アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2022年02月 >>
    1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28          
最新記事
最新コメント

2022年02月28日

P・W・アンダーソン
【1923年12月13日生まれ‐2/28改訂】

「アンダーソン」の原稿を改定します。作業としては関連リンク、内部リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9時点で‗
@SyvEgTqxNDfLBX‗3385‗Aev2Fz71Tr4x7b1k‗2717‗BBLLpQ8kta98RLO9‗2543‗CKazenoKouji‗3422
なので合計‗6102+5965=【12057】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1923年12月13日生まれ ~ 2020年3月29日没】



【スポンサーリンク】



 物性論の大物、アンダーソン博士


その名の綴りは”Philip Warren Anderson”。


物性研究で有名なアンダーソン博士をご紹介します。


所属研究機関としてはハーバード大で学び


ベル研・ケンブリッジ大・プリンストン大学


で勤務しました。米国や英国の綺羅星が並んでます。


素晴らしい研究人生です。


アンダーソンの研究で先ず思いつくものは
アンダーソン局在です。


無秩序系における電子の基本的な性格で、
物性論の一つの基礎原理になっています。
その理論では電子が実空間上で局在した状態は
非局在の状態と明らかに異なり
エネルギー的に区別されます。



 アンダーソンと磁性


当たり前ですが、超電導の話で出てくる位相空間での局在と明確に区別する必要があります。アンダーソン局在では電子が空間的に局在するので、電気伝導について考えた時に「固体中の電子が電導に寄与しなくなる」という事実が大事です。導体が不導体に近いづいていくのです。


更にアンダーソンは、長さ・時間のスケールを
変換する理論をスケーリング理論として展開して
理論を発展させたのです。


また、磁性を紐解く解釈も行っています。
こういった業績を評価され、アンダーソンは
ノーベル物理学賞を受賞しています。


とある研究によると、論文引用の頻度から評価して
アンダーソンは世界で「最も創造的な物理学者」
だという位置づけを得ています。


そしてアンダーソンは 東京大学から名誉博士号
を贈られています。その記念として
物性研で記念植樹されていたようですが、
赤坂・防衛省の近くでしょうか。柏でしょうか。
何時か見に行きたいと思います。


最後に、アンダーソンの
残した言葉を一つご紹介します。


”More is different”


アンダーソンは多様性の中から秩序を拾い出していました。皆さんも多様性に怯まないで下さい。寧ろ、多様性の中で逍遥する心持で複雑怪奇の中で物事の本質を探って下さい。数学的な手法に拘って、何度も検算を繰り返してみても良いと思えます。数学はあくまで現実のモデル化なのですが、本質に近いことが多いです。また、別解を探してみると面白いかもしれません。
少しでも多くの手法で考え続けて下さい。私も励みます。



効果がものすごい高い英会話「アクエス」
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/11/03_初稿投稿
2022/02/17_改定投稿


舞台別のご紹介
時代別(順)のご紹介

アメリカ関連
イギリス関連
ケンブリッジのご紹介
東大関連のご紹介

熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Dr. Anderson, a big figure in condensed matter theory


The spelling of the name is "Philip Warren Anderson". Introducing Dr. Anderson, who is famous for his research on physical properties. As his research institute, he studied at Harvard University and worked at Bell Labs, Cambridge University, and Princeton University. He is lined with Great Britain in the United States and Britain. He has a wonderful research life.


The first thing that comes to mind in Anderson's research is Anderson localization. It is the basic character of electrons in a chaotic system, and is one of the basic principles of condensed matter physics. According to the theory, the state in which electrons are localized in real space is clearly different from the delocalized state and is energetically distinguished.



Anderson and magnetism


Obviously, it must be clearly distinguished from the localization in topological space mentioned in the story of superconductivity. In Anderson localization, electrons are spatially localized, so the fact that "electrons in a solid no longer contribute to the Hall of Fame" is important when considering electrical conduction. The conductor is getting closer to the non-conductor.


In addition, Anderson developed his theory by developing the theory of transforming the scale of length and time as a scaling theory.


He also interprets magnetism. In recognition of his achievements, Anderson has won the Nobel Prize in Physics.


According to one study, Anderson is positioned as the "most creative physicist" in the world, judging by the frequency of his dissertation citations.


Anderson has received an honorary doctorate from the University of Tokyo. It seems that a commemorative tree was planted at the Institute for Solid State Physics as a memorial, but is it near the Akasaka Ministry of Defense? Is it Kashiwa? I would like to go see it someday.


Finally, Anderson's
I would like to introduce one word he left behind.


“More is different”


Anderson was picking order out of diversity. Don't be scared of diversity. Rather, explore the essence of things in a complex mystery with a feeling of wandering in diversity. I think it's okay to repeat the checkup many times, regardless of the mathematical method. Mathematics is just a modeling of reality, but it is often close to the essence. Also, it may be interesting to look for another solution. Keep thinking in as many ways as you can. I also encourage you.


2022年02月27日

南部 陽一郎
【1921年1月18日生まれ2/27改訂】

「南部陽一郎」の原稿を改定します。作業としては関連リンク、内部リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9時点で‗
@SyvEgTqxNDfLBX‗3385‗Aev2Fz71Tr4x7b1k‗2717‗BBLLpQ8kta98RLO9‗2543‗CKazenoKouji‗3422
なので合計‗6102+5965=【12057】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1921年1月18日生まれ ~ 2015年7月5日没】




【スポンサーリンク】

 戦時下の南部陽一郎


南部 陽一郎は第二次世界戦時に


研究を志しました。所が、時は戦時中。


彼の頭脳は武器製造に貢献できる


と判断されて陸軍のレーダー研に配属されました。


戦時下ではどんな研究をしていたんでしょうね。


そして、どんな気持ちだったのでしょうね。


戦争の前後で東京帝国大学で研究を進めます。


戦後、南部 陽一郎は


朝永 振一郎のグループで研究を続けます。


そして物質を構成する原子を考えていき、


今に続く素粒子論を完成させていきます。



南部陽一郎と自発的対称性


 南部陽一郎の新規性は真空概念の考え直しでしょう。


「特定の対称性をもった物理系がエネルギー


で色々な状態を考えた時に的に、より


安定な真空状態に自発的に落ち着く」のです。


BCS理論でのクーパ対生成はこの考え方


に従っています。電子対生成が安定なのです。


中間子をひもとき、素粒子間の総合作用を考え、その形成に関して実験事実と、つじつまの合う理論を展開していきます。そうした研究を重ね南部陽一郎は「自発的対称性の破れ」でノーベル賞を受賞しています。南部陽一郎の話の組み立てとしては、強磁性体の自発磁化状態(外部からの磁場無しで内部磁気モーメントを揃えている状態)が温度上昇に伴い磁化を失う状態を考え、ラグラジアンを巧みに使い素粒子に適用しているのです。また彼は量子色力学や紐理論でも成果を上げています。



そういえば、


南部洋一郎は私が学生時代に使っていた教科書の著者でした。その時点で米国の国籍を得ていた記憶
があり、研究者に対しての日本での待遇に疑問を抱いたものです。私は理論物理学の研究室に所属して居ましたが、卒業後も研究を続けて研究者として身を立てている仲間は今では数えるほどしかいません。多くは私のように、民間の会社に所属して物理学とは全く関係のない業務に従事しています。


少子化という流れもありますが名誉職としての教授に対して日本社会の扱いは低いとも感じていました。狭き門である事に加えて扱いが低いのです。


それだから


南部 陽一郎がアメリカに帰化した気持ちは


少しは理解出来る気がするのです。




以上、間違い・ご意見は
以下アドレス迄お願いします。
適時、返信改定をします。


全く新しい英会話スクール「アクエス」


【スポンサーリンク】


nowkouji226@gmail.com


2020/09/10_初版投稿
2022/02/27_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


【2021年11月時点での対応英訳】



Yoichiro Nambu during the war


Yoichiro Nambu aspired to his research during World War II. However, the time is during the war. Judging that his brain could contribute to the manufacture of weapons, he was assigned to the Army's Radar Lab. What kind of research did he do during the war? And what was your feeling? Before and after the war, he pursued research at the University of Tokyo. After the war, Yoichiro Nambu continued his research with Shinichiro Tomonaga's group. And he thinks about the atoms that make up matter, and completes the theory of elementary particles that continues to this day.



Spontaneous symmetry with Yoichiro Nambu


Yoichiro Nambu's novelty would be a rethinking of the vacuum concept. ・ "When a physical system with a specific symmetry considers various states with energy, it spontaneously settles into a more stable vacuum state." Cooper pair production in BCS theory follows this idea. The electron pair generation is stable.


We will consider the overall action between elementary particles when using mesons, and develop a theory that is consistent with experimental facts regarding the formation of mesons. After repeating such research, Yoichiro Nambu won the Nobel Prize for "spontaneous symmetry breaking". As for the construction of Yoichiro Nanbu's story, considering the state in which the spontaneous magnetization state of the ferromagnet (the state in which the internal magnetic moments are aligned without an external magnetic field) loses magnetization as the temperature rises, the Lagradian is skillfully used. It is applied to particles. He has also been successful in quantum chromodynamics and string theory.



by the way,


Yoichiro Nanbu was the author of the textbook I used when I was a student. I remember he had American citizenship at that time
I was skeptical about the treatment of researchers in Japan. I belonged to the laboratory of theoretical physics, but now there are only a few colleagues who continue their research after graduation and become researchers. Many, like me, belong to a private company and engage in work that has nothing to do with physics.


Although there is a trend toward a declining birthrate, I also felt that the treatment of Japanese society was low for professors as honorary positions. In addition to being a narrow gate, it is not easy to handle.


that is why


I feel that I can understand the feeling that Yoichiro Nambu was naturalized in the United States.


