アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2024年04月 >>
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30        
最新記事
最新コメント

2021年10月28日

W・E・パウリ
【1900年生まれ10/28改定】

「パウリ」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。原稿文字数は5846文字です。また、アマゾン関連の作業は嫁任せでしたがサイトの運営として記載してます。読者満足度を考え関連書籍を記載します。【学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。】作業として10月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1900年4月25日生まれ ~ 1958年12月15日没】




その名はWolfgang Ernst Pauli


パウリはオーストリア生まれの


スイスの物理学者。パウリの排他率律で有名です。


排他律を排他率と書いてしまいがちですが


排他律です。その「パウリの排他律」は


「パウリの原理」とも呼ばれています。


1945年にアインシュタインの推薦で


ノーベル物理学賞を受けています。


ミドルネールのエルンストはパウリの名付け親、
パウリが尊敬するマッハに由来します。
父方はユダヤ系で有名な出版社を
経営していたようです。


さて、


排他律の具体的な内容に関してですが、


ナトリウムの分光実験から話が始まります。


再現性の高い事実として磁場付加時の分光は


電子の自転に由来するという仮説をパウリは立て、


後にそれをスピンと名付けます。


新しい量子的自由度です。


後に行列力学を基盤とした定式化


を行い数学的に表現します。 




パウリと著名人の交流


個人的に興味を引くのはミュンヘン大学でパウリがゾンマーフェルト_の指導を受けている点です。私が講義を受けた先生がゾンマーフェルト_を研究していて、マッハの名前も、その先生から教えてもらいました。そして、マッハ・ゾンマーフェルト・パウリとつながったのです。そしてもう一つ個人的な話を続けます。今使っているドメインへの投稿です。


何故か半歳程、投稿漏れに気づかずにいたのですが、ある日「パウリ」について気になって上記ゾンマーフェルトとの関係を思い出したのです。そして急ぎ作業を続けていて驚いたのは、その日がパウリの誕生日だったのです。


パウリが生まれてから220年が終わった瞬間でした。後述するユング達が極めた深層心理の世界では意識下と無意識下の間に「潜在意識」を想定しますが、そんなことも少し考えてしまいました。よもや潜在意識下で決めた投稿日だったのでしょうか。とか考えてしまいました。
まぁ、普通に考えたら単なる偶然ですね。


私の頭の中での奇妙な三角関係はさておき、


パウリは人間的にも面白い人だと思えます。


独自に培った知性で各界の著名人を魅了しているのです。


例えば、博士号を習得した直後、パウリは


ゾンマーフェルトに独逸語での百科事典の記事執筆


を依頼されます。内容は相対性理論に関する記事


でしたが、2か月ほどをつかって完成させました。


その結果はアインシュタイン本人の査読にかなう


見事なもので、今日においても読み応えのある


ものとなっているそうです。アインシュタインは


パウリのミドルネームに気付いていたのでしょうか。


マッハとの関係を知っていたのでしょうか。


機会があれば調べてみたいと思います。


マッハ・アインシュタイン・パウリの三角関係です。


更に妙な繋がりは心理学者C・G・ユングとの関連です。パウリは離婚後に精神を病んでいた時期がありました。今や、夢分析の世界で有名なユングに完璧主義者のパウリが出合ったのです。先生と生徒という関係を築き、生徒としてユングにパウリは科学的な批評を加えます。互いに有益な関係だったのでしょう。


因みにユング関連での兄弟弟子フロイトもユダヤ系です。アインシュタインもユダヤ系です。この切り口で考えていっても特有の文化に起因する思考的な共有点が見いだせると思います。思考の方法を考えるうえで、少し興味深い対象です。




パウリと1/137


そして、


パウリは最後まで愛した物理学を愛し続けました。


戦争での苦難の時代の後に帰国して、


病床でも完璧主義者として見舞客と議論を続けました。


その中で語り継がれている話があります。


微細定数と呼ばれる無次元量があって、


それはプランク定数に関わる相互作用を


特徴付ける量です。パウリはその値に最後まで、


こだわり抜きました。


もし、パウリが神に謁見したら、
神に微細定数 1/137.036...の
理論的根拠を尋ねたとしたら、
神様は物凄い速度で計算式を
書き連ねるだろう。その後、
きっとパウリは「違う!」
と唱えて、話し続けるであろう。


よもや、神様さえも「あ!」
と唱えるのではないか、
と不遜にも想像してしまいました。


 





以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/19_初稿投稿
2021/04/25_原稿改定
2021/10/28_改定投稿


纏めサイトTOP
舞台別のご紹介へ
時代別(順)のご紹介

スイス関係のご紹介へ
オランダ関係のご紹介へ
ドイツ関係のご紹介へ
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


大学教科書買取専門店【テキストポン】


 

(2021年10月時点での対応英訳)



Its name is Wolfgang Ernst Pauli


Pauli is an Austrian-born Swiss physicist. It is famous for Pauli exclusion principle. It is easy to write the exclusion principle as the exclusion rate, but it is the exclusion principle. The "Pauli exclusion principle" is also called the "Pauli principle". He received the Nobel Prize in Physics in 1945 on the recommendation of Einstein.


Middlener Ernst comes from Pauli's godfather, Pauli's respected Mach. His father seems to have run a well-known Jewish publisher.


Now, regarding the specific content of the exclusion principle, the story begins with a spectroscopic experiment of sodium.


As a highly reproducible fact, Pauli hypothesized that spectroscopy when a magnetic field was applied was derived from the rotation of electrons, which he later named spin. A new quantum degree of freedom. He later formulates based on matrix mechanics and expresses it mathematically. Twice



Exchange between Pauli and celebrities


Personally, I'm interested in Pauli's guidance at Sommerfeld at the University of Munich. The teacher I was giving a lecture on was studying Sommerfeld, and he also told me the name of Mach. And he was connected to Mach Sommerfeld Pauli. And I will continue with another personal story. This is a post to the domain you are currently using. For some reason, I was about half a year old and didn't notice the omission of posts, but one day I was worried about "Pauli" and remembered the relationship with Sommerfeld.


And what surprised me as I continued to work in a hurry was that day was Pauli's birthday. It was the moment when 220 years had passed since Pauli was born. In the world of deep psychology, which Jung and his colleagues have mastered, we assume a "subconscious" between consciousness and unconsciousness, but I have thought about that for a moment. Was it the posting date decided under the subconscious? I have thought about it.
Well, if you think about it normally, it's just a coincidence.


