アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2024年12月 >>
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        
最新記事
最新コメント

2023年04月28日

ヘンリー・パワー:H Power FRS
4/28更新‗圧力と体積の関係の定式化

こんにちはコウジです!
「ヘンリー・パワー」の原稿を改定します。
今回の主たる改定はタイトルの再考です。
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】
【1623年生れ ~ 1668年没】


ヘンリー・パワー:Henry Power FRS



ヘンリー・パワーの来歴


ヘンリー・パワーは日本ではあまり聞かれない名前です。
調べてみると英国物理学で「しっかりとした仕事」をしています。
それにも関わらず日本ではあまり紹介がされていません。
日本語版ウィキペディアでの紹介が無く、
紹介は英語版のみです。


実際には
「圧力と体積の関係の定式化」を考えていくともう少し後の時代に
ウィリアム・へンリーという別人も「気体の研究で出てくる」ので
注意が必要です。ヘンリーの法則はヘンリーパワーとは無関係のようです。
今回ご紹介するヘンリー・パワーは
王立協会で初めて選出された フェローの なかの1 人です。


具体的にパワーは、1641 年にケンブリッジで有名な
「クライスト カレッジ」で文学士号を得ました。
パワーは 1663 年 に王立協会のフェローに選出されています。
パワーと準男爵 ジャスティ・ニアヌス イシャムは、
最初に選出されたメンバーなのです。



ヘンリー・パワーの業績


パワーの唯一の出版された著作は「実験哲学」です。
3 冊のからなる彼の本は、それぞれ観測の方法論(corpuscularian theory)
と粒子理論を扱っています。また、
ヤコブス・グランダミクス(ジャック・グランダミ、1588–1672)
の論文に対して反論をしています。


ボイルの法則との関連も特筆すべきです。
あらかじめ行った実験で、パワーは、後に「ボイルの法則」
として知られるガスの圧力と体積の関係を発見しました。


圧力と体積の関係は、「実験哲学」で概説されています。
しかし、それにもかかわらず、「実験哲学」の出版とリチャード・タウンリーの
唯一の仕事との混同がされているようです。


ボイルの理論への言及は、「実験哲学」の出版よりも 1 年先行し、
ボイルのアイデアの上記宣伝と、貴族の科学者としてパワーは有名なので、
パワーの理論が「ボイルの法則」として知られるようになりました。


ボイルはタウンリーが唯一の研究者であると誤解して、
パワーの貢献が歴史上ほとんど失われているのです。
最後に、英語版ウィキペディアからパワーの業績部分を抜粋します。
ご参考としてください。(以下6行抜粋)


Henry Power discovered the relationship between the pressure and volume of a gas that later became known as Boyle's law. This relationship was outlined in "Experimental Philosophy". However, many may argue nevertheless that a prepublication manuscript of "Experimental Philosophy" cited the hypothesis as the sole work of Richard Towneley.


Boyle's mention of the theory preceded the publication of "Experimental Philosophy" by one year, which, combined with Boyle's promotion of the idea and his significant status as an aristocratic scientist, ensured the theory would be known as "Boyle's Law". Boyle attributed Towneley as the sole researcher, ensuring that Power's contributions were all but lost to history.




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2023/04/07‗初稿投稿
2023/04/28‗改訂投稿


旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2023年4月時点での対応英訳)


 Perdonal History of Henry Power


Henry Power is a name not often heard in Japan.
I looked it up and he has "a solid job" in British Physics.
Despite this, it has not been introduced much in Japan.
in addition,
There is no introduction on the Japanese version of Wikipedia,
The introduction is in English only.


in fact
Considering the "formulation of the relationship between
pressure and volume", in a little later era
Another person named William Henry also "appears in the study of gases," so
Caution is required.


Henry's law seems to have nothing to do with Henry power.
Henry Power to introduce this time
One of his Fellows who was first elected to the Royal Society.


Specifically Power was founded in Cambridge in 1641 by the famous
He earned a Bachelor of Arts degree from 'Christ College'.
He had power in which he was elected a Fellow of the Royal Society in 1663.
Power and his Baronet Justy Nianus his Isham,
I am the first elected member.


Achievements of Henry Power


Power's only published work is "Experimental Philosophy".
His three books each deal with a corpuscular theory.
and particle theory. again,
Jacobus Grandamicus (Jacques Grandami, 1588–1672)
I am arguing against the paper of


He is also notable for his connection with Boyle's law.
In his preliminary experiments, power was later found in "Boyle's Law"
discovered the relationship between gas pressure and volume known as .


The relationship between pressure and volume is outlined in "Experimental Philosophy".
But nevertheless the publication of "Experimental Philosophy" and Richard Townley's
It seems that there has been confusion with only one job.


References to Boyle's theory preceded the publication of "Experimental Philosophy" by a year,
Because of the above publicity of Boyle's ideas and his power as an aristocratic scientist,
The theory of power became known as "Boyle's Law".


Boyle misunderstood that Townley was the sole researcher,
The contribution of power is largely lost to history.
Finally, I will excerpt Power's achievements from the English Wikipedia.
Please use it as a reference. (6 lines below)


Henry Power discovered the relationship between the pressure and volume of a gas that later became known as Boyle's law. This relationship was outlined in "Experimental Philosophy". the sole work of Richard Towneley.


Boyle's mention of the theory preceded the publication of "Experimental Philosophy" by one year, which, combined with Boyle's promotion of the idea and his significant status as an aristocratic scientist, ensured the theory would be known as " Boyle's Law". Boyle attributed Towneley as the sole researcher, ensuring that Power's contributions were all but lost to history.