2022年02月26日

竹内均
【1920年7月2日生まれ‐1/26改訂】

「竹内均」の原稿を改定します。作業としては関連リンク、内部リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9時点で‗
@SyvEgTqxNDfLBX‗3385‗Aev2Fz71Tr4x7b1k‗2717‗BBLLpQ8kta98RLO9‗2543‗CKazenoKouji‗3422
なので合計‗6102+5965=【12057】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1920年7月2日生まれ ~ 2004年4月20日没】




【スポンサーリンク】

 竹内均のメガネ


私の中での竹内均さんのイメージは


特徴的な眼鏡かけたコメンテーターです。


実際、文筆活動中もあんな感じだったそうです。


沢山本を出していますが、作業はテープレコーダ


への録音一辺倒です。文章に起こす秘書さんが居て


一緒に作業します。独特の書き方ですね。




それでもお人柄から悪い印象は持ちません。人から好かれる性格ですね。竹内均は自分に厳しくて子供に優しい人だったと言われています。独特の喋り口調が印象的で通り易い声で聴きやすいリズムで人に語りかけていました。子供向けの伝記を沢山、監修してい居て「キューリー夫人伝」とか「エジソン伝」とかの表紙に小さく竹内均の名前が入っていたりしました。そんな啓蒙活動を考え続けて初代NEWTON編集長として日本でも一般向け教育書を作っていきます。



 民衆と竹内均


物理学の理解には個人の勉強も必要ですが、学問の性質上、万物を人がどう考えるか(モデル化していき理解するか)という論点が欠かせません。個人が理解するという考え方と同時に日本人が、そして人類が理解していくというプロセスが欠かせません。大衆にも理解出来る物理モデルが作れた時に理論は出来上がるのです。ギブスの文章を書くときに協調しましたが「数学者と物理学者の視点は異なる」のです。数学は論理として完結しているモデルであれば現実と対応が付かないでも問題がないです。そんなものです。物理学は絶えず現実と対応する理論を作らないと意味がありません。竹内均はそういった民衆との対話をとても大事にしていました。

 竹内均と地球物理学


竹内均の業績を考えていくと寺田寅彦の系譜です。具体的には直接の講義・指導を受けていない孫弟子にあたります。地球物理学に関心を持って、特にプレートテクトニクス理論をを広く広めています。実際に地面が少しずつ動いていく様子を伝える際に物理学者として地球の内部構造や境界面での様子を伝えたのです。深い知見を持って伝えたのです。

そして何より、

竹内均さんの独特の「優しい言葉」で伝えたのです。


効果がものすごい高い英会話「アクエス」
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2021/07/04_初版投稿
2022/02/26_原稿改定


舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Hitoshi Takeuchi's glasses


The image of Hitoshi Takeuchi in me is

It is a commentator with characteristic glasses.

In fact, he was like that during his writing activities.

I have published a lot of books, but the work is a tape recorder

It's all about recording to. There is a secretary who wakes up in the text

Work together It's a unique way of writing.

 

Still, I don't have a bad impression from my personality. It's a personality that people like. Hitoshi Takeuchi is said to have been a strict and child-friendly person. His unique speaking tone was impressive, and he spoke to people with an easy-to-listen voice and an easy-to-listen rhythm. I supervised a lot of biographies for children, and there was a small name of Hitoshi Takeuchi on the cover of "Mrs. Curie's biography" and "Edison's biography". Continuing to think about such enlightenment activities, as the first editor-in-chief of NEWTON, I will make educational books for the general public in Japan as well.

People and Hitoshi Takeuchi


Understanding physics requires individual study, but due to the nature of scholarship, the issue of how people think of everything (modeling and understanding) is indispensable. At the same time as the idea of ​​individual understanding, the process of understanding by the Japanese and humankind is indispensable. The theory is completed when a physical model that can be understood by the general public is created. I collaborated when writing Gibbs' writing, but "the perspectives of mathematicians and physicists are different." If mathematics is a model that is complete as logic, there is no problem even if it does not correspond to reality. That's it. Physics is meaningless without constantly creating a theory that corresponds to reality. Hitoshi Takeuchi cherished such dialogue with the people.

Hitoshi Takeuchi and Geophysics


Considering Hitoshi Takeuchi's achievements, it is the genealogy of Torahiko Terada. Specifically, he is his grandchild who has not received direct lectures or guidance. He has an interest in geophysics and is particularly widespread in plate tectonics theory. As a physicist, he told us about the internal structure and boundaries of the Earth when he actually told us how the ground was moving little by little. He conveyed it with deep knowledge. And above all, I conveyed it with Hitoshi Takeuchi's unique "gentle words."




2022年02月25日

久保 亮五
【1920年2月15日生まれ‐2/25改訂】

「久保亮五」の原稿を改定します。作業としては関連リンク、内部リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9時点で‗
@SyvEgTqxNDfLBX‗3385‗Aev2Fz71Tr4x7b1k‗2717‗BBLLpQ8kta98RLO9‗2543‗CKazenoKouji‗3422
なので合計‗6102+5965=【12057】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1920年2月15日生まれ ~ 1995年3月31没】



【スポンサーリンク】



物理学者久保亮五


久保亮五と同名(漢字違い)の


別人が居ますが、以下記載は


物理学者に関する文章で、


ここでの久保亮五は統計力学で


私が使った教科書の著者です。


私の指導教官は講義を受けた


そうです。そんな時代の


物理学者についての記載です。


久保亮五は学者肌の家で育ち、


お父様の仕事で子供時代には


台湾で生活しています。


高校まで台湾で過ごし、


帰国後に旧制高校へ入学、


東大へ入学、その後に助手、


助教授、教授をつとめました。



久保亮五の業績 


久保亮五の仕事で何より特筆


すべきは物性論での成果です。


ゴムの弾性に関する研究と、


線形応答理論を使った


フーリエ変換NMRへの


応用研究があげられます。


久保亮五の考えたNMRの


概説を一般の人向けに記し


てみたいと思います。先ず


フーリエ変換理論は端的には


「時系列の波形を周波数を


基準に考えた波形に変換し


て解析する技術」です。


そうした「数学的に確立


されているフーリエ変換」


を理論的基礎として


電子回路で応用しています。


離散化された電気信号に


対して回路上で実質的に


マトリクス変換を加えます。



久保亮五とNMR 


診察で実際にNMRを使った経験のある人はその中で


測定を受けている時を思い出してみてください。


頭の中を調べる時などに、


強磁場を人間の頭部に二次元的に与えます。


その時に大きな音がしますが、


その時系列でインパルス的な情報を


機械的に処理して周波数応答に関する情報を得ます。


結果的に吸収スペクトルを


測定することで各スピンの情報を集め、そこから


最終的には断面の画像を処理します。


最終的な写真で見える画像は、


これらの処理の結果です。


そして今、久保亮五は


この世に居ませんが、


その仕事を応用したNMRは


世界中の病院で患者達の


情報を集めています。


きっと今、この瞬間も


集めています。




全く新しい英会話スクール「アクエス」
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/11_初稿投稿
2022/02/25_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介へ
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介へ
熱統計関連のご紹介へ


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Physicist Ryogo Kubo


There is another person with the same name (different Chinese characters) as Ryogo Kubo, but the following is a sentence about a physicist, and Ryogo Kubo here is the author of the textbook I used in statistical mechanics. My supervisor took a lecture. This is a description of physicists of that era. Ryogo Kubo grew up in a scholarly-skinned house and lived in Taiwan as his childhood for his father's work. He spent his time in Taiwan until high school, and after returning to Japan he entered a high school, the University of Tokyo, and then an assistant, associate professor, and professor.



Achievements of Ryogo Kubo


The most notable thing about Ryogo Kubo's work is the result of condensed matter theory. His research on the elasticity of rubber and his applied research to Fourier transform NMR using linear response theory can be mentioned. I would like to write an overview of NMR that Ryogo Kubo thought about for the general public. First of all, the Fourier transform theory is simply "a technology that converts a time-series waveform into a waveform that is considered based on frequency and analyzes it." Such "mathematical established Fourier transform" is applied in electronic circuits as a theoretical basis. Substantially matrix transformation is applied on the circuit to the discretized electrical signal.



Ryogo Kubo and NMR


If you have actually used NMR in a medical examination, remember when you were taking measurements in it. A strong magnetic field is applied to the human head two-dimensionally when examining the inside of the head. There is a loud noise at that time, but the impulse-like information is mechanically processed in that time series to obtain information on the frequency response. As a result, the information of each spin is collected by measuring the absorption spectrum, and finally the image of the cross section is processed from there. The image you see in the final photo is the result of these processes.


And now, Ryogo Kubo is not in the world, but NMR, which applies his work, collects information on patients at hospitals around the world. I'm sure I'm collecting this moment as well.


2022年02月24日

アイザック・アシモフ
【1920年生まれ‐2/24改訂】

「アシモフ」の原稿を改定します。作業としては関連リンク、内部リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9時点で‗
@SyvEgTqxNDfLBX‗3385‗Aev2Fz71Tr4x7b1k‗2717‗BBLLpQ8kta98RLO9‗2543‗CKazenoKouji‗3422
なので合計‗6102+5965=【12057】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1920年1月2日 ~ 1992年4月6日】



【スポンサーリンク】

アシモフの人物像


今回、少し物理から離れます。アシモフは


「ロボット3原則」で有名なSF作家です。


実際のアシモフの研究分野としては


生化学なのですが、作家としての顔


の方が有名ですね。また調べてみるとアシモフ


はロシア生まれでした。リニアモーターカー


が走る今日の世界を見せてあげたいと、


個人的には考えてしまいます。また、


もはやロボットも日常的ですよね。そんな未来を


アシモフは20世紀の初めにに予見していました。


20世紀の知見で機械化が進む未来を描き、


進んだらどうなるだろうと考えますが、


好ましい方向性を指摘して大衆に問いかける。


つまり、科学の夢を投げかけていたのです。



アシモフの作家デビュー


アシモフは1938年に初めてのSF作品を雑誌に


持ちかけて認められ、1939年から作家デビュー


しています。才能を認めるアメリカっぽいですね。


この年にコロンビア大学を卒業して


大学院に進みます。


所謂、ロボット三原則などを提唱していますが、


時代は第二次大戦に向かう時代で


アシモフは学校を休学したりしています。


科学が知識を集めるスピードの速さに


アシモフは驚愕していて、社会が叡智を集結


する事を求めていました。相変わらず分断


している世界をどう見るのでしょうか。



意外な結末


そして、意外な最後なのですが、アシモフは


1992年にHIV感染が元でこの世を去ってます。


心臓バイパス手術の時に使用された


輸血血液が感染源のようです。


本当に色々と経験してきた人生だったと思います。


ハイブリット英会話スタイルで伸ばす「アクエス」
【スポンサーリンク】



以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。


nowkouji226@gmail.com


2020/08/24_初回投稿
2022/02/23_改定投稿



舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Asimov's portrait


This time, I'm a little away from physics. Asimov is a science fiction writer famous for "Three Laws of Robotics". Biochemistry is the actual research field of Asimov, but his face as a writer is more famous. When I looked it up, Asimov was born in Russia. He personally wants to show us the world of today's maglev trains. Also, robots are no longer commonplace. Asimov foresaw such a future in the 20th century. He envisions a future of mechanization with his knowledge of the 20th century, and wonders what will happen if it progresses, but he points out a favorable direction and asks the public. In short, he was throwing a dream of science.



