投稿
2021/09/29_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
熱統計関連のご紹介へ
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】




2021年09月28日

中嶋 貞雄
【1923年生まれ9/28原稿改定】

「中嶋貞雄」の原稿を投稿します。原稿文字数は884文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1923年6月4日生まれ ~ 2008年12月14日没】



映画監督で似た名前の方が居ますが
あちらは貞夫と書きます。
こちらは貞雄と書きます。
中嶋貞雄は私が昔使っていた量子力学での
教科書の著者でした。(発行元は岩波書店)
東京大学を卒業後に名古屋大で教授を務め、
東大物性研の所長を務めています。
超伝導現象の理論化に先鞭
をつけた方です。


超電導の議論史の中で有名な
エピソードがありますのでご紹介します。


中嶋貞雄は低温物理の物性に関わる
研究をしていきました。そんな中で
名古屋で会議が開かれ、くりこみ理論を
応用した低温電子物性の議論をします。
その話にアメリカのバーディーンが着目し、
講演内容のコピーを中嶋に求めました。
その時点ではカメリー・オネスの発見した
超伝導現象は実験的に示されていま
したが理論的な説明はなされてません。
バーディーンはそれを作ろうとしていたのです。


中嶋はきっと研究の方向性に確信を
持った事でしょう。後に名古屋駅で
バーディンにコピーを渡します。
バーディンは帰国後に英訳し、
共同研究者であるクーパー・シュリーファーと共に
考察を進め、クーパー対のアイディアを盛り込み、
BCS理論を完成させます。日本で無く
アメリカで生まれた事が残念ですが、
そうした議論の端緒は日本でも芽生えて
いたのです。


私は科学技術は人類が共有する財産
だと思っています。それだから、
コピーを届けた中嶋貞雄の行為は正しかった
と感じています。これからの若い研究者達も
知を共有して育んで欲しいと思います。
そうした行為が、ひいては日本の発展に
繋がっていくと信じています。
そして、世界人類の発展に
繋がっていくと信じています。


最後は信念とか、
宗教っぽい話になりましたが
感動・情熱から繋がる話
ではないでしょうか。






以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/12/19_初版投稿
2021/09/28_改定投稿


纏めサイトTOP
舞台別のご紹介へ
時代別(順)のご紹介

日本関連のご紹介へ
東大関連のご紹介へ
熱統計関連のご紹介へ
量子力学関係のご紹介へ


テキストポンへの査定申込はコチラ

ピーター・ゼーマン
【1865年生まれ-9/28原稿改定】

「ピーター・ゼーマン」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。お恥ずかしい話として、文章に主語が無く文脈から判断させたりしていたりしましたのです。SEO効果を狙って単語を必要以上に入れたくないので、逆に文章が不正確になっていて逆効果だったのです。以後この点は改善します。原稿文字数は3103文字です。また、アマゾンアソシエートのリンク掲載に関して最後に記載しました。アマゾン関連の作業は嫁任せでしたがサイトの運営として記載します。読者満足度を考え関連書籍を記載します。作業として7月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。また、学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。別途、個別の人物の追加もトピックスのご紹介もしていきたいです。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1865年5月25日生まれ ~ 1943年10月9日没】




その名の綴りはPieter Zeeman


ゼーマンはオランダの小さな町、


ゾンネメレに生まれます。


ゼーマンはローレンツと同じ時代の理論家で


ローレンツと同時にノーベル賞を受賞してます。


当然、アインシュタインとも交流をもちます。


ゼーマンにとって幸運だったのは


ローレンツとカメリー・オンネスに師事した事


です。稀代の理論家と実験家の指導のもと、


ゼーマンは素晴らしい環境で育ちます。


そんなゼーマン等が出した結果がゼーマン効果です。


具体的には磁場中に置かれたナトリウム原子のスペクトル


を観察した時に、それが分裂していたのです。


ローレンツとゼーマンによってなされた説明は


ナトリウム原子の内部構造についてのものでした。


細かくは原子内部の電子が電荷を持ち、


磁場中では今で言う縮退状態からの開放される


ので(スピンの性質から)放射特性が変化するのです。


更には、その電荷の物理量が別に理論を進めていたJ.J.トムソンのそれと近しい値をとった事でローレンツとゼーマンの理論は説得力をもちました。結果、ノーベル賞が贈られます。



また、ノーベル賞受賞後


ゼーマンはアムステルダムで
研究所を運営し、そこで電磁光学
の研究を進めています。特に、
移動する媒質の中での光の伝播
に関しても研究していますが、
それは相対論の形成に有益
ローレンツアインシュタイン
も評価していたと言われています。
因みにこの3人を考えると年齢順で
ローレンツ(1853年生まれ)
ゼーマン(1865年生まれ)
アインシュタイン(1879年生まれ)
の順番です。実験事実が確立していき、
相対性理論が熟成されていくのです。


ローレンツとゼーマンの素晴らしい
点はナトリウム原子の構造を
解明した手法にあったと思います。
実験結果の積み重ね、仮設の設定、
そして全てを使った理論構築の
モデルはその後に多くの学者が活用可能で
再現可能な手法だったかと思えます。
その後に他の原子も次々と性格が
明らかにされていきます。







以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
適時、返信・改定をします。


nowkouji226@gmail.com


2020/10/31_初版投稿
2021/09/28_改定投稿


舞台別のご紹介
時代別(順)のご紹介

オランダ関係の紹介へ
ライデン大学のご紹介

熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


教科書買取専門店による教科書買取サービス【テキストポン】



(2021年9月時点での対応英訳)



The name is spelled Pieter Zeeman.


Seeman was born in the small Dutch town of Zonnemaire. Zeeman is a theorist of the same age as Lorenz and has won the Nobel Prize at the same time as Lorenz. Naturally, he also interacts with Einstein.


Fortunately for Zeeman, he studied under Lorenz and Kamerlingh Onness. Under the guidance of rare theorists and experimenters, Zeeman grows up in a wonderful environment. The result of such Zeeman is the Zeeman effect. Specifically, when I observed the spectrum of the sodium atom placed in the magnetic field, it was split.


The explanation given by Lorenz and Zeeman was about the internal structure of the sodium atom. In detail, the electrons inside the atom have an electric charge, and in a magnetic field, they are released from the degenerate state as they are now called, so the radiation characteristics change (due to the nature of spin).



Furthermore, Lorenz and Zeeman's


theory was convincing because the physical quantity of the electric charge took a value close to that of J.J. Thomson, who was advancing the theory separately. As a result, the Nobel Prize will be awarded.


After receiving the Nobel Prize, Zeeman runs a laboratory in Amsterdam, where he pursues research in electromagnetic optics. He is particularly studying the propagation of light in moving media, which is said to have been useful in the formation of relativity and was also appreciated by Lorenz and Einstein. By the way, considering these three people, in order of age
Lorenz (born 1853)
Zeeman (born 1865)
Einstein (born 1879)
It is the order of. Experimental facts will be established and the theory of relativity will be matured.


I think the great thing about Lorenz and Zeeman was the method of elucidating the structure of the sodium atom. It seems that the accumulation of experimental results, the setting of temporary settings, and the model of theory construction using all of them were methods that many scholars could utilize and reproduce after that. After that, the characteristics of other atoms will be revealed one after another.