2023年04月27日

赤ア 勇
‗4/27改訂【青色LED・短波長半導体レーザーの発光度の強化】

こんにちはコウジです!
「赤ア 勇」の原稿を改定します。
今回の主たる改定はタイトルの再考です。
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】
【1929年1月30日 - 2021年4月1日】


赤ア 勇の業績として大きいのは何よりダイオード関係で、
その方面では第一人者だという印象が強いです。その関連で
ノーベル物理学賞も受賞しています。


本ブログのご紹介画像では京都大学を使っていますが、
実際には赤崎氏は名古屋大学とも大きく関わっていて
(現)デンソーテンで卒業後に仕事をした後に
京大の先輩の名古屋大就任に伴い名古屋大学で研究を進めます。
今でも名古屋大学には赤崎記念研究館があり名大の時計塔では
青色LEDのイルミネーション時計が使われているそうです。


そして
(現)パナソニックの東京研究所に
所長からスカウトされ勤務します。
そうした業績の成果は有意義な結果を生んでいて、
最終的な製品として「ブールーレイディスク」の名を
聞いたことがある人は多いかと思います。
青色LED・短波長半導体レーザーの発光度の強化(実用化)
は非常に工学技術として優れています。


個人的な業績の印象として
赤崎氏は20世紀後半の時代に沢山の仕事をしています。


1991年・窒素系半導体での多重ヘテロ効果発見。
1993年・AlGaN/GaNダブルヘテロ構造での低閾値光励起誘導放出
1995年・室温にでの最短波長パルス秒レーザーダイオード( 376nM)
1997年・GaN系半導体量子構造での量子閉じ込めシュタルク効果実現
2000年・GaN系統の結晶におけるピエゾ電界強度結晶方位依存性での
無極性面、半極性面の存在を理論的に証明
2003年・紫外/紫色LEDの実現


赤ア 勇さんは日本のレーザー技術の水準を最高峰へ高めました。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2023/04/06‗初稿投稿
2023/04/27_ 改訂投稿


旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2023年4月時点での対応英訳)


Isamu Akasaki's greatest accomplishment is diode-related.
I have a strong impression that he is a leader in that regard. in that regard
He also won the Nobel Prize in Physics.


Kyoto University is used in the introduction image of his blog,
In fact, Mr. Akasaki is also heavily involved with Nagoya University.
After working at (now) Denso Ten after graduating
I will proceed with research at Nagoya University as my senior from Kyoto University was appointed to Nagoya University.
Even now, Nagoya University has the Akasaki Memorial Research Hall, and the Meidai clock tower
It seems that the blue LED illumination clock is used.


and
(Currently) Panasonic Tokyo Research Laboratory
You will be scouted by the director to work.
The results of such achievements have produced meaningful results,
As the final product, the name of "Blu-ray disc"
I'm sure many of you have heard of it.
Enhancement of luminous intensity of blue LEDs and short wavelength semiconductor lasers (practical application)
is very good engineering.


As an impression of personal achievements
Akasaki has done a lot of work in the late 20th century.


1991: Discovery of multiple heterogeneous effects in nitrogen-based semiconductors.
1993・Low-threshold photoexcited stimulated emission in AlGaN/GaN double heterostructure
1995 Shortest wavelength pulsed second laser diode at room temperature (376nM)
1997・Realization of quantum confined Stark effect in GaN-based semiconductor quantum structure
2000 ・Piezo electric field strength crystal orientation dependence in GaN-based crystals
Theoretical proof of the existence of non-polar and semi-polar planes
2003・Achievement of UV/Violet LED


Isamu Akasaki raised the standard of Japanese laser technology to the highest peak.



2023年04月26日

カール・シュヴァルツシルト
‗4/26改訂【相対性理論から 重力場を記述】

こんにちはコウジです!
「シュヴァルツシルト」の原稿を改定します。
今回の主たる改定はタイトルの再考です。
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】
【1873年10月9日 ~ 1916年5月11日】


シュヴァルツシルトの名はドイツ語表記をすると: Karl Schwarzschild。
19世紀生まれの物理学者で従軍に伴い研究を断念した方です。
シュヴァルツシルトはドイツに生まれました。
フランクフルト生まれのユダヤ系でミュンヘン大学へ進みます。


関連書籍の関連リンクを使おうとしましたが
ゲーム関係の書籍ばかりが出てきてしまいます。
もはや「シュバルツシツト半径」という言葉だけで
現実の世界とつながる人になっています。
シュバルツシルトの人生を伝える人も
どんどん、少なくなってくるのでしょう。 


シュヴァルツシルトは1901年に28歳でゲッティンゲン大学準教授
および同天文台長を務めるのですが、1914年には第一次世界大戦に伴い
(シュヴァルツシルトは40歳以上だったにもかかわらず)
軍に入隊しました。当時のドイツでシュヴァルツシルトは
西部戦線と東部戦線のどちらでも前線で戦い、
中尉にまで昇進しました。


思えばハーゼノールもまた、戦場で命を落としています。
ケプラーの父も戦争で命を落としています。
時代が変われども大事なものを戦争で
失っている事実を思い返してみて下さい。


ケプラーが天文学を進め、ハゼノールの弟子たち4人が
ノーベル賞をとっているのです。戦争が無ければ更に
有益な活動が出来たのではないでしょうか。
戦没した物理学者と語り合えた筈の時間が
隣人たちの「大きな損失」です。


シュヴァルツシルトは1915年にドイツ軍の砲兵技術将校
としてロシアで従軍します。そんな中、
天疱瘡と呼ばれる痛くて稀な皮膚病に苦しみました。


そうした闘病の最中で、シュヴァルツシルトは
アインシュタインの一般相対性理論から
重力場を記述する関係を導き出しました。
重力方程式から導き出された最初の特殊解は
シュヴァルツシルトの解と呼ばれ非常に有益なものです。


解を見出した直後にシュヴァルツシルトは
アインシュタインに手紙を送っています。

そんな思いを受けて
戦場で過ごすシュヴァルツシルトの為に

アインシュタインはドイツ・アカデミーに
論文を提出しました。

シュヴァルツシルトの論文で明確にされているのは
距離の性質です。特定の空間に極めて高い質量
存在する時に、空間自体が重力で歪むのです。
空間が歪むという表現は説明が難しいのですが、
相対性理論での結果として歪むのです。


その時に「シュヴァルツシルト半径」と呼ばれる
特殊な球形の場所が出来ます。シュヴァルツシルト半径の
境界面に近い場所ではその重力で光(光子)でさえもが
吸い寄せられ、球の内側では光の速度でも
抜け出せないという論文です。
シュヴァルツシルトの考えは今で言う
ブラックホールの存在を示唆していました。


そして、
残念なことに論文発表から4ヶ月後に病は進行、
シュヴァルツシルトは死に至ります。人類の損失です。
戦争はゲームの中で沢山です。
現実に起これば人が死にます。


話を進めてみました。同様の対応で私は考えました。
反戦を徹底できないと
@人が生む出す英知が外に向かう前に、
A内向きの欲望で人類は死滅に向かいます。


@物凄く早く進む光は魅力的です。 反して
Aブラックホールの引力は欲望のようです。


人は冷静な考察をしながらも前向きに進む
熱い思いを持っていないといけないと思います。
私論まで。






【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2023/04/05‗初稿投稿
2023/04/26‗改訂投稿


旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2023年4月時点での対応英訳)


His full name in German is: Karl Schwarzschild.
He was a physicist born in the 19th century who gave up
his research when he served in the military.
Born in Frankfurt, he was Jewish
and went on to the University of Munich.