Asimov's writer debut


Asimov was recognized for his first science fiction work in a magazine in 1938, and has made his debut as a writer since 1939. He's like America, who recognizes his talent. He graduated from Columbia University this year and went on to graduate school.


He advocates the so-called Three Laws of Robotics, but Asimov is taking a leave of absence from school in the era of World War II. Asimov was amazed at the speed at which science gathered knowledge, and he wanted society to gather wisdom. How does he see the world that is still divided?



Unexpected ending


And, surprisingly, Asimov died in 1992 due to HIV infection. He seems to be infected with the transfused blood used during heart bypass surgery. I think he really had a lot of experience in his life.

2022年02月23日

R・P・ファインマン
【1918年生まれ‐2/23改訂】

「ファインマン」の原稿を改定します。作業としては関連リンク、内部リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9時点で‗
@SyvEgTqxNDfLBX‗3385‗Aev2Fz71Tr4x7b1k‗2717‗BBLLpQ8kta98RLO9‗2543‗CKazenoKouji‗3422
なので合計‗6102+5965=【12057】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1918年5月11日 〜1988年2月15日】



【スポンサーリンク】



アメリカのファインマン


彼は有名な教科書の著者で、私が学生時代から


その著書は日本で利用出来ました。


世界中でその教科書は使われています。


量子電磁気学の業績で


朝永 振一郎と共にノーベル


を受賞しています。。


具体的に、ファインマンの名を聞いて真っ先に


思い出す業績は経路積分です。


数学的な定式化が驚異的なのです。
【参考_Wikipedeiaの記載:経路積分



経路積分の考え方


二つの経路を初めに考えて、其々からの寄与を考えていく時に拡張が出来て二つ、三つ、四つ、、、無限大の経路。と経路を無限大に広げていくのです。もう少し具体的にファインマンの考えを紹介しますと、ダブルスリットの実験を拡張した場合に何も無い空間を考える事になっていくという考え方なのです。この経路に関するファインマンの考え方には数学的な難点も指摘されているようですが物理の世界では非常に面白い考えであり、考え進めていきたい視点です。また、素粒子の反応を模式化したファインマンダイアグラムは視覚的に、直感的に秀逸です。本当に天才の技に見えました。


業績の話が先行しましたが、最後に生い立ち,人つながりの話を致します。ファインマンはユダヤ人故に苦労を強いられています。ユダヤ人枠で大学に入れなかったりした時代もありましたがMITやプリンストン大学で研究を進めます。電気力学の量子論についてのゼミをプリンストン大学で行うことになった時には、ゼミの話を聞きつけてユージン・ウィグナー、ヘンリー・ノリス・ラッセル、フォン・ノイマン、E・パウリアインシュタインが参加していたそうです。そして、ファインマンはアインシュタインと共に原爆開発の計画であるマンハッタン計画に参画しています。その中で、率直に意見を述べたメモが
没後の2018年にサザビースで落札されています。



ハイブリット英会話スタイルで伸ばす「アクエス」
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/09/01_初版投稿
2022/02/23_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介
電磁気関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



American Feynman


He is the author of a well-known textbook, and his book has been available in Japan since I was a student. The textbook is used all over the world. He has won the Nobel Prize with Shinichiro Tomonaga for his achievements in quantum electrodynamics. .. Specifically, the first achievement that comes to mind when I hear Feynman's name is path integral.


The mathematical formulation is amazing.
[Reference_Wikipedeia description: Path integral]



Concept of path integral


Two, three, four, ... infinite routes that can be expanded when considering the two routes first and then the contributions from each. And expand the route to infinity. To introduce Feynman's idea a little more concretely, the idea is that if we expand the double-slit experiment, we will think of an empty space. It seems that Feynman's way of thinking about this path has some mathematical difficulties, but it is a very interesting idea in the world of physics, and I would like to continue thinking about it. In addition, the Feynman diagram, which models the reaction of elementary particles, is visually and intuitively excellent. It really looked like a genius.


I talked about achievements first, but at the end I will talk about how I grew up and how people connect. Feynman is struggling because he is Jewish. There was a time when he couldn't enter university because of the Jewish quota, but he pursued research at MIT and Princeton University. When it was decided to hold a seminar on quantum theory of electromechanics at Princeton University, Eugene Wigner, Henry Norris Russell, von Neumann, E. Pauli, and Einstein were attending the seminar. is. Feynman and Einstein are participating in the Manhattan Project, a plan to develop the atomic bomb.
Among them, a memo that frankly expressed his opinion
It was sold at Sotheby's in 2018 after his death.


2022年02月22日

A・A・マイケルソン
【1852年生まれ-2/22改訂】

「マイケルソン」の原稿を改定します。作業としては関連リンク、内部リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9時点で‗
@SyvEgTqxNDfLBX‗3385‗Aev2Fz71Tr4x7b1k‗2717‗BBLLpQ8kta98RLO9‗2543‗CKazenoKouji‗3422
なので合計‗6102+5965=【12057】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1852年12月19日 ~ 1931年5月9日】



【スポンサーリンク】



稀代の実験家マイケルソン


その名を全て書き下すとAlbert Abraham Michelson。


ユダヤ系の血を引くアメリカ人です。


マイケルソンは物理学の中でも特に光学に対して


関心を示し、干渉計を発明しました。。その後、


有名な干渉実験を実現します。マイケルソンはその後も


様々な研究者と実験をしていきますが、光の干渉を原理


として使っていて光路が長い程、精度が高くなります。


そこで、マイケルソン達の装置は大がかりな物に


なっていきますが、結果として様々な外乱に晒され、


誤差との戦いが続きました。装置を据え付ける地盤、


微振動、感光装置、その他に様々な


配慮を払わねはならなかったのです。



実験の時代背景 


こうした実験が行われた背景としてはそもそも、


マイケルソンの時代にエーテルという光の伝播媒質


が論じられていました。光が波であれば当然、


考えていく物です。ローレンツの理論での変換は


干渉のずれを収縮が打ち消す、


といった結果をもたらします。エーテルを想定した


マイケルソンの実験結果は様々な議論に繋がり


媒質としてのエーテルは現在、否定されています。


この有名な実験が広く認められ、マイケルソンは


アメリカ人として初のノーベル物理学賞を受けます。


近年、マイケルソンの実験手法は
別の成果をもたらしました。
2015年9月、2基のマイケルソン
干渉計を使い、直接的に重力波を
観測にかけたのです。
稀代の実験家の拘りが数十年後に
結実したと言えるでしょう。




ハイブリット英会話スタイルで伸ばす「アクエス」
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/27_初回投稿
2022/02/22_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2020年9月時点での対応英訳)



Exprimentist Michelson


Albert Abraham Michelson if you write down all the names. He is an American of Jewish descent.


Michelson was particularly interested in optics in physics and invented the interferometer. .. After that, he realizes the famous interference experiment. Michaelson will continue to experiment with various researchers, but he uses the principle of light interference, and the longer the optical path, the higher the accuracy. There, Michaelson's equipment became a large-scale one, but as a result, it was exposed to various disturbances, and the fight against error continued. We had to pay attention to the ground on which the device was installed, micro-vibration, photosensitive devices, and so on.



Backglound of the Experiment


n the first place, the light propagation medium called ether was discussed in Michaelson's time as the background to these experiments. Of course, if the light is a wave, it is something to think about. The transformation in Lorenz's theory results in the contraction canceling out the deviation of the interference. Michelson's experimental results assuming ether have led to various discussions, and ether as a medium is currently denied. This famous experiment was widely recognized and Michaelson received the first American Nobel Prize in Physics.


In recent years, Michelson's experimental methods have yielded other results. In September 2015, Michelson used two Michelson interferometers to directly observe gravitational waves. It can be said that the insistence of a rare experimenter came to fruition decades later.

D・J・ボーム
_【1917年12月20日 生まれ‐2/22改訂】

「ボーム」の原稿を改定します。作業としては関連リンク、内部リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9時点で‗
@SyvEgTqxNDfLBX‗3385‗Aev2Fz71Tr4x7b1k‗2717‗BBLLpQ8kta98RLO9‗2543‗CKazenoKouji‗3422
なので合計‗6102+5965=【12057】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1917年12月20日 ~ 1992年10月27日】



【スポンサーリンク】



 ペンシルバニアに生まれたボーム


正確にはその名は、


デヴィッド・ジョーゼフ・ボーム_


David Joseph Bohm、ヘブライ語表記


ではדייוויד ג'וֹזף בוֹהם, דוד יוֹסף בוֹהם。


偶然でしょうがボームはロシア革命の


年に生まれてます。そんな時代背景も


ボームの人生に影響を残しているのでは


ないでしょうか。ハンガリー系‎‎ユダヤ人の父と


リトアニア系ユダヤ人の母の間に


ペンシルベニア州で生まれ、


UCB(カリフォルニア州立大学バークレー校)


オッペンハイマーの教えを受けます。


そんな時期に学生時代に当時の知人の影響で思想的


に影響を受け、異なった社会モデルを持つ


急進的な主義の考えをボームは抱きます。


後にはその為にFBIにマークされたりします。


 

 マンハッタン計画とボーム


第2次世界対戦の時にはボームは師である


オッペンハイマーに従いマンハッタン計画


に参加します。その計画は陽子と重陽子の


衝突研究を進め、濃縮ウランを作り原爆を


製造する計画で実行に移されました。


戦後、ボームはプリンストン大学で


アインシュタインと共に働いていましたが、


いわゆるマッカーシズムにあい、


プリンストン大学を追われます。


社会主義者としての過去の活動を当局に


問題視されたのです。アインシュタイン


ボームに彼の助手として大学に残る事を勧めました。


ところが、その願いは叶わずにボームは


ブラジルのサンパウロ大学に移りました。


研究者としてボームは幾多の


成果を残しています。先ず


量子力学の解釈の面でボーム解釈。


EPRパラドックスの提唱。


そして、電磁気学でのAB効果です。


それぞれ問題の本質をとらえようと


考え続けていたように思えます。


こうした業績で、その分野の考えに


今でも残る影響を与えています。


ハイブリット英会話スタイルで伸ばす「アクエス」
【スポンサーリンク】



間違い・ご意見は
以下のアドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/31_初稿投稿
2022/02/22_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介
電磁気関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】



Baume born in Pennsylvania


To be precise, its name is David Joseph Bohm, in Hebrew notation דייוויד ג'וֹזף בוֹהם, דוד יוֹסף בוֹהם.