Aside from the strange love triangle in my mind, Pauli seems to be a humanly interesting person. His unique intelligence attracts celebrities from all walks of life.


For example, shortly after completing his PhD, Pauzo was asked by Nmarfeld to write an encyclopedia article in German. The content was an article about the theory of relativity, but it took about two months to complete. The result is excellent enough to be peer-reviewed by Einstein himself, and it seems to be readable even today. Did Einstein notice Pauli's middle name? Did he know his relationship with Mach? I would like to find out if I have the opportunity. It is a love triangle of Mach Einstein Pauli.


A more strange connection is with the psychologist CG Jung. Pauli had a period of mental illness after his divorce. Now, the perfectionist Pauli meets Jung, who is famous in the world of dream analysis. He builds a teacher-student relationship, and Pauli gives Jung a scientific critique as a student. It must have been a mutually beneficial relationship. By the way, Jung's brother and disciple Freud are also Jewish. Einstein is also Jewish. Even if you think from this perspective, you can find a thoughtful shared point due to the unique culture. It's a little interesting when thinking about how to think.



Pauli and 1/137


And Pauli continued to love his beloved physics until the end. He returned home after a period of hardship in the war and continued to discuss with visitors as a perfectionist in bed. There is a story that has been handed down in it.


There is a dimensionless quantity called the fine constant, which is the quantity that characterizes the interactions involved in Planck's constant. Pauli was particular about that value until the end. If Pauli had an audience with God and he asked God for the rationale for the fine constant 1 / 137.036 ..., God would write the formulas at a tremendous speed. After that, Pauli will surely say "No!" And continue talking.


I have imagined that even God would say "Ah!".

ジョージ・ストークス
【1819年8月13日 ~ 1903年2月1日】

ストークスの原稿を改定します。


時代別・場所別・分野別の纏めに対して


リンクを設けています。ご覧下さい。


【以下原稿です】




ストークスの名を正確に記すと、


Sir George Gabriel Stokes, 1st Baronet,


SIRの称号を得ていてケンブリッジでは


ルーカス職を務めています。 特に


流体力学や光学、数学でストークスは


顕著な仕事を残しました。



具体的なストークスの業績



業績として、ストークスと言われて思い出すのは流体力学だという人は多いのではないでしょうか。特にNS(ナルビエ・ストークス)の式(表式)と呼ばれる表現式が有名です。実際に表式に慣れてくれば、その式がニュートンの第二法則と対応していることが実感できてきます。ただ、「回転」、「発散」といったベクトル力学特有の表現が実感し辛い部分ではあります。ただ、慎重に議論をなぞっていくと流体の粘性だとか、それが非圧縮性の流れであるとか言った「言い回し」が段々と理解出来てきて、全体像がつかめた気分になってくるから不思議なものです。実際には、流体に対して多数のセンサーを配して実験がされることは余り無くて、厳密な適用はされにくいのですが、定性的な理解には大いに役だちますし数値解析でシミュレーションしていくことも出来る価値ある表式なのです。



ストークスの人脈



最後に、ストークスに関連した繋がりをご紹介します。現在、有名となっている「ストークスの定理」はもともとウィリアム・トムソン(ケルビン卿)がストークスに伝えたと言われています。そして、ストークスはその定理の有用性を認め、ケンブリッジ大学での数学の優等試験(トライポス)での諮問の中でその式を使いました。絶対零度の単位で名を残すケルビン卿とストークスがつながるのです。そして、その試験を受けていたのは後の電磁気学の権威者となるマクスウェルだったのです。もちろん、マクスウェルは優秀な成績でこの試験に合格したと言われています。絶対零度の人・ストークス・電磁気学の人・・・とつながるのです。物理の中では全然別の分野だったと思われた3人が関連していたのですが、こんな話からも当時のイギリスでは議論が盛んだったことも伺われますし、物理の世界は繋がっているのだなぁ、と実感できる筈です。




英語が話せるようになる「アクエス」


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2021/10/03_初稿投稿
2021/10/15_原稿改定


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係
ケンブリッジ関連
電磁気学関係


【このサイトはAmazonアソシエイトに参加しています】


詳しくはコチラへ→【テキストポン】


(2021年10月時点での対応英訳)



Accurately write the name of Stokes


He holds the title of Sir George Gabriel Stokes, 1st Baronet, SIR and holds the Lucas position in Cambridge. Stokes left a remarkable job, especially in fluid mechanics, optics, and mathematics. Specific Stokes achievements


 

As a result, many people think that what is called Stokes is fluid mechanics. In particular, the expression formula called NS (Narvier Stokes) formula (table formula) is famous. As you become more accustomed to the formula, you will realize that it corresponds to Newton's second law. However, the expressions peculiar to vector mechanics such as "rotation" and "divergence" are hard to realize. However, if you trace the discussion carefully, you will gradually understand the "phrase" that the viscosity of the fluid and that it is an incompressible flow, and you will feel that you have grasped the whole picture. It's strange. In reality, it is rare to experiment with a large number of sensors placed on a fluid, and it is difficult to apply it exactly, but it is very useful for qualitative understanding and simulated by numerical analysis. It is a valuable expression that can be taken.



Stokes connections


Finally, I would like to introduce the connections related to Stokes. It is said that William Thomson (Sir Kelvin) originally introduced the now-famous "Stokes theorem" to Stokes. Stokes then acknowledged the usefulness of the theorem and used it in his consultation at the University of Cambridge's Mathematics Honors Exam (Tripos). Sir Kelvin and Stokes, who leave their names in units of absolute zero, are connected. And it was Maxwell, who later became an authority on electromagnetism, who was taking the test. Of course, Maxwell is said to have passed this exam with excellent grades. It connects with people at absolute zero, Stokes, people with electromagnetics, and so on. Three people who seemed to be in completely different fields in physics were related, but from such a story, it can be said that there was a lot of discussion in England at that time, and the world of physics was connected. You should be able to realize that you are there.