I tried to search the related link of the related book but
Only PC game-related books will come out.
No longer just the word "Schwarzschitz radius"
He has become a person who connects with the real world.
Some people tell the life of Schwarzschild
It will become less and less.  


Schwarzschild was appointed associate professor
at the University of Göttingen in 1901 at the age of 28.

And he will serve as the director of the observatory,
but in 1914 he was over 40.

(Even though Schwarzschild )
he enlisted in the army. Schwarzschild in Germanyat the time
He fought on the front lines on both the Western
and Eastern fronts,
He was promoted to lieutenant.


Come to think of it, Hazenor also lost his life on the battlefield.
Kepler's father also lost his life in the war.
Even if the times change, what is important is war
Remind yourself of what you have lost.

Kepler advances astronomy, and four of Hazenor's disciples
He would have a Nobel Prize. even more without war
I hope he had done something useful activity.
The time I should have been able to talk with a physicist
who died in battle,
A "great loss" for his neighbors.


Schwarzschild was appointed an artillery technical officer
in the German Army in 1915.

served in Russia as a Meanwhile,
He suffered from a rare and painful skin disease called pemphigus.


In the midst of such a struggle, Schwarzschild
From Einstein's General Theory of Relativity
He derived a relationship that describes the gravitational field.
The first special solution derived from the gravitational equation is
It is called Schwarzschild's solution and is very useful.


Shortly after finding his solution, Schwarzschild
He is sending a letter to Einstein.
he felt that
For Schwarzschild spending time on the battlefield
Einstein at the German Academy
submitted his thesis.


Schwarzschild's paper makes it clear that
It's the nature of distance. Extremely high mass in a specific space
As it exists, space itself is distorted by gravity.
The expression that the space is distorted is difficult to explain,
It is distorted as a result of the theory of relativity.


then called the "Schwarzschild radius"
A special spherical place is created. of the Schwarzschild radius
Even light (photons) is forced by the gravity near the boundary surface.

Attracted, inside the sphere even at the speed of light
It's a thesis that you can't get out of it.
Schwarzschild's thoughts now say
He suggested the existence of black holes.


and,
Unfortunately, the disease progressed four months
after his paper was published,

Schwarzschild dies. He is humanity's loss.
War is a lot in the game.
People die if it happens.


He tried to speak. I thought of a similar response.
If you can't thoroughly oppose the war
@ Before the wisdom that people create goes outside,
(2) Mankind is heading for extinction due to inward desires.


@The light that travels very fast is attractive. Contrary
AThe gravitational pull of a black hole is like desire.


People move forward while thinking calmly
I think you have to have a passion for it.
up to my point.



2023年04月25日

アイナー・ヘルツシュプルング
‗4/25改訂【H‐R図で恒星を整理】


【スポンサーリンク】


【1873/10/8 ~ 1967/10/21】


天文学者をご紹介します。アイナー・ヘルツシュプルング
(Ejnar Hertzsprung)。デンマーク生まれの天文学者です。
ヘルツシュブルングの業績として特に有名なものはH-R図です。


ヘルツシュプルングはヘンリー・ノリス・ラッセルと独立に
提案していますので今では二人の名前を使ってH−R図と呼ばれます。
フェアーな考え方ですね。


H−R図での縦軸には恒星の明るさを考えています。対して
横軸では恒星の表面温度を考えています。
縦横の関係で星の進化などを考えるのです。


@H-R図での縦軸では明るさがが絶対等級としてあらわされています。
図上で上に行くほど絶対等級が小さい(明るい)恒星であると言えるのです。


AH−R図での横軸では、特定の恒星の表面温度が表現されています。
左が高温で、右側が低温です。(多くのH−R図での単位はK:ケルビンです)


H−R図が有益な背景として「恒星の表面温度がその色と関係している」
という話を思い出してください。表面温度が高い恒星は青白く、
温度の低い恒星は赤色に近くなるという傾向があるのです。
(上記Aの判断材料です)
また、ある恒星の観測時の
明るさが分かればその恒星までの距離が推定できます。
(上記@の判断基準です)


ヘルツシュプルングの略歴を最後にご紹介します。
ヘルツシュプルングはデンマークのフレデリックスベアに生まれました。
フレデリックスベア工科大学卒業後に数年の期間サンクトペテルブルク
(現在のロシアの都市)で働き、ライプツィヒで写真化学を学んだ後に、
コペンハーゲンで天文学の研究を始めます。


こうした背景を考えると、
当時の学者肌の人々の交流が感じられますね。
ヘルツシュプルングは各国で関心を追い求めています。


私がヘルツシュプルングの名を垣間見るのはその後です。
1909年にゲッティンゲン天文台の天文学助教授、
1919年ライデン大学の教授にして天文台の台長となりましたた。


話戻って業績の話です。ヘルツシュプルングは1905年に
恒星に巨星と矮星などの種類のあることを見出しました。
恒星の「絶対等級」と「スペクトル型の分布図」に
一定の関係があることを示したのです。


「その後ヘルツシュプルングは1913年にはヘンリエッタ・スワン・リービットの
発見したセファイド変光星に着目します。その変光周期と明度の相関から
小マゼラン雲までの距離を計算したのです。


ヘルツシュプルングは星間物質による吸収によ
り距離を小さく見積もったようですが、
初めての「測定」でした。
そしてヘルツシュプルングは2つの小惑星である
(1627)イバールと(1702)カラハリを発見しています。」
(ウィキペディア情報)




フリーランスの貴方へエンジニア案件紹介
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2023/04/04‗初稿投稿
2023/04/25_改訂投稿


旧舞台別まとめへ
舞台別のご紹介へ
デンマーク関連のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2023年4月時点での対応英訳)


I'll introduce an astronomer, Einar Hertzsprung, Danish astronomer.
Hertzschbruung's most famous achievement is the H-R diagram.
Hertzsprung becomes independent with Henry Norris Russell
Since I proposed it, it is now called an H-R diagram using their names.
That's a fair idea.