Coincidentally, Baume was born in the year of the Russian Revolution. I think that such a historical background has also influenced Baume's life. Born in Pennsylvania to a Hungarian Jewish father and a Lithuanian Jewish mother, he is taught by Oppenheimer at the UCB (University of California, Berkeley). At that time, Baume embraced the idea of ​​radicalism, which was ideologically influenced by his acquaintances at the time when he was a student and had a different social model. He was later marked by the FBI for that.



Manhattan Project and Baume


During World War II, Baume follows his teacher Oppenheimer to participate in the Manhattan Project. The plan was put into practice with a plan to produce enriched uranium and produce an atomic bomb by proceeding with research on the collision of protons and deuterium. After the war, Baume worked with Einstein at Princeton University, but was ousted from Princeton University due to so-called McCarthyism. His past activities as a socialist were questioned by the authorities. Einstein advised Baume to stay in college as his assistant. However, that wish did not come true and Baume moved to the University of Sao Paulo in Brazil.


As a researcher, Baume has made many achievements. He first interprets Baume in terms of the interpretation of quantum mechanics. Proposal of the EPR paradox. And the AB effect in electromagnetism. It seems that each of them kept trying to capture the essence of the problem. These achievements still have an impact on his thinking in the field.

2022年02月21日

矢野 健太郎
【1912年3月1日生まれ ‐2/21改訂】

「矢野健太郎」の原稿を改定します。作業としては関連リンク、内部リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9時点で‗
@SyvEgTqxNDfLBX‗3385‗Aev2Fz71Tr4x7b1k‗2717‗BBLLpQ8kta98RLO9‗2543‗CKazenoKouji‗3422
なので合計‗6102+5965=【12057】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1912年3月1日生まれ ~ 1993年12月25日没】



【スポンサーリンク】



矢野健太郎の多彩な活躍


矢野健太郎は私が使っていた教科書の著者でした。


同名の方で漫画家の「矢野健太郎」と


サッカー選手の「矢野健太郎」が居ますが、


本稿は数学者の矢野健太郎に関する原稿です。


因みに、名前の「矢野」に関するエピソード


として有名なものがあります。外人との雑談


をする中で「矢野」って英語でいえばどんな表現?


と聞かれた際に矢野さんは当意即妙で


「矢」=「Vector」、「野(野原)」=「Field」


だから「矢野」って「ベクトル場」ですね。


と答えたそうです。当然、外人は大喜び。


専門は幾何学関係か解析学関係だったかと。


彫刻家の子として生まれ東京帝大で学びます。



矢野健太郎とパリ大学


矢野健太郎の小学生時代にアインシュタインが来日し


彼は刺激を受けました。また、帝大の山内恭彦先生から


物理学の理解には代数幾何学が必要だと教えを受けました。


物理現象のモデル化の有用性を感じたのかと思えます。


その後、矢野はカルタン先生の下で学ぶべく


パリ大学留学します。そこで


纏めた博士論文は射影接続空間に


関する論文でした。この頃から


統一場理論にも関心を持ちます。



 矢野健太郎とアインシュタイン


戦後にはプリンストン高等研究所で微分幾何学の


研究をしていき、同時期に在席していたアインシュタイン


交流を持ちます。奥様と一緒にアインシュタイン


写った写真は大事にしていて、家宝としたそうです。


 

その他、矢野健太郎の著者は多岐に渡り、


受験参考書の定番だった(多分今でも定番)


解法のテクニック」は矢野健太郎の著作です。


また、アイザックアシモフポアンカレ


アインシュタイン書物を日本に


紹介する際に監修をしたりしました。


私や皆さんが知った情報も


矢野健太郎の仕事かも知れませんね。そんな、


矢野健太郎はバイオリンが好きな静かな人でした。


安らかな印象を持ち続けたいと思います。



ハイブリット英会話スタイルで伸ばす「アクエス」
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/11/12_初稿投稿
2022/02/21‗改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】



Various activities of Kentaro Yano


Kentaro Yano was the author of the textbook I was using. There is a manga artist "Kentaro Yano" and a soccer player "Kentaro Yano" who have the same name, but this article is about the mathematician Kentaro Yano. By the way, there is a famous episode about the name "Yano". What kind of expression is "Yano" in English while chatting with foreigners? When asked, Mr. Yano was selfish
"Arrow" = "Vector", "Field (field)" = "Field", so "Yano" is a "vector field". I heard that he answered. Naturally, foreigners are overjoyed. Was my specialty related to geometry or analysis? He was born as a child of a sculptor and studied at the University of Tokyo.



Kentaro Yano and the University of Paris


Kentaro Yano was inspired by Einstein's visit to Japan when he was in elementary school. Also, Professor Yasuhiko Yamanouchi of Imperial University taught me that algebraic geometry is necessary to understand physics. It seems that he found the usefulness of modeling physical phenomena. After that, Yano will study abroad at the University of Paris to study under Professor Cartan. His dissertation he compiled was a dissertation on the projective connection space. From this time on, he was also interested in unified field theory.



Kentaro Yano and Einstein


After the war, he studied differential geometry at the Princeton Institute for Advanced Study and interacted with Einstein, who was present at the same time. He cherished the photo of Einstein with his wife and made it a heirloom.


Kentaro Yano has a wide variety of authors, and Kentaro Yano's "Solution Technique", which was a staple of examination reference books. He also supervised the introduction of Isaac Asimov, Poincaré and Einstein's books to Japan. The information that I and everyone knew may be Kentaro Yano's work. Kentaro Yano was a quiet person who liked the violin. He wants to keep a peaceful impression.


2022年02月20日

武谷三男 
【1911年10月2日生まれ‐2/20改訂】

「武谷三男」の原稿を改定します。作業としては関連リンク、内部リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9時点で‗
@SyvEgTqxNDfLBX‗3385‗Aev2Fz71Tr4x7b1k‗2717‗BBLLpQ8kta98RLO9‗2543‗CKazenoKouji‗3422
なので合計‗6102+5965=【12057】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1911年10月2日生まれ - 2000年4月22日没】







【スポンサーリンク】

武井三男の研究基盤


武谷三男は京大理学部で理論物理学の基礎を修めました。

彼の主な関心は原子核の振る舞いや素粒子論です。

湯川秀樹や坂田昌一と共同で

研究を進めていった時代の人です。

反ファシズムの立場だった武谷は

原子核関連の開発と発展についての発言で

政治的ともいえる言葉を残しています。

原爆や水爆の是非に関してです。

また会津に亡命していたロシア人の奥様

との縁にも興味を覚えます。まさかあの人と、

とかいった話が出てきそうです。

いずれにしても武谷は未だ曖昧だった

原子核に対して形を与えていった時代の人なのです。

一つ一つ現象を見ていき、定式化していったのです。

何より武谷は方法論を確立したのです。


武谷の三段階理論

ここで、方法論として三段階理論

と呼ばれた論法を用いて武谷は論拠としていましたので

ご紹介します。(以下ウィキペディアから引用)
@現象論的段階
量子力学の範疇に入る現象で
「測定にかかるもの」を
そのまま記述する
(第一)段階

A実体論的段階
上記現象の方程式を作る前に、
現象論的段階に出てこない実体
(模型、粒子など)を知る
(場合によっては新たに導入する)
(第二)段階

B本質論的段階
現象論的段階で記述される現象を、
実体論的段階で導入した実体も含めて、
方程式など主として
数学的手法で記述する
(第三)段階
【引用ここまで】

この武谷の理論は測定方法の面から考えたときに、

観測問題の制限を意識した理論だと言えるでしょう。

その時代から数十年遡って思い返せば、

量子力学創設の時代以前にはすべての段階

が意識化されていなかったのです。

また、米国のビキニ環礁での水爆実験に際し、

問題点を掘り下げて定量的な指標を考察して

放射線の許容量(がまん量とも表現しました)

を議論していきました。

具体的に「急性の放射線障害」と

「長期的に蓄積される効果」を明確に区別して

議論すべきだと主張していきました。

当時、立教大学の教授であった武谷は、

放射線防護の概念を考え直し、

「自然科学的な対象の概念」に留まらず、

放射線利用の「利益・便益とそれに伴う被曝の有害さ・

リスクともいえる社会的概念」として

考え直した功績も指摘されています。


〆最後に〆


ハイブリット英会話スタイルで伸ばす「アクエス」
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2022/01/01_初回投稿
2022/02/20_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
京大関連のご紹介
力学関係のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

【2022年1月時点での対応英訳】

 Base of Taketani


Taketani Mitsuo studied the basics of theoretical physics

at the Faculty of Science, Kyoto University.

His main interests are nuclear behavior and particle physics.

He is in collaboration with Hideki Yukawa and Shoichi Sakata

He is a man of the era when he was advancing research.
T
aketani, who was in an anti-fascist position

Remarks on nuclear-related development and development

He leaves behind words that can be called political.

He is about the pros and cons of atomic and hydrogen bombs.

Also, a Russian wife who was in exile in Aizu

I am also interested in the relationship with. No way, with that person

There seems to be a story like that.

In any case, Takeya was still ambiguous

He was a man of the era that gave shape to the atomic nucleus.

He looked at the phenomena one by one and formulated them.

Above all, Takeya established a methodology.

Three step of Taketani


Here, as a methodology, a three-step theory

Because Takeya used the reasoning called

I will introduce you. (Quoted from Wikipedia below)

@ Phenomenon stage
A phenomenon that falls into the category of quantum mechanics
"What is measured"
Describe as it is
(the first stage

A Realistic stage
Before making the equation of the above phenomenon
Entities that do not appear in the phenomenological stage
Know (models, particles, etc.)
(In some cases, newly introduced)
(Second) stage

B Essentialist stage
Phenomena described at the phenomenological stage,
Including the substance introduced at the realist stage,
Mainly equations etc.
Describe with mathematical methods
(Third) stage
[Quote so far]

This Takeya's theory is based on the measurement method.