2021年10月27日

G・R・キルヒホッフ
【1824年3月12日 ~ 1887年10月17日没】

「キルヒホッフ」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。原稿文字数は2231文字です。また、アマゾン関連の作業は嫁任せでしたがサイトの運営として記載してます。読者満足度を考え関連書籍を記載します。【学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。】作業として10月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


ご覧下さい。【以下原稿です】



その名はグスタフ・ロベルト・キルヒホッフ;Gustav Robert Kirchhoff、ロシアに生まれ現在のドイツで学び現在のポーランドの大学(ブレスラウ大学)で教鞭をとっています。19世紀当時の知識人の教養の付け方は非常にダイナミックだと感心させられますね。島国日本では想像もつかないような人的な交流を感じさせます。そしてなにより、優秀な頭脳を大事に育てる社会環境を感じさせます。


また、キルヒホッフは現象を定式化(法則化)する事が得意でした。色々な分野で考察をしていて



@電気回路におけるキルヒホッフの法則

A放射エネルギーについてのキルヒホッフの法則

B反応熱についてのキルヒホッフの法則

が知られています。


まず、電流に関するキルヒホッフの理解なのですが単一の電源と、単一の抵抗のみの回路のように単純な場合は分かり易いのですが、回路が複雑になればなるほど色々な位置での電流と電圧の把握が難しくなります。キルヒホッフが示した法則に従えば回路内での電流の流れがより分かり易く想像できて、計算が出来るのです。回路内の任意の一点に流れ込む電流と流れ出る電流の相和は0なのです。また、起電力の相和と電圧降下の相和は等しいのです。こうした電圧、電流に対する理解が深められた業績は実はとても大きいのです。


また、反応熱に対するキルヒホッフの法則も秀逸です。それは化学反応に伴う狭義の熱の理解にとどまらずに、潜熱などを含めた熱を、エンタルピーと熱容量を使って発熱反応と吸熱反応の特性を温度変化に対して記述することに成功しています。熱に対しての理解を大きく進めたのです。蒸発熱、中和熱、融解熱といった様々な熱反応が定量的に記述出来て議論出来るのです。


その他にキルヒホッフは分光学、音響学、弾性論を研究していてベルリン大学で教鞭をとり、ベルリンで最期を迎えています。享年63歳の生涯でした。


 

 〆 


英語が話せるようになる「アクエス」



以上、間違い・ご意見は
以下アドレスまでお願いします。
最近、返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2021/10/04_初稿投稿
2021/10/27_原稿改定


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
ドイツ関係

時代別(順)のご紹介
電磁気関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年時点での対応英訳)



Russian-born Kirchhoff


His name is Gustav Robert Kirchhoff, born in Russia, studied in Germany today and teaches at the current university in Poland (Breslau University). I'm impressed that the way intellectuals were educated in the 19th century was very dynamic. It makes you feel a human exchange that you can't imagine in Japan, an island country. And above all, it makes you feel the social environment that carefully nurtures excellent brains.


In addition, Kirchhoff was good at formulating (ruled) the phenomenon. He is thinking in various fields


@ Kirchhoff's law in electric circuits


A Kirchhoff's law on radiant energy


B Kirchhoff's law on heat of reaction


Is known.



Electromagnetism and Kirchhoff


Kirchhoff's understanding of current is easy to understand when it is as simple as a circuit with a single power supply and a single resistor, but the more complicated the circuit, the more current and voltage at various positions. It will be difficult to grasp. According to Kirchhoff's law, the flow of current in the circuit can be more easily imagined and calculated. The sum of the current flowing into any point in the circuit and the current flowing out is zero. Also, the sum of electromotive force and the sum of voltage drop are equal. In fact, his achievements in deepening his understanding of such voltages and currents are enormous.



Thermal physics and Kirchhoff


Kirchhoff's law on heat of reaction is also excellent. It has succeeded in describing the characteristics of exothermic reaction and endothermic reaction with respect to temperature change by using enthalpy and heat capacity, not only understanding heat in a narrow sense associated with chemical reaction, but also including latent heat. .. It greatly promoted my understanding of heat. Various thermal reactions such as heat of vaporization, heat of neutralization, and heat of fusion can be quantitatively described and discussed.


In addition, Kirchhoff studied spectroscopy, acoustics, and elasticity, taught at the University of Berlin, and is dying in Berlin. He was 63 years old in his lifetime.


 

S・ナート・ボース
【1894年生まれ-10/27改定】

「ボース」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。原稿文字数は3670文字です。また、アマゾン関連の作業は嫁任せでしたがサイトの運営として記載してます。読者満足度を考え関連書籍を記載します。【学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。】作業として10月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1894年1月1日生まれ ~ 1974年2月4日没】




BOSEの読み方


ボーズ(BOSE)は珍しいインド人物理学者です。


フルネームで名前を書き下すと、


 サティエンドラ・ナートボース


:Satyendra Nath Bose となります。


以下、ボーズの名前に濁音がついていますがご了承下さい。


名前の最後の「ズ」の所です。


BEC(ボーズアインシュタイン凝縮)、


ボゾンといった用語で学生時代に議論して、


その感覚がどうしても消えません。


そもそも実際の綴りはBOSEでしすし、
正式にはボースと発音するようで、
Wikipediaの記載もボースです。しかし、そもそも、
ここに拘っている人は少ない印象です故、
特に訂正しません。



BOSEの業績


さて、インドは独自の数学体系を持ち
計算(暗算)方式も独自の形式を持ちます。
そんな学問体系で素粒子の世界に
挑んだボーズは
統計力学で今世紀初頭にEinsteinと共に
今でいうBOSE粒子群(BOSON)の
振る舞いを定式化するのです。


1924年にアインシュタインへ


論文を送った時点が始まりです。


その論題は「プランクの放射法則と光量子仮説」


でした。アインシュタインはその仕事を


高く評価して後にそれを発展させますが、


学会で討議する以上の交流は未だ私には


調べきれていません。インド独自の学問体系の中で


ボーズ粒子は育っていったと考えています。


後に英国の王立協会からフェローに


任命されていますので


最後のリンクにイギリスは含めました。



BOSNとFERMION


前段の知識として後世の理解で整理すると
素粒子はスピン角運動量の数でBOSONとFERMIONの
二種類に分かれます。いわゆる凝縮系の世界でも
BOSONは特異な振る舞いを示します。
具体的にBOSONとは光子、音子、ウィークボソン、
グルーオン、π中間子やK中間子、D中間子、
B中間子、ρ中間子、等で
スピンの奇遇性からボゾンに分類されて、
BOSE−EINSTEIN統計に従います。