The vertical axis in the H-R diagram is considered to be the brightness of the fixed star. for
The horizontal axis is the surface temperature of the star.
Think about the evolution of stars in terms of vertical and horizontal relationships.


@Brightness is expressed as an absolute magnitude on the vertical axis of the H-R diagram.
It can be said that stars with smaller (brighter) absolute magnitudes go up on the map.


AThe horizontal axis of the H-R diagram represents the surface temperature of a specific star.
High temperature on the left and low temperature on the right. (Units in many H-R diagrams are K: Kelvin)


``The surface temperature of a star is related to its color'' as a useful background for the H-R diagram
Please remember the story. A star with a high surface temperature is pale,
on the other hand, cooler stars tend to be redder.
(This is the judgment material for A above.)
Also, when observing a certain star
If the brightness is known, the distance to the star can be estimated.
(This is the judgment criteria for @ above.)


Finally, I would like to introduce a short biography of Herzsprung.
Hertzsprung was born in Frederiksberg, Denmark.
St. Petersburg for several years after graduating from Fredericksberg University of Technology


After working in (now a Russian city) and studying photographic chemistry in Leipzig,
He begins his astronomical studies in Copenhagen. Given this background,
You can feel the interaction between the scholarly people of that time.
Herzsprung pursues interest in each country.


It is only after that that I catch a glimpse of the Hertzsprung name.
In 1909 he became Assistant Professor of Astronomy at the Göttingen Observatory.
In 1919 he became a professor at the University of Leiden and director of the Observatory.


Let's go back to his achievements. Hertzsprung in 1905
He discovered that there are different types of stars, such as giant stars and dwarf stars.
Stellar ``absolute magnitude'' and ``spectral type distribution map''
It shows that there is a certain relationship.


"Then Hertzsprung was in 1913 Henrietta Swann Leavitt's
I will focus on the Cepheid variable stars that she discovered.
From the correlation between the light variation period and brightness,
He calculated the distance to the Small Magellanic Cloud.


Hertzsprung is absorbed by the interstellar medium
It seems that you underestimated the distance
It was his first "measurement".
and Hertzsprung are two asteroids
(1627) discovered Ivar and (1702) Kalahari. ”
(Wikipedia information)


 

 



2023年04月24日

ハンス・ガイガー
‗4/24改訂【不活性ガスを利用し放射線量を計測】

こんにちはコウジです!
「ガイガー」の原稿を改定します。
今回の主たる改定はタイトルの再考です。
所見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】


【1882年9月30日 ~ 1945年9月24日】


ガイガーはドイツ生まれです、研究機関としては
ニュルンベルク大学やマンチェスター大学で研究してます。
修行時代に英国のラザフォード卿のもとで研究者として育っていきます。
新しい知見である放射能に関して、
法則を確立して、計測器を作っていきます。


ガイガーは、弟子のミュラーと開発した放射線量を測定する
「ガイガー=ミュラー」計数管で有名です。
別名「ガイガーカウンター」としても知られていて、
パソコン入力時に一発で出てきました。
最早ありふれた言葉です。原理としては
不活性ガスを封入した筒の軸部分に
電極を取付け+極と−極の間に高電圧
を印加します。電子機器で言う無通電の状態です。
ところが不活性ガスの電離により、陰極と陽極の間に
パルス電流が流れるのです。この特徴的な
通電回数を数える訳です。


また、原子構造の検証実験も有名です。
実験当時は原子の中に電子がバラバラに
(葡萄パンの中での葡萄のように)
存在するモデルも想定されていました。


現在の知見である原子核の発見は重要です。
ガイガー=マースデンの実験と呼ばれます。
具体的にはラザフォードの指導下で、
ガイガーとマースデンはアルファ粒子の
ビームを金属の薄い箔に当て、更に蛍光板
を使って散乱を測定しました。


また、ガイガーの業績としてα線の
半減期に関する法則があげられます。
法則は


「ガイガー・ヌッタルの法則」


(英: Geiger–Nuttall law


と呼ばれます。放出されるアルファ粒子のエネルギーが大きいと早く減衰します。
経験的に得られた関係です。




フリーランス
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2023/04/03‗初稿投稿
2023/04/24_改訂投稿


旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2023/4月時点での対応英訳)


Geiger was born in Germany, as a research institute
He has studied at the Universities of Nuremberg and Manchester.
During his apprenticeship, he grew up as a researcher under Lord Rutherford in England.
Regarding his new knowledge of radioactivity,
He establishes various laws and makes measuring instruments.


Geiger developed with his protégé Müller a measure of radiation dose
Famous for the "Geiger-Muller" counter tube.
Also known as a "Geiger counter"
It came out in one shot when I entered the computer.
It's the first common word. as a principle
At the shaft part of the cylinder filled with inert gas
Attach the electrode and apply a high voltage between the + and - poles.
is applied. This is the state of no electricity in electronic equipment.
However, due to the ionization of the inert gas, a
A pulse current flows. this characteristic
It counts the number of calls made.


It is also famous for its atomic structure verification experiments.
At the time of the experiment, the electrons were scattered in the atom
(Like grapes in grape bread)
Existing models were also assumed.


The discovery of the atomic nucleus, which is the current knowledge, is important.
It's called the Geiger-Marsden experiment.
Specifically, under the guidance of Rutherford,
Geiger and Marsden are alpha particles
The beam is applied to a thin metal foil, and a fluorescent screen
was used to measure scattering.


In addition, Geiger's achievements of alpha rays
There is a law about half-life.
the law is


"The Geiger-Nuttal Law"


(English: Geiger–Nuttall law)


called. The higher the energy of the emitted alpha particles, the faster they decay.
It is an empirical relationship.