It can be said that the theory is conscious of the limitation of the observation problem.

Looking back decades from that era,

All stages before the era of quantum mechanics

Was not conscious.

Also, during a hydrogen bomb test at Bikini Atoll in the United States,

Dig into the problem and consider quantitative indicators

Radiation allowance (also referred to as the amount of radiation)

I continued to discuss.

Specifically, "acute radiation injury"

A clear distinction between "long-term accumulated effects"

I insisted that it should be discussed.

Takeya, who was a professor at Rikkyo University at that time,

Rethinking the concept of radiation protection,

Beyond the "concept of natural science objects"

"Benefits / benefits of radiation use and the harmful effects of radiation exposure /

As a "social concept that can be called a risk"

His rethinking achievements have also been pointed out.

2022年02月19日

坂田 昌一
【1911年1月18日生まれ‐2/19改訂】

「坂田晶一」の原稿を改定します。多くの物理学者を育てた先人です。作業としては関連リンク、内部リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1911年1月18日生まれ ~ 1970年10月16日没】


【↑_Credit:Wikipedia】



【スポンサーリンク】



坂田晶一の生きた時代 


坂田昌一は素粒子を研究した物理学者です。


湯川秀樹朝永一郎らと同じ時代を生き、


議論を交わし、物理学会を切り開きました。


京都帝国大学を卒業していて


名古屋帝国大学で教えています。


また坂田昌一の奥様の信子さんは


SF作家・星新一の従兄弟にあたります。



坂田モデルの坂田博士 


坂田昌一の理論物理学での業績は


電磁場の量子化に関するものが


あげられます。当時は場を量子化する


時に電子の質量が発散する事が


問題でした。その問題に対して坂田昌一は


中間子の概念を使って問題解決に挑みます。


最終的に、この量子電磁力学での問題は


朝永振一郎がくりこみ理論使い説明します。


また坂田昌一は湯川秀樹の中間子に


関する論文で協同執筆者を務めています。


また坂田昌一の業績としては、


陽子・中性子・ラムダ粒子を基本粒子


と考え、その構成に対する「坂田モデル」


を提唱した点が、特筆すべきでしょう。


その坂田モデルは大貫 義郎益川敏英、小林誠


ら次の理論的な土台となり議論が進んだのです。


それぞれ次世代の議論へと繋がった、


確かな成果です。




効果がものすごい高い英会話「アクエス」
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/12_初稿投稿
2022/02/19_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
京大関連のご紹介
力学関係のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



The time when Dr. Sakata lived


Shoichi Sakata is a physicist who studied elementary particles. He lived in the same era as Hideki Yukawa and Ichiro Tomonaga, exchanged discussions, and opened the Physical Society of Japan. He is a graduate of Kyoto Imperial University and teaches at Nagoya Imperial University. In addition, Shoichi Sakata's wife, Nobuko, is a cousin of science fiction writer Shinichi Hoshi.



Dr. Sakata of Sakata model


Shoichi Sakata's achievements in theoretical physics are related to the quantization of electromagnetic fields. At that time, the problem was that the mass of the electron diverged when the field was quantized. Shoichi Sakata tries to solve the problem by using the concept of mesons. Finally, this problem in quantum electrodynamics will be explained by Shinichiro Tomonaga using renormalization theory. Shoichi Sakata is also a co-author of a paper on Hideki Yukawa's mesons.


It should be noted that Shoichi Sakata's achievements are that he considered protons, neutrons, and lambda particles as elementary particles, and proposed a "Sakata model" for their composition. The Sakata model became the next theoretical foundation for Yoshiro Onuki, Toshihide Maskawa, and Makoto Kobayashi, and discussions proceeded. These are solid results that have led to discussions for the next generation.


2022年02月18日

ネイサン・ローゼン
【1909年生まれ‐2/18改訂】

「ローゼン」の原稿を改定します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1909年3月22日 - 1995年12月18日】


【Nathan Rosen, 1909年3月22日 - 1995年12月18日】




【スポンサーリンク】



 

ユダヤ人物理学者ローゼン


その名前は Nathan Rosen。
ローゼンはイスラエル建国後はイスラエルでも活動しました。
ニューヨーク出身のユダヤ人物理学者。MITで学んでいます。

ローゼンはいわゆるワーム・ホールの発案者でもあり、
EPRパラドックスを考えた三人のひとりです。
量子的ふるまいの局所性を相対論的に完全に
説明できない(矛盾するだろう)という指摘であって、
量子力学的なモデルと相対論的モデルでの記述が
同時に記述できないのです。
量子的なもつれ(エンタングルメント)の
記載に修正の必要があるのか、
相対論での記述に修正が出来るのか、
突き詰めていく手掛かりになります。

量子論も相対論も其々で様々な説明(効果)を
可能にしているのですが、完全に全てを
記述できると言えないのでしょうか。
この記載をするとどうしても
歯切れの悪い文章になってしまいます。
「局所的実在論」という言葉がありますが、
物理量の把握には究極の難しさがあります。
ただ、物理の記載であることは確かで、
発展していく可能性を含めた議論ではあります。





ハイブリット英会話スタイルで伸ばす「アクエス」
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返事できていませんが
問題点に対しては適時、返信・改定をします。


nowkouji226@gmail.com


2022/01/04_初稿投稿
2022/2/18_改定投稿


旧サイトでのご紹介
舞台別のご紹介

時代別(順)のご紹介
アメリカ関連のご紹介

電磁気関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2022年1月時点での対応英訳)


Jewish physicist Rosen


Its name is Nathan Rosen.
Rosen was also active in Israel after the founding of Israel.
He is a Jewish physicist from New York. He had studyied at MIT.


Rosen was also the inventor of the so-called wormhole,
He is one of the three in the EPR paradox.
Relativistically complete locality of quantum behavior
It was pointed out that it could not be explained (it would be inconsistent),
The description in the quantum mechanical model and the relativistic model
It cannot be described at the same time.
Quantum entanglement
Is it necessary to correct the description?
Is it possible to correct the description in relativity?
It will be a clue to the end.


Various explanations (effects) for both quantum theory and relativity
It's possible, but it's completely everything
Can't you say that you can describe it?
If you make this description,
The text will be crisp.
There is a word "local realism",
Understanding the physical quantity is the ultimate difficulty.
However, it is certain that it is a description of physics,
It is a discussion that includes the possibility of development.


2022年02月17日

ニコライ・N・ボゴリューボフ
【1909年生まれ‐2/17改訂】

「ボゴリューボフ」の原稿を改定します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1909年8月21日 ~ 1992年2月13日】



【スポンサーリンク】



ロシアの物理学者


名前から分かるかとおもいますが、


ボゴリューボフはロシアの物理学者です。


本稿を記載するにあたり改めてボゴリューボフ


の「人となり」を調べてみましたが


伝わっていません。その名で検索をかけると


私のブログが上位に出てきてしまう有様です。


ボゴリューコフは20世紀初頭の生まれなので


革命前後のソビエト連邦で青年期を迎え、


閉鎖的な学会環境で研究を進めていたと


考えるべきなのでしょう。因みに、


プランクメダルを受けていますので


ドイツ関係の画像を使っています。



ボゴリューボフの業績


何よりも、数学的に


ボゴリューボフ変換と呼ばれる考えを打ち出し


行列形式で表される状態遷移を対角化する事で


表現していると言えるでしょう。


別言すれば、観測にかかる定常状態を
数学手法を使って作りだしています。

つまり、数学的にいう固有値問題に帰着させて
定常的な状態を表現しているのです。


数学的な作業をしてみた結果が
どういった現象に対応しているか
物理的に説明する事が出来るのです。 


この定常状態を使い、ボゴリューボフは
現実にヘリウムの超流動状態を表しました。
ボーズ粒子の超流動をボゴリューボフ変換で示し
フェルミ粒子の超電導をボゴリューボフ変換で
示す訳です。役にたちますね。





【スポンサーリンク】




以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/08_初稿投稿
2022/02/17_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
ドイツ関連のご紹介
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Russian physicist


As you can see from the name, Bogoliubov is a Russian physicist. In writing this article, I re-examined Bogoliubov's "becoming a person", but it has not been conveyed. If you search by that name, my blog will appear at the top. Since Bogoryukov was born in the early 20th century, it should be considered that he was adolescent in the Soviet Union before and after the revolution and was conducting his research in a closed academic environment. By the way, he has received a Planck medal, so he uses images related to Germany.



Bogoliubov achievements


Above all, it can be said that he mathematically expresses the idea called Bogoliubov transformation by diagonalizing the state transitions expressed in the form of a matrix.


In other words, the steady state of observation
It is created using mathematical methods.
In other words, reduce it to the mathematical eigenvalue problem.
It represents a steady state.


The result of doing mathematical work
What kind of phenomenon is supported
It can be explained physically. Twice


Using this steady state, Bogoliubov
He actually represented the superfluid state of helium.
Bogoliubov transformation shows the superfluidity of boson particles
Superconductivity of fermions by Bogoliubov transformation
It is a translation to show. It will be useful.