BOSEの人物像


ただ残念な事に西洋の学者と異なり、


インド系のボーズは「人となり」が


伝わっていません。


何よりボーズの業績である、


BOSONで名を残しています。


私がインドに行って調べたいくらいですが
あいにく機会ができません。
いつか調べてみたいと思っています。
その時は関係者と話す時に「ボース」と心がけながら話そうと思います。人の名前は間違えると違和感を与えますからね。いや、ひょっとしたら関係者も「ボーズ」を多用するかもしれません。その確認も小さな楽しみです。



英語が話せるようになる「アクエス」


以上、間違いやご意見があれば
以下アドレスまでお願いします。
問題点には適時、
返信・改定を行います。


nowkouji226@gmail.com


2020/09/12_初回投稿
2021/10/27_改訂投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
イギリス関係
熱統計力学関係

量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



How to read BOSE(iN jAPAN)


BOSE is a rare Indian physicist. If you write down the name with the full name,


Satyendra Nath Bose


: It will be Satyendra Nath Bose. Please note that the name of Bose has a voiced sound below. This is the last "Z" in the name. When I was a student, I argued with terms such as BEC (Bose-Einstein Condensation) and Boson, and that feeling never disappeared.


In the first place, the actual spelling is BOSE, and it seems to be officially pronounced as Bose, and the description on Wikipedia is also Bose. However, in the first place, I have the impression that few people are concerned about this, so I will not make any corrections.



BOSE's achievements


By the way, India has its own mathematical system and its own calculation (mental arithmetic) method. Bose, who challenged the world of elementary particles with such an academic system, uses statistical mechanics to formulate the behavior of what is now called the BOSE particle group (BOSON) with Einstein at the beginning of this century.


He began when he sent a treatise to Einstein in 1924. The subject was "Planck's law of radiation and the photon hypothesis." Einstein appreciates his work and develops it later, but I haven't been able to find out more than the discussions at the conference. I believe that bosons grew up in India's unique academic system. I was later appointed as a Fellow by the Royal Society of England, so I included the United Kingdom in the last link.



BOSN and FERMION


Elementary particles can be divided into two types, BOSON and FERMION, according to the number of spin angular momentums. Even in the so-called condensed world, BOSON behaves peculiarly.
Specifically, BOSON is classified into bosons based on the oddity of spins such as photons, phons, weak bosons, glueons, π mesons, K mesons, D mesons, B mesons, and ρ mesons, and follows BOSE-EINSTEIN statistics.



BOSE portrait


Unfortunately, unlike Western scholars, Bose of Indian descent does not convey "becoming a person". Above all, he has left his name in BOSON, which is the achievement of Bose. I would like to go to India to find out, but unfortunately I can't get the chance. I would like to find out someday. At that time, when I talk to the people concerned, I will try to talk with "Bose" in mind. If you make a mistake in a person's name, it will make you feel uncomfortable. No, maybe the people involved may also use "Bose" a lot. The confirmation is also a little fun.


2021年10月26日

アーサー・コンプトン
【1892年うまれ-10/26改定】

「コンプトン」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。原稿文字数は2231文字です。また、アマゾン関連の作業は嫁任せでしたがサイトの運営として記載してます。読者満足度を考え関連書籍を記載します。【学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。】作業として10月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】
【1892年9月10日 ~ 1962年3月15日】




コンプトン効果


アメリカのコンプトンは波動の粒子性を示した実績と


マンハッタン計画で指導的役割を果たしたこと


知られています。コンプトンは1919年に英国の


キャンデビッシュ研究所に留学し、


そこでガンマ線の散乱・吸収を研究します。


そこで「波動のコンプトン効果」


を発見するのです。この考えは今では量子力学の


基幹をなしていますが、大まかには以下の理解を


していれば良いと思います。つまり、


「微視的に物事を考え始めた時に粒子性と


波動性が同時に具現化する」


ということです。


その考えで話を進めると自由電子により散乱された


X線量子がより長い波長となるという事実に対して


「波長が長くなる状態」つまり


「光線のエネルギーが落ちる状態」で


子性に着目して弾性散乱の視点で考えていくのです。



コンプトンの微視的な視点 


具体的に量子力学では不確定関係という枠組みで物事を考えますので2つの値が同時に確定しなかったりします。例えば位置と運動量を同時に確定しません。また、時間とエネルギーを同時に確定しません。但し、時間×エネルギーや位置×運動量といった値を物理量として確定出来るのです。これは作用と呼ばれる次元の物理量です。時間という物理量やエネルギーという物理量と関連していますが異なります。


以上は量子力学を理解した人々には納得出来ても一般の人々には中々説明がし辛い部分です。誤解無く伝わっているかいつも不安になります。そんな意識改革をコンプトンが進めていたのですね。波動として考えていたガンマ線やX線に粒子性を見出したのです。



コンプトンとマンハッタン計画 


また、コンプトンはマンハッタン計画を進めた


主要メンバーでもあります。そもそも原子爆弾は


原子炉の製造から計画しなければいけません。


そこでウランをプルトニウムに変換して、プルトニウムと


ウランの混合物からプルトニウムを分離するプロセス


が必要です。コンプトンはこのプロセスをSEとして


設計してプロジェクトが進んでいく現場で働きました。


また、原子爆弾を兵器として使用するには


敵国で使用時に、出来るだけ早くに最大限の攻撃力を


発揮しなといけませんが、そうした損傷兵器


の仕組みをを設計する方法についても


コンプトンは計画をしていきました。


なお同計画はオッペンハイマーの設計もあり、


フェルミローレンスとの議論も経ています。


全米の知能を集め計画を進めていたのです。


 

そしてコンプトンの業績はノーベル賞を初めとする


々たる栄誉で称えられています。


それと同時に、


マンハッタン計画の主導者として


計画自体の是非を論じる際に


何度もその名があがります。


もともとは、


コンプトンはもともと星の好きな少年でした。


そんな所からガンマ線の究明に話が進みましたが、


彼の名はガンマ線検出の為の


NASAの衛星に残されています。




英語が話せるようになる「アクエス」


以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/11/07_初稿投稿
2021/10/26_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ
イギリス関係
ケンブリッジ関連

熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


詳しくはコチラへ→【テキストポン】


(2021年10月時点での対応英訳)



Compton effect


Compton in the United States is known for its track record of wave particle nature and for its leadership role in the Manhattan Project. Compton studied abroad at the Candevisch Institute in the United Kingdom in 1919, where he studied gamma-ray scattering and absorption.