2023年04月23日

伏見康治
4/23改訂【対象の美・折り紙を考えた国会議員】

こんにちはコウジです!
「伏見康治」の原稿を改定します。
今回の主たる改定はタイトルの再考です。
所見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】


【1909年6月29日 〜 2008年5月8日】



伏見先生の多彩な活躍


伏見康治は愛知県名古屋市に生まれます。そして東京で育ちます。
何だか一般サラリーマン家庭の生まれ育ちを想像してしまいます。
伏見先生は20世紀の生まれの人ですから、それはそれで納得です。


ただし、その後の動きが活発です。
東大の 理物を卒業し東大で助手を務めた後に、
新設された阪大に着任して1934年には理学部長を務めます。


更には1936年には年には名古屋大学プラズマ研究所の新設に伴い、
所長として就任しています。結果として
二つの旧制大学の名誉教授を務める事となります。


併せて1952年からは日本学術会議会長、
1958年から6年間は公明党所属の参議院議員として科学者の立場で政策に関わっています。


以下では国会議員も勤めた「伏見先生」について語っていきたいと思います。
「先生お願いします!」って感じです。



一貫した科学者サイドの見識


伏見先生は「原子力の平和利用」を推進し、大きな役割を果たしました。
日本における原子力の研究がとても大事であると認識しています。
被爆国である日本独自の視点から平和利用を考えていました。
具体的に「原子力三原則」でまとめています。


「自主、民主、公開」の三原則を起草して茅誠司と連名で
伏見先生は「茅・伏見の原子力三原則」を考えています。



対称の美


伏見先生は「対称の美」に対する美学を持っていました。
特に、その数式的な表現と万人受けする印象に着目しています。


例えば自分の子供が幾何学模様に対して関心を抱いたら、
そこを掘り下げて「どこまで習ったの?」とか
「何で学校で教えないんだろう?」とか色々な視点で
議論していったのです。1960年代には「紋様の科学」としてまとめています。



水素エネルギーの推進


朝日新聞が水素エネルギー開発の全面的にバックアップを表明したタイミングで、
伏見先生は原子力開発に関わっていきます。


1952年に朝日新聞の木村部長(科学部の部長)から声をかけられたことがきっかけです。


伏見先生は2月に朝日講堂で開催された公開講演会で講師として
「核融合の現状と問題点」と題して講演しました。


その時の御縁と元来、伏見先生が水素エネルギーを支持していたこともあり
次世代燃料として水素を勧めておられました。
クリーンなエネルギーだと考えていたのです。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2023/04/02‗初稿投稿
2023/04/23‗改訂投稿


旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】



(2023年4月時点での対応英訳)


Dr.Fushimi's Diverse Activities


Koji Fushimi was born in Nagoya, Aichi Prefecture. And he grows up in Tokyo.
I somehow imagine that he was born and raised in an ordinary office worker family.
Fushimi-sensei was born in the 20th century, so that makes sense.


However, there has been a lot of activity since then.
After graduating from the University of Tokyo with a degree in physics and working as an assistant at the University of Tokyo,
He joined the newly established Osaka University and in 1934 he became the Dean of the Faculty of Science.


In 1936, he assumed the post of Director of the newly established Nagoya University Plasma Research Institute. as a result
He will serve as an emeritus professor at two old-system universities.


He also served as president of the Science Council of Japan from 1952.
For six years from 1958, he was involved in policy as a member of the House of Councilors belonging to the New Komeito Party from the standpoint of a scientist.


Below, I would like to talk about Mr. Fushimi, who also served as a Diet member.
It's like, "Teacher, please!"


Consistent Scientist Insight


Professor Fushimi played a major role in promoting the "peaceful use of nuclear energy." He recognizes that nuclear research in Japan is very important. He was thinking about peaceful uses from the unique perspective of Japan, a country that suffered atomic bombings. He specifically sums it up in the "Three Principles of Atomic Energy."


He drafted the three principles of "independence, democracy, and openness", and jointly with Seiji Kaya, he considered "three principles of nuclear power of Kaya and Fushimi".


beauty of symmetry


Fushimi-sensei had an aesthetic for "symmetrical beauty." In particular, he focuses on its mathematical expression and universal impression.


For example, if my child was interested in geometric patterns, I would delve into it and discuss things from various perspectives, such as "How much did you learn?" is. In the 1960s he summarized it as "The Science of Patterns".


Promotion of hydrogen energy


When the Asahi Shimbun announced its full support for hydrogen energy development, Professor Fushimi became involved in nuclear power development.


In 1952, he was approached by the head of the Asahi Shimbun,
Mr. Kimura (head of the science department).


In February, Prof. Fushimi gave a lecture titled "Current Status and Problems of
Nuclear Fusion" at a public lecture held at the Asahi Auditorium.


At that time, Dr. Fushimi originally supported hydrogen energy,
and he recommended hydrogen as a next-generation fuel.
He was clean energy, he thought.

2023年04月22日

鈴木 梅太郎
【理研の三太郎の一人は合成酒を作成】

こんにちはコウジです!
「鈴木 梅太郎」の原稿を改定します。
今回の主たる改定はタイトルの再考です。
所見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】


 
【スポンサーリンク】


【1874年4月7日 〜 1943年9月20日】



理研の三太郎


理研の三太郎と言われた鈴木梅太郎をご紹介致します。
他の二人は既にご紹介している長岡半太郎本多光太郎です。



筆者の思い出話


筆者が個人的に親近感を覚えたのは、
鈴木梅太郎が農学部とつながりが強い点です。
東大の工学部と農学部の間の通りがあります。
坂道があって古本屋がある通りを、
私はよく散歩で使います。


地名で言うと文京区弥生町。
弥生式土器の「弥生」だったかと。
(地下鉄の南北線を使う時に登っていく場合が多いです)


私の祖母は農学部からほど近い動坂の辺りで暮らしていて、
そこそこ別嬪さんだったので「動坂小町」と呼ばれていました。
また、私の母は不忍池の方にある東大病院で生まれました。
私の父は農学部の方にある根津神社の池でおぼれたそうです。


そんな街に私は何となく、
親近感を覚えてしまいます。
そんな街での物語。



鈴木梅太郎とビタミン


話戻って鈴木梅太郎ですが大きな業績としてビタミンを発見しました。
具体的には先ずビタミンBをみつけてドイツの学会で発表しています。
ただし、時節柄を感じされる話なのか「発見者」としての明記
が無かったので梅太郎の発見だと伝わらなかったようです。