2022年02月16日

ジョン・バーディーン
【1908年生まれ‐2/16改訂】

「バーディン」の原稿を改定します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1908年5月23日 ~ 1991年1月30日】



【スポンサーリンク】


超電導現象の理論的基礎を与えたバーディン


本稿は何度も追記したいです。


それは私にとって、関心のある


低温電子物性の話だからです


今回は極低温での現象理解を進めた


バーディンについてご紹介致します。


バーディンは二回のノーベル賞を受けています。


一回目はベル研での仲間とのトランジスタの発明、


二回目は以下に記載するBCS理論です。


前述したカメリー・オネスの超電導現象の発見以後、


その現象を説明する為に色々な理論が試みられ


たでしょうが、イリノイ大学のバーディンを中心


とした3人がBCS理論を確立します。バーディン、


レオン・クーパーロバート・シュリーファー  


3人の名前の頭文字を並べてBCS理論と呼ばれます。


このコンビの始まりはバーディンがクーパーを招聘する事から始まります。そこにバーディン研究室の大学院生、シュリーファー が加わり研究が進みます。



BCS理論とは 


BCS理論の内容はフォノン(音子)を介した電子が対になった結果(クーパ対の考え方)、そのコンビがスピンを打ち消し合って結合するという理論でした。相転移温度をその理論で説明し、今日、超伝導を考えるうえで理論の基礎となっています。このBCS理論の妙はフェルミオンである電子が凝縮状態をとるところにあります。本来、同じ状態をとる事が出来ない電子が対になってボゾン化することで巨視的な現象にとして観察される超伝導現象が実現するのです。


そもそも、金属中を移動する電子を単純な質点のモデルで考えると正の荷電をもった原子核の間を負の電荷が自由自在に無抵抗で動き回る事は到底出来ません。何らかの相互作用が起きて抵抗に繋がります。ところが、電子の波動関数を考え、波動的側面が顕著に現れる状態を作っていくのが超伝導現象だと言えます。その条件として大事な尺度の一つが温度だったのです。現時点での関心は遷移を起こす温度のメカニズムを解明する事です。現在での転移温度は高温超電導と言ってもマイナス百℃以下ですので転移温度に至るまでは液体ヘリウムや液体窒素を使って冷却しなければいけません。



超電導現象の応用 


実用化しているリニアモーターカーや量子コンピューター等の応用技術も冷却した上で超電導現象を実現しているので、コストと安定性が課題となっています。転移温度が変わっていって、より常温に近い温度で現象を起こすことが出来ればメリットは非常に大きいです。温度に関わるメカニズムとして中嶋貞雄がバーディンに与えたヒントが繰り込み理論の応用でした。そのヒントは手法だったともいえますが、電気伝導に関わる要素(素粒子)が「どういった条件で」、「どういった役割を果たすか」が重要です。その手掛かりの一つが「ゆらぎ」に関するメカニズムではないかと考えている人が居ます。今後の大きな課題です。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/15_初稿投稿
2022/02/05_改定投稿


効果がものすごい高い英会話「アクエス」
【スポンサーリンク】

舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関連のご紹介へ
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Theoretical basis of superconducting phenomenon


I would like to add this article many times. That's because it's about the low-temperature electronic characteristics that I'm interested in. This time, I would like to introduce Birdin, who has advanced the understanding of the phenomenon at extremely low temperatures.


Birdin has received two Nobel Prizes. The first is the invention of the transistor with his colleagues at Bell Labs, and the second is the BCS theory described below. Since the discovery of the superconducting phenomenon of Camery Ones mentioned above, various theories may have been tried to explain the phenomenon, but three people led by Birdin of the University of Illinois establish the BCS theory. Bardeen, Leon Cooper, and Robert Schrieffer are called BCS theory by arranging the initials of the three names.


The beginning of this duo begins with Birdin inviting Cooper. Schrieffer, a graduate student from the Badin laboratory, will join the group to advance the research.



What is BCS theory?


The content of BCS theory was the theory that as a result of pairing electrons via phonons (sounds) (the idea of ​​Cooper pairs), the combinations cancel each other out and combine. The phase transition temperature is explained by the theory, and today it is the basis of the theory when considering superconductivity.
The mystery of this BCS theory is that the fermion electrons take a condensed state. Originally, electrons that cannot take the same state are paired and bosonized, and the superconducting phenomenon observed as a macroscopic phenomenon is realized.


In the first place, considering the electrons moving in a metal as a simple mass model, it is impossible for a negative charge to move around freely and without resistance between nuclei with a positive charge. Some interaction occurs and leads to resistance. However, it can be said that the superconducting phenomenon is to create a state in which the wave function appears prominently by considering the wave function of electrons. One of the important measures for that condition was temperature. At this time, the interest is to elucidate the temperature mechanism that causes the transition. At present, the transition temperature is less than minus 100 ° C even if it is called high-temperature superconductivity, so it is necessary to cool it with liquid helium or liquid nitrogen until the transition temperature is reached.



Application of superconducting phenomenon


Since the superconducting phenomenon is realized after cooling the applied technologies such as linear motor cars and quantum computers that have been put into practical use, cost and stability are issues. If the transition temperature changes and the phenomenon can occur at a temperature closer to room temperature, the merit is very great. The hint given to Bardeen by Sadao Nakajima as a mechanism related to temperature was an application of renormalization theory. It can be said that the hint was a method, but "under what conditions" and "what role" the elements (elementary particles) involved in electrical conduction play are important. Some people think that one of the clues is the mechanism related to "fluctuation". This is a big issue for the future.

2022年02月15日

レフ・D・ランダウ
【1908年生まれ-2/15原稿改訂】

「ランダウ」の原稿を改定します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1908年1月22日生まれ ~ 1968年4月1日没】



【スポンサーリンク】



レフ・ダヴィドヴィッチ・ランダウ


その名をフルネームで表記すると、


レフ・ダヴィドヴィッチ・ランダウです。


ランダウは有名なユダヤ系ロシア人の


科学者で日本でも教科書を目にしたことが


あるのではないでしょうか。1962年に


「絶対零度近傍でのヘリウムの理論的研究」


でノーベル物理学賞を受けています。


さて、ランダウは石油技術者の父と教育者の母


から生まれます。12歳で微分法を理解し、


14歳で国立大学に入学、物理数学科と化学学科


を同時に履修します。19歳で学士の称号を


得るとレニングラード物理工学研究所で


電磁場の中での電子性質である量子電磁気学


を研究していきます。そしてコペンハーゲン


にあるボーアの研究所で大きな影響を受けました。



ランダウの主な業績


その後、ケンブリッジでディラック・カピッツァと共同研究を進め所謂「ランダウ反磁性」の研究をまとめます。その後にチューリッヒでパウリと共同研究をした後にランダウはレニングラードに戻りました。


ランダウの幸せだった時期を中心に記載しましたがモスクワの研究所で要職を務めていながらスターリン批判をしたことで、刑務所に服役したりしています。そして交通事故にあったりもしています。水素爆弾の製造にも不本意ながら加担しています。そして60歳でこの世を去ります。


ただ、ランダウの業績は不変です。準粒子・フェルミ流体やギンツブルグ&ランダウ理論は低温凝縮系の世界を大きく進ませました。




英語が話せるようになる「アクエス」
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に関しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/09/24_初稿投稿
2022/02/15_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介へ
ケンブリッジ大学のご紹介へ
イギリス関係のご紹介
デンマーク関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


 

(2021年11月時点での対応英訳)



Lev Davidovich Landau


The full name is Lev Davidovich Landau. Landau is a well-known Jewish-Russian scientist who may have seen textbooks in Japan. He received the Nobel Prize in Physics in 1962 for his "Theoretical Study of Helium Near Absolute Zero". Now, Landau is born of a father of oil engineers and a mother of educators. He understood differential calculus at the age of 12, entered a national university at the age of 14, and he took both physical mathematics and chemistry at the same time. When he earned his bachelor's degree at the age of 19, he studied quantum electrodynamics, which is an electronic property in an electromagnetic field, at the Leningrad Institute of Physical Engineering. And I was greatly influenced by Bohr's laboratory in Copenhagen.



Landau's main achievements


He then collaborated with Dirac Kapitsa in Cambridge to conclude his so-called "Landau diamagnetism" research. Landau then returned to Leningrad after collaborating with Pauli in Zurich.


I mainly described Landau's happy times, but he was sentenced to jail for criticizing Stalin while he was in a key position at a research institute in Moscow. And he is also in a car accident. He is also reluctantly involved in the production of hydrogen bombs. And he died at the age of 60.


However, Landau's performance remains unchanged. Quasiparticle-Fermi liquid theory and Ginzburg-Landau theory have made great strides in the world of low-temperature condensate systems.


2022年02月14日

エドワード・テラー
【1908年生まれ-2/14没】

「E・テラー」の原稿を改定します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】
【1908年1月15日生まれ ~ 2003年9月9日没】



【スポンサーリンク】



水爆の父・テラー


エドワード・テラーは水爆の父と呼ばれ、


晩年のオッペンハイマーと対立します。


エドワード・テラーはハンガリーのブタペスト


で弁護士の父と4か国語を使う母から生まれ


ました。ユダヤ系であったエドワード・テラー


の父は職を追われ、ハンガリー・ドイツ・アメリカ


と移住を重ねました。ただ、学問の世界では良い出会い


に恵まれています。ハイゼンベルクの下で博士論文


を書き、ボーアの居たコペンハーゲンで有益な


時間を過ごします。そうした中で原子核物理学


分子物物理で多くの業績を残しました。


ヤーン・テラー効果やBETの吸着等温式


はエドワード・テラーの業績です。



マンハッタン計画とテラー


アインシュタインと共にエドワード・テラーは


原爆の研究をアメリカ政府に働きかけ、実際に


その計画は進んでいきます。政治的な思想では


ドイツ時代に資本主義の崩壊を目の当たりにした


テラーは共産主義に対して当初は関心を抱いて


いたようです。ところが、友人のランダウ


ソ連政府に逮捕された時期に反共思想を強め


ます。反共思想と新兵器の開発にかける熱意


が結びついていくのです。そしてまた、



テラーとオッペンハイマー


その時期以降にエドワード・テラーと
オッペンハイマーとの確執の始まります。


特に兵器としての原爆の利用に関しては
エドワード・テラーとオッペンハイマーは


対極の立場をとります。
エドワード・テラーは原爆開発の推進派で、
オッペンハイマーは否定派でした。


実際に、
エドワード・テラーは原爆・水爆と


兵器の開発の中心に居ました。水爆を


「My・Baby」と呼んでいた


と言われています。その立場は変わらず、


生涯その事を悔いることはなかったと言われています。
エドワード・テラーはそんな研究人生を歩みました。




英語が話せるようになる「アクエス」
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/22_初稿投稿
2022/02/14_改定投稿


舞台別のご紹介
時代別(順)のご紹介
ドイツ関係のご紹介
イギリス関係のご紹介
アメリカ関係のご紹介
UCBのご紹介
デンマーク関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Teller, the father of the hydrogen bomb


Edward Teller, called the father of the hydrogen bomb, confronts Oppenheimer in his later years. Edward Teller was born in Budapest, Hungary, to a lawyer's father and a four-language mother. Edward Teller's father, who was of Jewish descent, was forced out of work and emigrated to Hungary, Germany, and the United States. However, I am blessed with good encounters in the academic world. He writes his dissertation under Heisenberg and spends a useful time in Copenhagen, where Bohr was. Under such circumstances, he made many achievements in nuclear physics and molecular physics. The Jahn-Teller effect and the adsorption isotherm of BET are the achievements of Edward Teller.