There he discovers the "Compton effect of waves".
This idea is now the basis of quantum mechanics, but I think it is good to have the following general understanding. In other words, "when you start thinking microscopically, particle nature and wave nature are realized at the same time." If we proceed with that idea, we will focus on the particle nature in the "state where the wavelength becomes longer", that is, the "state where the energy of light rays falls", in contrast to the fact that the X-ray quantum scattered by free electrons has a longer wavelength. Think from the perspective of elastic scattering.



Compton's microscopic perspective


Specifically, in quantum mechanics, things are considered in the framework of an uncertain relationship, so two values ​​may not be fixed at the same time. For example, the position and momentum are not fixed at the same time. Also, time and energy are not fixed at the same time. However, values ​​such as time x energy and position x momentum can be determined as physical quantities. This is a physical quantity of a dimension called action. It is related to but different from the physical quantity of time and the physical quantity of energy.


The above is a part that is difficult to explain to the general public even if it is convincing to those who understand quantum mechanics. I'm always worried if it's transmitted without any misunderstandings. Compton was promoting such a change in consciousness. He found particle nature in gamma rays and X-rays, which he thought of as waves.



Compton and Manhattan Project


Compton is also a key member of the Manhattan Project. In the first place, the atomic bomb must be planned from the production of the reactor. Therefore, a process is required to convert uranium to plutonium and separate plutonium from the mixture of plutonium and uranium. Compton designed this process as an SE and worked in the field where the project progressed.


In addition, in order to use an atomic bomb as a weapon, it is necessary to exert maximum attack power as soon as possible when using it in an enemy country, and Compton also plans how to design the mechanism of such a damaged weapon. I went on. The plan was also designed by Oppenheimer and has been discussed with Fermi and Lawrence. He was gathering intelligence from all over the United States and working on a plan.


And Compton's achievements are praised for its lush honors, including the Nobel Prize. At the same time, as the leader of the Manhattan Project, he is often mentioned when discussing the pros and cons of the plan itself.


Originally, Compton was originally a star-loving boy. From that point on, we went on to investigate gamma rays, but his name remains on NASA's satellite for gamma ray detection.


以下ヤングの原稿を改定します。


時代別・場所別・分野別の纏めに対して


リンクを設けています。ご覧下さい。


【以下原稿です】


 





イギリスのヤング(Thomas Young)は
ゲッティンゲンで医学の学位を得て
ロンドンで開業医として仕事を始めます。
20代後半で自然学の学者となり医師として
乱視や色の知覚などの研究を進めます。
時代としてはニュートンの体系化が進んで
物理学では応用的な研究が進んでいた時代でした。
20世紀初頭の多分野における発展が進む
過渡期にあったのです。
そういった分野間の交流は
改定が進む中で盛り込みたいと思いますが、
ヤングの業績として大きなものは何より光の3原色の概念を初めとした研究です。光が波動であるという事実とその波動を人体がどう感じて再現性の高い表現が出来るか、別言すれば色んな人が特定の光を感じる時に、どんなパラメターを選んで属人生の無い表現が出来るかという研究です。お医者様として沢山の視覚に対する質疑応答をしていき、沢山の人の共通の問題や、(乱視などの)病的な問題に対しての知見を積み重ねる中で、皆の目に入ってくる「光」という現象を考えていったのです。


そういった研究の中で光学の研究を進めて「光の波動説」を使い干渉などの現象を説明していったのです。
ここで、初学者の理解が混乱するといけないのでしつこく解説します。量子力学的に考えたら光には二面性があって「粒子的な側面」も存在します。アインシュタインの提唱した光電効果はその一例です。また、原子核反応を考える時には「光子」の存在を考えた上で話を進めたら非常に説明がつく現象が沢山あります。ヤングの時代にはそういった理解は無くて「光」とは「粒子」なのか「波動」なのかという議論さえあったと想定して下さい。おそらくそうした仮定から話を始めた方が議論が進みやすいと思えます。量子力学以降の理解体系では観察対象が小さくなれば成る程に物質には二面性が出てきます。それ観測に対する問題であるとも考えられますし、現状の理解体系の「見方」なのであるとも言えます。

ヤングはそうした議論の始まりを医学の視点から入って理学の世界で分かる言葉で表現しました。その他、ヤングは音の研究で不協和音が最も少ない調律法を編み出したり、弾性体の研究でヤング率と呼ばれていく表現を駆使したりして理解を進めました。〆


 

〆最後に〆


 



以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/10/02_初稿投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係
電磁気学関連のご紹介


【このサイトはAmazonアソシエイトに参加しています】




(2021年10月時点での対応英訳)



Young and historical background


Thomas Young of England earned a medical degree in Göttingen and began his work as a practitioner in London. In his late twenties, he became a scholar of natural sciences and as a doctor he pursued research on astigmatism and color perception. It was an era when Newton was systematized and applied research was progressing in physics. It was in a transitional period of multidisciplinary development at the beginning of the 20th century. I would like to incorporate exchanges between such fields as the revision progresses.



Young's achievements


The major achievement of Young is research including the concept of the three primary colors of light. The fact that light is a wave and how the human body feels that wave and can express it with high reproducibility, in other words, when various people feel a specific light, what parameters are selected to express without belonging life It is a study of whether it can be done. As a doctor, I have a lot of questions and answers about vision, and as I accumulate knowledge about common problems of many people and morbid problems (such as astigmatism), it comes to everyone's eyes. I was thinking about the phenomenon of "light."


In such research, I proceeded with research on optics and explained phenomena such as interference using the "wave theory of light".



Rethinking the wave theory of light


Here, I will explain it persistently in case the understanding of beginners is confused. From a quantum mechanical point of view, light has two sides, and there is also a "particle-like side". The photoelectric effect proposed by Einstein is one example. Also, when considering nuclear reactions, there are many phenomena that can be very explained if we proceed with the discussion after considering the existence of "photons". Imagine that there was no such understanding in Young's time, and there was even a debate about whether "light" was a "particle" or a "wave". Perhaps it's easier to discuss if you start with that assumption. In the understanding system after quantum mechanics, the smaller the object to be observed, the more two-sided the substance becomes. It can be said that it is a problem for observation, and it can be said that it is a "view" of the current understanding system.