日本人は知っていても外人から見たら「それ何?」って
話なのでしょうね。今ではあり得ない低評価みたいです。



鈴木梅太郎と合成酒


理研のホームページから記載すると、(太字部が引用部)
「鈴木梅太郎(1874-1943)は、米騒動をきっかけに、
原料に米を使わない合成清酒の開発に着手。
独自の製造法を発明し、“理研酒”として
「利久(りきゅう)」などのブランド名で販売した。」
その後、理研の収入で大きな割合を占めていく酒造事業は
理学と生活の大きな繋がりへと発展していくのです。


なお、現在は利休のブランドは別会社が運営しており、
事業売却したのだと思われます。現在の理研関連のお酒は
「仁科誉」と名付けたイオンビーム技術を活用した銘柄があります。


お酒を楽しく飲める「機会」を鈴木梅太郎は拡げたのですね。
残念ながら鈴木梅太郎の「人となり」は
今日あまり伝わっていませんが
お酒を造ってくれていたお爺さん、なのだと
考えるだけで少し楽し気な気分にさせてくれます。
東大も色々な人物を作り上げてきていますね。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2023/04/01‗初稿投稿
2023/04/22_改訂投稿


旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2023年4月時点での対応英訳)


Santaro in RIKEN


I would like to introduce Umetaro Suzuki, who is said to be the one of Santaro in RIKEN.
The other two are Hantaro Nagaoka and Kotaro Honda, who have already been introduced.


Memories of the writer


I personally felt a sense of closeness to
Umetaro Suzuki has a strong connection with the Faculty of Agriculture.
There is a street between the University of Tokyo's Faculty of Engineering and Faculty of Agriculture.
A street with slopes and used bookstores,
I often use it for walking.


The place name is Yayoi-cho, Bunkyo-ku.
I think it was "Yayoi" of Yayoi-style earthenware.
(It is often climbed when using the subway Namboku Line)


My grandmother lives near Dozaka, which is close to the Faculty of Agriculture.
She was called "Douzaka Komachi" because she was a decent bessama.
Also, my mother was born at the University of Tokyo Hospital near Shinobazu Pond.
I heard that my father drowned in the pond of Nezu Shrine near the Faculty of Agriculture.


In such a town, I somehow
I feel a sense of familiarity.
A story in such a city.


Umetaro Suzuki and vitamins


Going back to the story, Umetaro Suzuki discovered vitamins as a major achievement.
Specifically, I first discovered vitamin B and made a presentation at a German conference.
However, whether it is a story that feels seasonal
It seems that Umetaro's discovery was not conveyed because there was no such thing.
Even if Japanese people know about it, when they look at it from a foreigner's point of view, "What is that?"
I bet it's a story. It seems to be a low evaluation that can not be now.


Umetaro Suzuki and Synthetic Sake


From the RIKEN website, (quoted parts are in bold)
“Suzuki Umetaro (1874-1943), triggered by the rice riot,
He started developing a synthetic sake that does not use rice as an ingredient.
He invented his own production method and called it "Riken Sake".
It was sold under brand names such as Rikyu. ”


After that, the sake brewing business, which accounted for a large proportion of RIKEN's income,
It develops into a great connection between science and life.


In addition, the Rikyu brand is currently operated by a separate company.
I think they sold the business. Current RIKEN-related sake
There is a brand named "Nishina Homare" that utilizes ion beam technology.


Umetaro Suzuki has expanded the “opportunity” to enjoy drinking alcohol.
Unfortunately, Umetaro Suzuki's "personality"
I don't know much about it today
The old man who made the sake
Just thinking about him puts me in a good mood.
The University of Tokyo has also created various characters.


2023年04月21日

Hパワー:H Power FRS
4/21改訂‗1623年生れ ~ 1668年没

こんにちはコウジです!
「ヘンリー・パワー」の原稿を改定します。
今回の主たる改定は英訳の付記です。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】


ヘンリー・パワー:Henry Power FRS



ヘンリー・パワーの来歴


ヘンリー・パワーは日本ではあまり聞かれない名前です。
調べてみると英国物理学で「しっかりとした仕事」をしています。
それにも関わらず日本ではあまり紹介がされていません。
日本語版ウィキペディアでの紹介が無く、
紹介は英語版のみです。


実際には
「圧力と体積の関係の定式化」を考えていくともう少し後の時代に
ウィリアム・へンリーという別人も「気体の研究で出てくる」ので
注意が必要です。ヘンリーの法則はヘンリーパワーとは無関係のようです。
今回ご紹介するヘンリー・パワーは
王立協会で初めて選出された フェローの なかの1 人です。


具体的にパワーは、1641 年にケンブリッジで有名な
「クライスト カレッジ」で文学士号を得ました。
パワーは 1663 年 に王立協会のフェローに選出されています。
パワーと準男爵 ジャスティ・ニアヌス イシャムは、
最初に選出されたメンバーなのです。



ヘンリー・パワーの業績


パワーの唯一の出版された著作は「実験哲学」です。
3 冊のからなる彼の本は、それぞれ観測の方法論(corpuscularian theory)
と粒子理論を扱っています。また、
ヤコブス・グランダミクス(ジャック・グランダミ、1588–1672)
の論文に対して反論をしています。


ボイルの法則との関連も特筆すべきです。
あらかじめ行った実験で、パワーは、後に「ボイルの法則」
として知られるガスの圧力と体積の関係を発見しました。


圧力と体積の関係は、「実験哲学」で概説されています。
しかし、それにもかかわらず、「実験哲学」の出版とリチャード・タウンリーの
唯一の仕事との混同がされているようです。


ボイルの理論への言及は、「実験哲学」の出版よりも 1 年先行し、
ボイルのアイデアの上記宣伝と、貴族の科学者としてパワーは有名なので、
パワーの理論が「ボイルの法則」として知られるようになりました。


ボイルはタウンリーが唯一の研究者であると誤解して、
パワーの貢献が歴史上ほとんど失われているのです。
最後に、英語版ウィキペディアからパワーの業績部分を抜粋します。
ご参考としてください。(以下6行抜粋)


Henry Power discovered the relationship between the pressure and volume of a gas that later became known as Boyle's law. This relationship was outlined in "Experimental Philosophy". However, many may argue nevertheless that a prepublication manuscript of "Experimental Philosophy" cited the hypothesis as the sole work of Richard Towneley. Boyle's mention of the theory preceded the publication of "Experimental Philosophy" by one year, which, combined with Boyle's promotion of the idea and his significant status as an aristocratic scientist, ensured the theory would be known as "Boyle's Law". Boyle attributed Towneley as the sole researcher, ensuring that Power's contributions were all but lost to history.