Manhattan Project and Teller


Edward Teller, along with Einstein, urged the US government to study the atomic bomb, and the plan actually goes on. In political terms, Teller, who witnessed the collapse of capitalism during the German era, seemed initially interested in communism. However, when his friend Landau was arrested by the Soviet government, he intensified his anti-communism. His anti-communist ideas and enthusiasm for the development of new weapons are linked. and again,



Teller and Oppenheimer


After that time, the feud between Edward Teller and Oppenheimer began. Edward Teller and Oppenheimer are at the other end of the spectrum, especially when it comes to the use of the atomic bomb as a weapon. Edward Teller was a proponent of atomic bomb development, and Oppenheimer was a denial.


In fact, Edward Teller was at the center of the development of atomic and hydrogen bombs and weapons. He is said to have called the hydrogen bomb "My Baby". His position has not changed and it is said that he never regretted it throughout his life. Edward Teller went through such a research life.


2022年02月13日

湯川秀樹
【1907年生まれ-2/13改訂】

「湯川秀樹」の原稿を改定します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1907年1月23日生まれ ~ 1981年9月8日没】


【↑_Credit:Wikipedia】



【スポンサーリンク】



湯川秀樹の生きた時代


冒頭に紹介している本「旅人」は湯川秀樹の


自伝です。その湯川秀樹は朝永振一郎と同じ時代


を生きています。


互いに刺激しあう関係を築き、共に


時代のテーマに取り組んでいます。


伝記を読んでいくと湯川秀樹が情熱を持って


物理学に取り組んでいた様子が分かります。


色々な所で引用されているのですが


「アイデアの秘訣は、執念である。」


と湯川秀樹は明言しています。一見、


不可解な現象を紐解き、単純明快な原理を抽出


する仕事をしてきたのです。


 

湯川秀樹の興味


そもそも、


湯川秀樹の関心は物質の相互作用であって、


その世界は全く目に見えません。彼は


情熱で綿密に話を組み立てます。


重力・電磁力以外の微細粒子間の


相互作用を引き起こす「強い力」


に着目して議論を進めました。


湯川秀樹の時代には場の考えが発展


していく過程で原子の中での相互作用を


湯川秀樹は中間子という概念で紐解いたのです。


湯川秀樹のアイディアは「場を担う粒子」


という考え方です。そもそも、重力(万有引力)


を考えると二つの質点が存在した時に


その質点同士が互いを引き合い現象が説明


されます。この明快なモデルに反して、


「電子の数百倍の質量をもつ中間子の仮定」


は当時の観測とは別に設定されていて、


ボーアハイゼンベルクは内容の吟味


を求めていたと言われます。


最終的には1947年の英国物理学者セシル・パウエルによる「中間子観測」が契機となり、湯川秀樹はノーベル賞を受けます。「物理での概念確立の危うさ」を感じてしまう歴史です。


理論的な要請と言えなくはないですが、辻褄合わせの為の概念は色々な角度から真剣に議論されなければいけません。別の言い方をすれば、その概念を磨き上げて納得のいく説明をすることが出来た時に「大きな仕事をした」と言えるのではないでしょうか。


湯川秀樹はボゾンの一つとして中間子を仮定して強い力を説明してみせたのです。



湯川秀樹こぼれ話 


湯川秀樹の業績は京都大学の原子力研究を初めとして日本の物理学者たちに引き継がれています。


個人的なご縁としては私が幼少時代を過ごした東京板橋にあった理化学研究所の分室で研究をしていたようです。少し時代がずれますが、私の故郷で彼が活動していたと思うと不思議な気持ちです。ノーベル賞受賞者の朝永振一郎もそこに居ました。最近までは、理化学研究所は本駒込にも拠点があり、今でもホンダ朝霞の近くに拠点があります。

何故か、と調べを続けていったら埼玉県にある平林寺に創始者の一人である大河内氏の墓所があります。そんな、理化学研の霊的な側面を知って、私は何となく納得してしまいました。


また、湯川秀樹はラッセル=アインシュタイン宣言にも参加しています。以前のブログでもこの関連の話は盛り込んでいますが私は研究者が異議を唱えても社会が破滅的な兵器を作る現実を大変、問題だと思っています。アインシュタインであれ湯川秀樹であれアシモフであれ社会が叡智を集結して対応することを私は夢見ています。




英語が話せるようになる「アクエス」
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
全て返信は出来ていませんが
適時、返信・改定をします。


nowkouji226@gmail.com


2020/09/07_初稿投稿
2022/02/13_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
京大関連のご紹介
纏めサイトTOP
電磁気関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)


The time when Hideki Yukawa lived


The book "Traveler" introduced at the beginning is an autobiography of Hideki Yukawa. Hideki Yukawa lives in the same era as Shinichiro Tomonaga. We build relationships that inspire each other and work together on the themes of the times. As you read the biography, you can see that Hideki Yukawa was passionate about physics.


Although quoted in various places, Hideki Yukawa clearly states, "The secret of the idea is obsession." At first glance, he has worked to unravel mysterious phenomena and extract simple and clear principles.


Hideki Yukawa's interest


In the first place, Hideki Yukawa's interest is in the interaction of matter, and the world is completely invisible. He assembles the story with passion.


He focused on the "strong force" that causes the interaction between fine particles other than gravitational and electromagnetic forces. In the days of Hideki Yukawa, Hideki Yukawa unraveled the interaction in atoms with the concept of mesons in the process of developing the idea of ​​the field.


Hideki Yukawa's idea is the idea of ​​"particles that carry the field." In the first place, considering gravity (universal gravitational force), when two mass points exist, the mass points attract each other and the phenomenon is explained. Contrary to this clear model, the "assuming of a meson with a mass several hundred times that of an electron" was set separately from the observations at that time, and it is said that Bohr and Heisenberg sought scrutiny of the content.


Eventually, Hideki Yukawa received the Nobel Prize, triggered by "Meson Observation" by British physicist C. Powell in 1947. It is a history that makes us feel "the danger of establishing a concept in physics".


It can be said that it is a theoretical request, but the concept for Tsuji matching must be seriously discussed from various angles. In other words, when you can refine the concept and give a convincing explanation, you can say that you have done a big job.


Hideki Yukawa explained the strong force by assuming a meson as one of the bosons.



Hideki Yukawa Spill Story


Hideki Yukawa's achievements have been handed down to Japanese physicists, including nuclear research at Kyoto University.
As a personal connection, it seems that I was doing research in a branch office of RIKEN in Itabashi, Tokyo, where I spent my childhood. It's a little out of date, but it's strange to think he was active in my hometown. Nobel laureate Shinichiro Tomonaga was also there. Until recently, RIKEN also had a base in Hon-Komagome, and it still has a base near Honda Asaka. If you continue to investigate why, there is a graveyard of Mr. Okochi, one of the founders, at Heirinji Temple in Saitama Prefecture. Knowing such a spiritual aspect of RIKEN, I somehow convinced myself.


Hideki Yukawa also participates in the Russell-Einstein Declaration. I've included this related story in my previous blog, but I think the reality of society making catastrophic weapons is a big problem, even if researchers disagree. Whether it's Einstein, Hideki Yukawa or Asimov, I dream of society gathering wisdom and responding.

2022年02月12日

H・アルプレヒト・ベーテ
【1906年生まれ‐2/12改訂】

「ハンスべーテ」の原稿を改定します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1906年7月2日~2005年3月6日没】



【スポンサーリンク】



イギリスに逃れたベーテ


ベーテはユダヤ系なのでナチス政権下で


苦労します。国を追われイギリスに逃れ、


マンチェスター大学で職を得ます。


第二次大戦の間はオッペンハイマー


招きでUCB(カリフォルニア大バークレー校)


の特別会議に参加します。そこでは核兵器の


開発が始められ、ロスアラモス研究所が


出来るとベーテは理論部門の監督を務めます。


戦後はトルーマン大統領が水素爆弾の開発


を断行した流れでベーテは引き続き開発


において重要な役割を果たします。



ベーテの提唱した星の進化


その他、ベーテの業績としては大きく二点があげられると思います。一つは恒星の内部で核融合反応が起きうると指摘をして、重力と釣り合う内側からの力を考えたことです。星の進化を考える時に超高圧下で起こりうる現象を予見したのです。現在考えられている進化過程でベーテの考え方は不可欠です。大まかに星の進化を考えていくと「@万有引力でガスや、チリが集まっていき、段々に中心方向に向かって『まとまり』が出来てきてAまとまりの質量がどんどん増えていくのですが、この時にB星の内部で内部で核融合反応が起きて外側方向に広がる力が働き、C万有引力で集まる力と内部から核反応で外側へ広がっていく力がつりあう」と考えられています。そして、重量が増えていき星の進化が進むと恒星として光を発するようになり、白色矮星、ブラックホールの段階を踏むだろうと考えます。地球や木星などの光っていない星は現在内部からの核融合の膨張と、内部への引力でが釣り合っている状態です。また星の話とは別に、加速器で実現される様々な現象を説明していく内に超高圧下・超高温下で起こり得る原子核の崩壊状態をベーテは理論立てて説明して新たな知見としました。



ベーテとラムシフト


また、ベーテのもう一つの業績は
量子電磁気学に繋がっていくラムシフト
を非相対論的に厳密に突き詰めていって
極めて正確な計算をしていったのです。
この面でファインマンは弟子にあたります。


ベーテは大変な時代を生きた偉大な理論家でした。


「原子核反応理論への貢献、特に星の内部


におけるエネルギー生成に関する発見」で


ノーベル賞を受けています。




英語が話せるようになる「アクエス」
【スポンサーリンク】


以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。


nowkouji226@gmail.com


2020/11/23_初版投稿
2022/02/12_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介
ドイツ関係のご紹介へ
イギリス関係のご紹介へ

アメリカ関連のご紹介へ
イェール大学関連のご紹介へ
UCBのご紹介

熱統計関連
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Bethe fled to England


Bethe is of Jewish descent, so he has a hard time under the Nazi regime. He was driven out of the country and fled to England to get a job at the University of Manchester. He attends a special UCB (University of California, Berkeley) conference at the invitation of Oppenheimer during World War II. Bethe will oversee the theory department when the development of nuclear weapons begins there and the Los Alamos National Laboratory is established. After the war, Bethe continued to play an important role in the development of the hydrogen bomb as President Truman decided to develop it.