Young expressed the beginning of such a debate from a medical point of view in words that can be understood in the world of science. In addition, Young advanced his understanding by devising a tuning method with the least dissonance in his research on sound, and by making full use of an expression called Young's modulus in his research on elastic bodies. 〆

2021年10月25日

ルイ・ド・ブロイ
【1892年8月15日生れ~1987年3月19日没】

「ド・ブロイ」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。原稿文字数は4200文字です。また、アマゾン関連の作業は嫁任せでしたがサイトの運営として記載してます。読者満足度を考え関連書籍を記載します。【学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。】作業として10月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】




名門家に生まれたド・ブロイ


ルイ・ド・ブロイはフランス貴族、公爵の血を引いてます。


その血筋は由緒正しいのです。そもそも、


フランス国王ルイ14世により授爵頂いていた


名門貴族・ブロイ家の血筋であって、ルイ・ド・ブロイは


直系子孫です。兄の没後は兄に子供が居なかった


事情もあって、正式に侯爵家の当主を務めています。


ルイ・ド・ブロイはフランスの首相を二期務めた第4代の


当主であるアルベール・ド・ブロイの孫です。それだから、


ルイの生誕時に、その父は当時公子でした。


こんな逸話が沢山あるのですね。


そんなルイ・ド・ブロイは独自に優れた仮説を進め、


ド・ブロイ波(物質波)の考えにたどり着くのです。



ドブロイの物質波 


そのルイ・ド・ブロイの考えは初め、


中々理解されませんでした。


関連して超有名なエピソードがあります。


ルイ・ドブロイの博士論文の審査過程で教授達が


ド・ブロイの考えを理解出来ず、


かのアインシュタインに意見を求めたたのです。


すると、「ド・ブロイの考えは博士論文よりも


ノーベル賞に値する」とアインシュタインから評価され、


絶賛され、更に物質波の考えを進めていく事が出来たのです。


その考えはパラダイムシフトでした。粒子の二面性の考えは


現代量子力学の根幹をなしていて、とても大事な考えです。


ドブロイを含めた学者達が議論を重ね、


当時の物理学の常識を変えていったのです。


 

物質の二面性


波が粒子性を持つのと同時に、粒子である


と考えられていた電子も、実際には波動性を持つだろう


という考えがドブロイ波の本質です。


現代量子力学の理解ではこの二面性は当たり前ですが、


波動性を持つ故に特定元素の周りを周期的に運動する


と考えた時に電子は特定波長の整数倍のみ許された


軌道を描いていると考えられるのです。


実際に我々は原子の周りを運動する電子を


直接の観測にかける事は出来ません。しかし、


水素、ヘリウム、リチウム、、と色々な原子を考えて


いった時に、それらを構成する陽子と中性子の


結合条件を詳細に吟味した結果として電子の軌道半径


は規則があり、ド・ブロイ波の理論が理に叶うのです。


逆に考えれば特定波長の整数倍の運動しか、


その電子には許されないのです。


特定原子核の周りを回る電子は


特徴的な波長の整数倍を定常状態として周期運動を続け、


定常状態間の遷移が起きる際に放射線が生じる事実は、


ドブロイを初めとする考えがあってこそ


成立する概念なのです。それこそが電子の存在なのです。


 

実際に数年後にルイ・ド・ブロイはノーベル賞


を受賞します。いつの時代も中々、


新しい考えは理解出来されないものですね。



英語が話せるようになる「アクエス」




以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。


nowkouji226@gmail.com


2020/08/19_初回投稿
2021/10/25_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
力学関係のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】



(2021年10月時点での対応英訳)



De Broglie was born into a prestigious family


Louis de Broglie is of the duke's blood, a French aristocrat. The lineage is venerable. In the first place, Louis de Broglie is a direct descendant of the prestigious nobleman, the Broy family, who was conferred by King Louis XIV of France. He is officially the head of the Marquis family, partly because his brother had no children after his brother's death.


Louis de Broglie is the grandson of Albert de Broglie, the fourth head of the French Prime Minister for two terms. So, at the time of Louis' birth, his father was a prince at the time. There are many such anecdotes. Such Louis de Broglie advances his own excellent hypothesis and arrives at the idea of ​​de Broglie wave (material wave).



Matter wave of debroi


The idea of ​​Louis de Broglie was not well understood at first. There is a related super famous episode. During the process of reviewing Louis de Broglie's dissertation, the professors could not understand De Broglie's ideas and asked Einstein for his opinion.


Then, "De Broglie's idea deserves the Nobel Prize more than his dissertation," was evaluated and praised by Einstein, and he was able to further advance the idea of ​​material waves. The idea was a paradigm shift. The idea of ​​two-sidedness of particles forms the basis of modern quantum mechanics and is a very important idea. Scholars, including Matter Wave, had many discussions and changed the common sense of physics at that time.



Two-sidedness of matter


The essence of de Broglie waves is the idea that at the same time that waves have particle nature, electrons that were thought to be particles will actually have wave nature. This duality is natural in the understanding of modern quantum mechanics, but when we think that it moves periodically around a specific element because it has wave nature, it is said that the electron draws an orbit that is allowed only an integral multiple of the specific wavelength. You can think of it. In fact, we cannot directly observe the electrons moving around an atom.


However, when considering various atoms such as hydrogen, helium, and lithium, as a result of detailed examination of the bonding conditions of the protons and neutrons that compose them, there is a rule in the orbital radius of the electron, and de Broglie. The theory of waves makes sense. Conversely, the electron is only allowed to move an integral multiple of a specific wavelength.


The fact that electrons orbiting around a specific nucleus continue to move periodically with an integral multiple of the characteristic wavelength as a steady state, and radiation is generated when a transition between steady states occurs is only possible with the idea of ​​de Broglie. It is a concept to do. That is the existence of electrons.


In fact, a few years later Louis de Broglie will win the Nobel Prize. It's hard to understand new ideas in all ages.