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2023/04/07‗初稿投稿
2023/04/21‗改訂投稿


旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2023年4月時点での対応英訳)


 Perdonal History of Henry Power


Henry Power is a name not often heard in Japan.
I looked it up and he has "a solid job" in British Physics.
Despite this, it has not been introduced much in Japan.
in addition,
There is no introduction on the Japanese version of Wikipedia,
The introduction is in English only.


in fact
Considering the "formulation of the relationship between
pressure and volume", in a little later era
Another person named William Henry also "appears in the study of gases," so
Caution is required. Henry's law seems to have nothing to do with Henry power.
Henry Power to introduce this time
One of his Fellows who was first elected to the Royal Society.


Specifically Power was founded in Cambridge in 1641 by the famous
He earned a Bachelor of Arts degree from 'Christ College'.
He had power in which he was elected a Fellow of the Royal Society in 1663.
Power and his Baronet Justy Nianus his Isham,
I am the first elected member.


Achievements of Henry Power


Power's only published work is "Experimental Philosophy".
His three books each deal with a corpuscular theory.
and particle theory. again,
Jacobus Grandamicus (Jacques Grandami, 1588–1672)
I am arguing against the paper of


He is also notable for his connection with Boyle's law.
In his preliminary experiments, power was later found in "Boyle's Law"
discovered the relationship between gas pressure and volume known as .


The relationship between pressure and volume is outlined in "Experimental Philosophy".
But nevertheless the publication of "Experimental Philosophy" and Richard Townley's
It seems that there has been confusion with only one job.


References to Boyle's theory preceded the publication of "Experimental Philosophy" by a year,
Because of the above publicity of Boyle's ideas and his power as an aristocratic scientist,
The theory of power became known as "Boyle's Law".


Boyle misunderstood that Townley was the sole researcher,
The contribution of power is largely lost to history.
Finally, I will excerpt Power's achievements from the English Wikipedia.
Please use it as a reference. (6 lines below)


Henry Power discovered the relationship between the pressure and volume of a gas that later became known as Boyle's law. This relationship was outlined in "Experimental Philosophy". the sole work of Richard Towneley. Boyle's mention of the theory preceded the publication of "Experimental Philosophy" by one year, which, combined with Boyle's promotion of the idea and his significant status as an aristocratic scientist, ensured the theory would be known as " Boyle's Law". Boyle attributed Towneley as the sole researcher, ensuring that Power's contributions were all but lost to history.



2023年04月20日

赤ア 勇
‗4/20改訂【1929年1月30日 - 2021年4月1日】

こんにちはコウジです!
「赤ア 勇」の原稿を改定します。
今回の主たる改定は英訳の付記です。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】


赤ア 勇の業績として大きいのは何よりダイオード関係で、
その方面では第一人者だという印象が強いです。その関連で
ノーベル物理学賞も受賞しています。


本ブログのご紹介画像では京都大学を使っていますが、
実際には赤崎氏は名古屋大学とも大きく関わっていて
(現)デンソーテンで卒業後に仕事をした後に
京大の先輩の名古屋大就任に伴い名古屋大学で研究を進めます。
今でも名古屋大学には赤崎記念研究館があり名大の時計塔では
青色LEDのイルミネーション時計が使われているそうです。


そして
(現)パナソニックの東京研究所に
所長からスカウトされ勤務します。
そうした業績の成果は有意義な結果を生んでいて、
最終的な製品として「ブールーレイディスク」の名を
聞いたことがある人は多いかと思います。
青色LED・短波長半導体レーザーの発光度の強化(実用化)
は非常に工学技術として優れています。


個人的な業績の印象として
赤崎氏は20世紀後半の時代に沢山の仕事をしています。


1991年・窒素系半導体での多重ヘテロ効果発見。
1993年・AlGaN/GaNダブルヘテロ構造での低閾値光励起誘導放出
1995年・室温にでの最短波長パルス秒レーザーダイオード( 376nM)
1997年・GaN系半導体量子構造での量子閉じ込めシュタルク効果実現
2000年・GaN系統の結晶におけるピエゾ電界強度結晶方位依存性での
無極性面、半極性面の存在を理論的に証明
2003年・紫外/紫色LEDの実現


赤ア 勇さんは日本のレーザー技術の水準を最高峰へ高めました。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2023/04/06‗初稿投稿
2023/04/20_ 改訂投稿


旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2023年4月時点での対応英訳)


Isamu Akasaki's greatest accomplishment is diode-related.
I have a strong impression that he is a leader in that regard. in that regard
He also won the Nobel Prize in Physics.


Kyoto University is used in the introduction image of his blog,
In fact, Mr. Akasaki is also heavily involved with Nagoya University.
After working at (now) Denso Ten after graduating
I will proceed with research at Nagoya University as my senior from Kyoto University was appointed to Nagoya University.
Even now, Nagoya University has the Akasaki Memorial Research Hall, and the Meidai clock tower
It seems that the blue LED illumination clock is used.


and
(Currently) Panasonic Tokyo Research Laboratory
You will be scouted by the director to work.
The results of such achievements have produced meaningful results,
As the final product, the name of "Blu-ray disc"
I'm sure many of you have heard of it.
Enhancement of luminous intensity of blue LEDs and short wavelength semiconductor lasers (practical application)
is very good engineering.


As an impression of personal achievements
Akasaki has done a lot of work in the late 20th century.


1991: Discovery of multiple heterogeneous effects in nitrogen-based semiconductors.
1993・Low-threshold photoexcited stimulated emission in AlGaN/GaN double heterostructure
1995 Shortest wavelength pulsed second laser diode at room temperature (376nM)
1997・Realization of quantum confined Stark effect in GaN-based semiconductor quantum structure
2000 ・Piezo electric field strength crystal orientation dependence in GaN-based crystals
Theoretical proof of the existence of non-polar and semi-polar planes
2003・Achievement of UV/Violet LED


Isamu Akasaki raised the standard of Japanese laser technology to the highest peak.