以下、フォンノイマンの記事を改定します。


固定ページを設置して時代別・場所別・アメリカ関連


に対してリンクを貼ります。ご覧下さい。


【以下原稿です】


 



フォン・ノイマンの生い立ち


ノイマンはハンガリー系のドイツ人でアメリカに亡命します。ハンガリー名ではナイマン・ヤーノシュ:nɒjmɒnˌjɑ̈ːnoʃ、ドイツ名ではヨハネス・ルートヴィヒ・フォン・ノイマン:Johannes Ludwig von Neumann, 少年時代から英才教育を受け、ディケンズの小説を一字一句間違えず暗唱していたと言われます。また、車を運転しながら読書していたと言われます。数学・物理学・コンピューター科学で多才な才能を発揮した人で映画のモデルにもなっています。冒頭に掲載した映画作品は
フォン・ノイマンをモデルにしたと言われています。





原子爆弾やコンピューターの開発

フォン・ノイマンは1930年にプリンストンに招かれ、プリンストン高等研究所の所員に選ばれています。因みに、その時に同時にメンバーとして選ばれた一人がアルベルト・アインシュタインでした。戦争へ向かうアメリカで軍事関係の研究を進めます。




特に、フォン・ノイマンはロスアラモス国立研究所でアメリカ合衆国による原子爆弾開発のためのマンハッタン計画に参加します。そして、弾道研究所に関わるENIACのプロジェクトに参加してノイマンもこの電子計算機のプロジェクトを進めていくのです。

ノイマンの別の関心事として衝撃波の伝達の研究分野がありました。所謂FAT・MAN(長崎に投ちたプルトニウム型原子爆弾)のための爆縮レンズを開発していくのです。兵器開発に科学者が関わっていく良い例です。「(効率的に)人を沢山殺そう」という考えと「科学的探究心」は瞬時に置き換える事が出来るのです。


フォンノイマンの考え方を表す言葉



名言として残されている一つをご紹介します。
「思考こそが一次言語であり、数学は二次言語である。
数学は、思考の上に作られた、一つの言語に過ぎない。」実際に物理モデルを構築する前の思考が大事で、それは掴み用の無い物です。幾何学的な図形で抽象的に表現してみたり群論を使って整理してみたりします。見つかった「秩序」を数学的表現で表すのはその後の段階で、さらには大衆に分かるように色々な言葉で肉付けします。物理学者はこの作業を無限に繰り返さなければいけません。そんなノイマンは1955年に骨腫瘍あるいはすい臓がんと診断されました。放射能に関わる研究を重ねた結果でもあります。同僚のエンリコ・フェルミも1954年に骨がんで亡くなっています科学の発展の為に晩年を捧げた人生でした、ご冥福をお祈りいたします。





以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com


2021/10/01_初版投稿
2021/10/25_原稿改定


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介
電磁気関係
量子力学関係


詳しくはコチラへ→【テキストポン】


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



The background of von Neumann


Neumann is a Hungarian German who goes into exile in the United States. He is said to have been reciting Dickens' novels word for word, having been educated as a gifted boy in Hungary for Naiman Janos: nɒjmɒnˌjɑ̈ːnoʃ and in Germany for Johannes Ludwig von Neumann. increase. He is also said to have been reading while driving a car. He is a versatile talent in mathematics, physics and computer science and is also a movie model. The movie work posted at the beginning is
It is said to have been modeled after von Neumann.



Development of atomic bombs and computers


Von Neumann was invited to Princeton in 1930 and was selected as a member of the Princeton Institute for Advanced Study. By the way, one of the members who was selected at the same time was Albert Einstein. He pursues military research in the United States heading for war.


In particular, von Neumann will participate in the United States' Manhattan Project for the development of an atomic bomb at the Los Alamos National Laboratory. And Neumann will also proceed with this computer project by participating in the ENIAC project related to the Ballistic Research Laboratory.


Another concern of Neumann was the field of study of shock wave transmission. He will develop a detonation lens for the so-called FAT MAN (plutonium-type atomic bomb thrown at Nagasaki). It's a good example of how scientists get involved in weapons development. The idea of ​​"killing a lot of people (efficiently)" and "scientific inquiry" can be instantly replaced.



A word that expresses the idea of ​​von Neumann



I would like to introduce one that remains as a saying.
"Thinking is the primary language,
Mathematics is a secondary language.
Mathematics was built on thought,
It's just one language. "



It is important to think before actually building a physical model, which is something that cannot be grasped. Try to express it abstractly with geometric figures or organize it using group theory. The mathematical expression of the found "order" will be expressed later, and will be fleshed out in various words so that the public can understand it. Physicists have to repeat this task indefinitely. Neumann was diagnosed with bone tumor or pancreatic cancer in 1955. He is also the result of his repeated research on radioactivity. His colleague Enrico Fermi also died of bone cancer in 1954. I pray for the souls of his later life for the development of science.


2021年10月24日

日本人物理学者のまとめ
【理研の3太郎からの日本物理学史】10/24改定

全体の更新に伴い日本のご紹介を更新します。


ご覧下さい。【以下原稿です】


【↑_Credit:Mike Swigunski】


ここでは日本人物理学者を纏めています。その人口は2020年時点で1億2581万人(世界第11位_Wikipedia情報)で狭い国土に多くの人々が暮らしています。特に東京に3700万人が生活していると言われています。諸説ありますが歴史的には神武天皇の即位を建国とする考えがあり、その考えに従うととBC660年から統一国家として存続しています。そんな日本において、物理学がヨーロッパ中心からアメリカ中心に移る時代に、これらの先駆者たる日本人が着実に物理学への理解を進めていたのです。人口に占める割合で考えたら物理学者が多い気がします。そう考えると、物理好きの国民かも知れませんね。そして、今も多くの論文を作り出しています。


平賀源内_1728 ~ 1780年1月24日(番外編)
山川 健次郎_1854年9月9日 ~ 1931年6月26日
田中舘愛橘_1856年10月16日 ~ 1952年5月21日
長岡半太郎_1865年8月19日 ~ 1950年12月11日
本多光太郎_1870年3月24日 ~ 1954年2月12日
高木 貞治_1875年4月21日 ~ 1960年2月28日
寺田寅彦__1878年11月28日 ~ 1935年12月31日
大河内正敏 _1878年12月6日 ~ 1952年8月29日
石原純_(あつし)_1881年1月15日 ~ 1947年1月19日
西川 正治_1884年12月5日 ~ 1952年1月5日
仁科 芳雄_1890年12月6日 ~ 1951年1月10日

朝永振一郎_ _1906年3月31日 ~ 1979年7月8日
湯川秀樹__1907年1月23日 ~ 1981年9月8日_
坂田 昌一__1911年1月18日 ~ 1970年10月16日
矢野 健太郎_1912年3月1日 ~ 1993年12月25日
久保 亮五_1920年2月15日 ~ 1995年3月31日
竹内均_1920年7月2日 ~ 2004年4月20日

中嶋 貞雄_1923年6月4日 ~ 2008年12月14日
南部 陽一郎_1921年1月18日 ~ 2015年7月5日
江崎玲於奈_1925年3月12日 ~ 【ご存命中】
小柴昌俊_1926年9月19日 ~ 2020年11月12日
西島 和彦_1926年10月4日 ~ 2009年2月15日
小出昭一郎_1927年3月25日 ~ 2008年8月30日
広重 徹 1928年8月28日 ~ 1975年1月7日
大貫 義郎_1928年 ~ ご存命中
有馬朗人_1930年9月13日 ~ 2020年12月6日

J・J・サクライ_1933年1月31日 ~ 1982年11月1日
ムツゴロウさん【本名:畑 正憲_1935年4月17日 -ご存命中】
益川敏英_1940年2月7日生まれ~2021年7月23日



バカラ、スポードなどの洋食器のことならSohbi


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/27_初回投稿
2021/10/24_改定投稿


旧舞台別まとめ(外部リンク)
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】

J・チャドウィック
【1891生まれ-10/24改定】

「チャドウィック」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。原稿文字数は3825文字です。また、アマゾン関連の作業は嫁任せでしたがサイトの運営として記載してます。読者満足度を考え関連書籍を記載します。【学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。】作業として10月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1891年10月20日 ~ 1974年7月24日】




ラザフォードの弟子チャドウィック


ジェームズ・チャドウィックは研究環境で恵まれていました。


マンチェスター大学の時代からラザフォードの指導を受け、


海外修業時代にはガイガーの下で放射線計測の知見を


積み上げました。開発されたばかりのガイガーカウンター


を使い放射線特性での実績をあげます。第一次大戦終了後は


ケンブリッジ大学のキャベンディッシュ研究所で再び


ラザフォードの下で研究を続けます。ドクター修了後も


10年以上、ラザフォードの助手を務めていました。


キャンデビッシュ研究所での討論や助言は多分に


有益だったであろうと思われます。チャドウィック以外


にも有能な研究者達が集まっていました。その中で


議論を交わしたのです。そんな中でチャドウィックは


中性子を発見していきます。



チャドウィックと中性子


ベリリウムにアルファ粒子を衝突


させたボーテ【Walther Bothe(独)】の


1950年代の実験でチャドウィックは知見を得て


電荷をもたない理論的な粒子である「中性子」


を予感し考察を進め、キューリ夫妻の息子である


イレーヌ・ジョリオ=キュリーによるポロニウムとベリリウム


の行った1932年の実験検証を進めます。実験装置を工夫し、


理論を完成させます。原子核の理解にとって大きな前進


です。中性子が説明されたのです。ハイゼンベルク が


中性子とは陽子と電子の組ではなく新たな核子であると


考察していましたが質量は未確定でした。


その時点では実態の完全把握が未完でした。そうした


中性に対してチャドウィックは明確に質量を示し、


重陽子の光壊変によって中性子質量を確定します。


その発見で原子構造をまた一つ明らかにしたのです。


更にチャドウィックは


中性子がガン治療に有益であろうと考えます。




 軍需産業と物理学者


ただ残念な事に、チャドウィックの時代は


世界大戦の時代と重なります。マンハッタン計画では


イギリスチームのリーダーとして計画を進めていました。


トリニティー実験も目の当たりにしたようです。


自身が心血を注いで作り上げた概念が政治的に


利用されていく有り様をチャドウィックは、


どう感じていたのでしょうか。不満だった筈です。


その他、パウリとの議論の発展、


サイクルトロンの導入、ノーベル賞の賞金の


使い道について追って、きちんと整理して再投稿したいです。


本稿はひとまず筆を納めます。


チャドウィックはキーズ・カレッジの学寮長


として晩年を過ごしています。そして、リヴァプール大学


には彼の名を冠した研究所が残っています。



英語が話せるようになる「アクエス」


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/29_初回投稿
2021/10/24改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係
ケンブリッジ関連

熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


詳しくはコチラへ→【テキストポン】


(2021年10月時点での対応英訳)



Rutherford's disciple Chadwick


James Chadwick was blessed with a research environment. He has been under the guidance of Rutherford since the days of the University of Manchester, and during his overseas studies he accumulated his knowledge of radiation measurement under Geiger. He uses the newly developed Geiger counter to achieve a proven track record in radiation characteristics. After the end of World War I, he continued his work under Rutherford again at the Cavendish Laboratory at the University of Cambridge. After graduating from his doctor, he was an assistant to Rutherford for more than 10 years. The discussions and advice at the Candebish Institute were probably helpful. In addition to Chadwick, talented researchers were gathered. We had a discussion in that. Meanwhile, Chadwick discovers neutrons.



Chadwick and neutrons


In the 1950s experiment of Beaute [Walther Bothe (Germany)] in which alpha particles collided with berylium, Chadwick gained knowledge and foresaw "neutrons", which are theoretical particles without electric charges, and proceeded with consideration. We will proceed with the 1932 experimental verification of polonium and berylium by Irene Joliot-Curie, the son of Mr. and Mrs. Curie.


He devises experimental equipment and completes the theory. It's a big step forward in understanding the nucleus. Neutrons were explained. Heisenberg considered that neutrons are new nucleons rather than proton-electron pairs, but their masses are uncertain. At that time, a complete grasp of the actual situation was incomplete. Chadwick clearly indicates the mass for such neutrality, and the neutron mass is determined by the photodestruction of deuterons. The discovery revealed another atomic structure. In addition, Chadwick believes that neutrons may be beneficial in treating cancer.



Munitions industry and physicist


Unfortunately, the era of Chadwick overlaps with the era of World War. He was the leader of the British team in the Manhattan Project. He also seems to have witnessed the Trinity experiment. How did Chadwick feel that the concept he had created with all his heart and soul was being used politically? He must have been dissatisfied.


In addition, I would like to keep track of the development of discussions with Pauli, the introduction of Cycletron, and the use of the Nobel Prize money, and repost it properly. This article will be written for the time being. Chadwick spends his later years as a dorm director at Keys College. And the University of Liverpool still has a laboratory bearing his name.