2023年04月19日

K・シュヴァルツシルト
4/19改訂‗1873/10/9~ 1916/5/11

こんにちはコウジです!
「シュヴァルツシルト」の原稿を改定します。
今回の主たる改定は英訳の付記です。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】


シュヴァルツシルトの名はドイツ語表記をすると: Karl Schwarzschild。
19世紀生まれの物理学者で従軍に伴い研究を断念した方です。
フランクフルト生まれのユダヤ系でミュンヘン大学へ進みます。


関連書籍の関連リンクを使おうとしましたが
ゲーム関係の書籍ばかりが出てきてしまいます。
もはや「シュバルツシツト半径」という言葉だけで
現実の世界とつながる人になっています。
シュバルツシルトの人生を伝える人も
どんどん、少なくなってくるのでしょう。 


シュヴァルツシルトは1901年に28歳でゲッティンゲン大学準教授
および同天文台長を務めるのですが、1914年には第一次世界大戦に伴い
(シュヴァルツシルトは40歳以上だったにもかかわらず)
軍に入隊しました。当時のドイツでシュヴァルツシルトは
西部戦線と東部戦線のどちらでも前線で戦い、
中尉にまで昇進しました。


思えばハーゼノールもまた、戦場で命を落としています。
ケプラーの父も戦争で命を落としています。
時代が変われども大事なものを戦争で
失っている事実を思い返してみて下さい。
ケプラーが天文学を進め、ハゼノールの弟子たち4人が
ノーベル賞をとっているのです。戦争が無ければ更に
有益な活動が出来たのではないでしょうか。
戦没した物理学者と語り合えた筈の時間が
隣人たちの「大きな損失」です。


シュヴァルツシルトは1915年にドイツ軍の砲兵技術将校
としてロシアで従軍します。そんな中、
天疱瘡と呼ばれる痛くて稀な皮膚病に苦しみました。


そうした闘病の最中で、シュヴァルツシルトは
アインシュタインの一般相対性理論から
重力場を記述する関係を導き出しました。
重力方程式から導き出された最初の特殊解は
シュヴァルツシルトの解と呼ばれ非常に有益なものです。


解を見出した直後にシュヴァルツシルトは
アインシュタインに手紙を送っています。

そんな思いを受けて
戦場で過ごすシュヴァルツシルトの為に

アインシュタインはドイツ・アカデミーに
論文を提出しました。

シュヴァルツシルトの論文で明確にされているのは
距離の性質です。特定の空間に極めて高い質量
存在する時に、空間自体が重力で歪むのです。
空間が歪むという表現は説明が難しいのですが、
相対性理論での結果として歪むのです。


その時に「シュヴァルツシルト半径」と呼ばれる
特殊な球形の場所が出来ます。シュヴァルツシルト半径の
境界面に近い場所ではその重力で光(光子)でさえもが
吸い寄せられ、球の内側では光の速度でも
抜け出せないという論文です。
シュヴァルツシルトの考えは今で言う
ブラックホールの存在を示唆していました。


そして、
残念なことに論文発表から4ヶ月後に病は進行、
シュヴァルツシルトは死に至ります。人類の損失です。
戦争はゲームの中で沢山です。
現実に起これば人が死にます。


話を進めてみました。同様の対応で私は考えました。
反戦を徹底できないと
@人が生む出す英知が外に向かう前に、
A内向きの欲望で人類は死滅に向かいます。


@物凄く早く進む光は魅力的です。 反して
Aブラックホールの引力は欲望のようです。


人は冷静な考察をしながらも前向きに進む
熱い思いを持っていないといけないと思います。
私論まで。






【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2023/04/05‗初稿投稿
2023/04/19‗改訂投稿


旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2023年4月時点での対応英訳)


His full name in German is: Karl Schwarzschild.
He was a physicist born in the 19th century who gave up
his research when he served in the military.
Born in Frankfurt, he was Jewish
and went on to the University of Munich.


I tried to search the related link of the related book but
Only PC game-related books will come out.
No longer just the word "Schwarzschitz radius"
He has become a person who connects with the real world.
Some people tell the life of Schwarzschild
It will become less and less.  


Schwarzschild was appointed associate professor
at the University of Göttingen in 1901 at the age of 28.

And he will serve as the director of the observatory,
but in 1914 he was over 40.

(Even though Schwarzschild )
he enlisted in the army. Schwarzschild in Germanyat the time
He fought on the front lines on both the Western
and Eastern fronts,
He was promoted to lieutenant.


Come to think of it, Hazenor also lost his life on the battlefield.
Kepler's father also lost his life in the war.
Even if the times change, what is important is war
Remind yourself of what you have lost.
Kepler advances astronomy, and four of Hazenor's disciples
He would have a Nobel Prize. even more without war
I hope he had done something useful activity.
The time I should have been able to talk with a physicist
who died in battle,
A "great loss" for his neighbors.


Schwarzschild was appointed an artillery technical officer
in the German Army in 1915.

served in Russia as a Meanwhile,
He suffered from a rare and painful skin disease called pemphigus.


In the midst of such a struggle, Schwarzschild
From Einstein's General Theory of Relativity
He derived a relationship that describes the gravitational field.
The first special solution derived from the gravitational equation is
It is called Schwarzschild's solution and is very useful.


Shortly after finding his solution, Schwarzschild
He is sending a letter to Einstein.
he felt that
For Schwarzschild spending time on the battlefield
Einstein at the German Academy
submitted his thesis.
Schwarzschild's paper makes it clear that
It's the nature of distance. Extremely high mass in a specific space
As it exists, space itself is distorted by gravity.
The expression that the space is distorted is difficult to explain,
It is distorted as a result of the theory of relativity.


then called the "Schwarzschild radius"
A special spherical place is created. of the Schwarzschild radius
Even light (photons) is forced by the gravity near the boundary surface.
Attracted, inside the sphere even at the speed of light
It's a thesis that you can't get out of it.
Schwarzschild's thoughts now say
He suggested the existence of black holes.


and,
Unfortunately, the disease progressed four months
after his paper was published,

Schwarzschild dies. He is humanity's loss.
War is a lot in the game.
People die if it happens.


He tried to speak. I thought of a similar response.
If you can't thoroughly oppose the war
@ Before the wisdom that people create goes outside,
(2) Mankind is heading for extinction due to inward desires.


@The light that travels very fast is attractive. Contrary
AThe gravitational pull of a black hole is like desire.


People move forward while thinking calmly
I think you have to have a passion for it.
up to my point.