Bethe's advocated evolution of stars


In addition, I think there are two major achievements of Bethe. One is to point out that a fusion reaction can occur inside a star, and to consider the internal force that balances gravity. When he considered the evolution of stars, he foresaw possible phenomena under ultra-high pressure. Bethe's thinking is indispensable in the evolutionary process currently being considered. Roughly thinking about the evolution of stars, "(1) gas and dust gather with universal gravitation, and gradually" cohesion "is formed toward the center, and (2) the mass of the cohesiveness increases steadily. At this time, (3) a nuclear fusion reaction occurs inside the star and the force that spreads outward works, and (4) the force that gathers by universal gravitation and the force that spreads from the inside to the outside by the nuclear reaction are balanced. " Then, as the weight increases and the evolution of the star progresses, it will emit light as a star, and I think that it will go through the stages of white dwarfs and black holes. Non-shining stars such as Earth and Jupiter are currently in a state where the expansion of nuclear fusion from the inside and the attractive force to the inside are in balance. In addition to the story of stars, Bethe theoretically explained the decay state of atomic nuclei that can occur under ultra-high pressure and ultra-high temperature while explaining various phenomena realized by accelerators, and made new knowledge. bottom.



Bethe and Lamb shift


In addition, Bethe's other achievement was to rigorously and non-relativistically scrutinize the Lamb shift that leads to quantum electrodynamics, and to perform extremely accurate calculations. Feynman is his disciple in this respect.


Bethe was a great theorist who lived in difficult times. He has received the Nobel Prize for his "his contributions to his theory of nuclear reactions, especially his discoveries of energy generation inside the stars."


2022年02月11日

J・R・オッペンハイマー
【1904年生まれ‐2/11改訂】

「オッペンハイマー」の原稿を改定します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1904年4月22日生まれ~1967年2月18日没】



【スポンサーリンク】



 原爆の父オッペンハイマー


オッペンハイマーは原爆の父と呼ばれている側面


ありますが、UCB(カリフォルニア大学バークレー校)


では学生からオッピーという愛称で呼ばれていた


側面もありました。オッペンハイマーの人生は


喜怒哀楽に満ちています。


オッペンハイマーの人生を考えるにあたり、


第一の着眼点としては彼もユダヤ系の血を


引いているという点です。ヒットラーが民族としての


ユダヤ人達に焦点を当て迫害し、敵視していた現実は


動かしがたい事実です。強制収容所に連行


されるような世相の中でユダヤ人達は非常な


危機感を感じていたはずです。その危機感の中で


20世紀初頭の歴史は、天才達が育ち・団結して


新しい物を生み出していたのではないでしょうか。


そんな時代に兵器製造の行為は肯定される話


ではないのですが、当時の論客もユダヤ人迫害


から話を初めて、マンハッタン計画に進む流れ


を紹介していき、大衆に納得し易い話を組み立て


られたでしょう。



ユダヤ系の物理学者達


それ以降100年近くがたとうとしていますが、この考えは幾多の人が繰り広げてきたのではないかと思えますが、再度、私も強調します。具体的な物理の世界での登場人物はアインシュタイン 、シュテルンマックス・ボルンD・J・ボーム 、E・パウリ 、ランダウファインマン


そして今回ご紹介するオッペンハイマーです。(今は此処迄しか思い浮かびませんが後日、思い付くたびに補記します。)
そうしたメンバーがもたらした今世紀初頭の物理学の進展は急速でした。その進展は物理学に留まらず、工学、産業、果ては政治体制に繋がっていきました。1917年ロシア革命に始まった社会体制の変化とも同期していた、と言えるのでは無いでしょうか。今世紀初頭の閉塞感は、それを打ち破る様々な努力によって大きく様変わりしていたと思えます。そして、昨今コロナで不満が高まり、米中関係が緊張していく世相は、やもすれば危ない世界に近づいてるようにも思えます。各人で理性的な判断・発言をしましょう。今、方向付けが重要です。



 オッペンハイマーの関心


さて実際、オッパンハイマーは最終的に


6つの言葉を操ります。少年時代には


鉱物学・数学・地質学・化学に関心を示し


ハーバードを三年で終えてケンブリッジに留学


します。そこから理論物理学のゲッティンゲン大学


に進みボルンと出会います。オッペンハイマーは


ボルンの指導の下で研究を進め共同で


ボルン・オッペンハイマー近似等の業績を上げます。


その後、アメリカに戻りカリフォルニア工科大学や


UCBで教鞭をとりますが、第二次大戦勃発に伴い、


オッペンハイマーはロスアラモス国立研究所の


初代所長に任命されます。そこで原爆を開発したのです。


この仕事は、世界のパワー・バランスを変え、


後の世界を大きく変えました。



晩年のオッペンハイマー


晩年、オッペンハイマーは成し遂げた仕事の意味を自問し、後悔の言葉さえ残しています。戦争時代の原爆開発・使用は国としてのアメリカの中で必要と判断されていましたが、それ以後の時代では原爆を使わなくても各国が持つだけで攻撃対象とされたりしますし、外交で原爆が脅迫の道具として使われていたりします。


そういったことにつながった発明を


オッペンハイマーは「罪」として捉えていて、


水爆の開発には反対していたりもしました。


オッペンハイマーには別の罪(?)もあります。


オッペンハイマーの時代はは冷戦時代なので


学生時代からの共産党とのつながりを指摘され、


最終的には赤狩りの標的とされ続けていました。


常時FBI(司法省管轄のアメリカ連邦捜査局)


の監視下にあったのです。1965年、


がんの為にニュージャージーの自宅で


静かに生涯を終えました。合掌。




英語が話せるようになる「アクエス」
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。


nowkouji226@gmail.com


舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介へ
イギリス関係のご紹介
ドイツ関連のご紹介

ケンブリッジ大学のご紹介へ
UCBのご紹介へ
量子力学関係


2020/09/21_初稿投稿
2022/02/11_改定投稿
【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Atomic bomb father Oppenheimer


Oppenheimer was sometimes called the father of the atomic bomb, but at UCB (University of California, Berkeley), he was also nicknamed Oppenheim by students. Oppenheimer's life is full of emotions. When thinking about Oppenheimer's life, the first point to look at is that he also has Jewish blood. The reality that Hitler focused on and persecuted the Jews as an ethnic group and was hostile to them is an immovable fact. The Jews must have felt a great sense of crisis in the world of being taken to concentration camps. In that sense of crisis, the history of the early 20th century may have been that geniuses grew up and united to create new things. The act of manufacturing weapons is not affirmed in such an era, but the debaters at that time also started talking about the persecution of Jews and introduced the flow to the Manhattan Project, and assembled a story that is easy for the public to understand. Probably.



Jewish physicists


Almost 100 years have passed since then, and I suspect that many people have developed this idea, but I would like to emphasize it again. The characters in the concrete world of physics are Einstein, Stern, Max Born, DJ Baume, E. Pauli, Landau, Feynman,


And this is Oppenheimer. (I can only think of it here now, but I will add it later whenever I come up with it.) The progress of physics at the beginning of this century brought about by such members was rapid. Its progress went beyond physics to engineering, industry, and even the political system. It can be said that it was in sync with the changes in the social system that began in the Russian Revolution in 1917. It seems that the feeling of obstruction at the beginning of this century was greatly changed by various efforts to overcome it. And it seems that the world, where dissatisfaction with Corona has increased and US-China relations have become tense these days, is approaching a dangerous world. Let's make rational judgments and remarks by each person. Direction is important now.



Oppenheimer's interest


Well, in fact, Oppanheimer finally manipulates six words. As a boy, he became interested in mineralogy, mathematics, geology and chemistry, finishing Harvard in three years and studying abroad in Cambridge. From there he goes to the University of Göttingen in theoretical physics and meets Born. Oppenheimer conducts research under the guidance of Born and jointly achieves achievements such as the Born-Oppenheimer approximation. He then returned to the United States to teach at the California Institute of Technology and UCB, but with the outbreak of World War II, Oppenheimer was appointed as the first director of the Los Alamos National Laboratory. So he developed the atomic bomb. This work changed the power balance of the world and changed the world later.



Oppenheimer in his later years


In his later years, Oppenheimer asked himself what the work he had accomplished and even left a word of regret. It was judged that the development and use of the atomic bomb during the war was necessary in the United States as a country, but in the subsequent era, even if each country did not use the atomic bomb, it would be the target of attack, and diplomacy. The atomic bomb is used as a threatening tool. Oppenheimer saw the invention that led to that as a "sin," and he even opposed the development of the hydrogen bomb.


Oppenheimer also has another sin (?). Since Oppenheimer's era was the Cold War era, he was pointed out that he had a connection with the Communist Party since he was a student, and eventually continued to be the target of the Red Scare. He was always under the supervision of the FBI (Federal Bureau of Investigation under the Department of Justice). In 1965, he quietly ended his life at his home in New Jersey because of cancer. Gassho.

朝永 振一郎
【1906年生まれ-2/11改訂】

「朝永振一郎ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1906年3月31日生まれ ~ 1979年7月8日没】


【↑_Credit:Wikipedia】



【スポンサーリンク】



朝永振一郎の生い立ち


朝永振一郎は私が使っていた教科書


【Diracの「量子力学」】の訳者でした。


そのご先祖様は大村藩


(現在の長崎県内にありました)の流れをくみます。


そして、そんな朝永振一郎の父は


京都大学哲学科教授でした。


そんな生い立ちをもった、


朝永振一郎は現在の筑波大学の前身


となった大学、東京教育大学で教鞭をとり、


最終的には学長を務めます。


東京に生まれ京都で育ち、


世界で議論しました。


 

朝永振一郎の業績


朝永振一郎の研究業績で私が最も偉大


であると思えるのは繰り込み理論です。


ファインマン・ダイアグラムと呼ばれる


不可思議な模式図でも表現される


素粒子の反応がありますが、


そこでの過程における


数学的矛盾を見事に説明しています。


ファインマンの経路積分にも数学的な


美点を感じますが朝永振一郎の理論の方が


直感に訴える説得力を持っています。


好みといえば好みの問題ですが、


発散・∞という大問題に対して


ラムシフトを正しく吟味して相対論的に


計算が出来た時に一瞬にして話が繋がり


感覚的に「正しかったんだ」と思えるのです。


朝永振一郎の理解で量子電磁気学の整理が進み、


素粒子物理学が大きく進歩したのです。


朝永振一郎はまた晩年、大学入学以前の


若者に対し科学的な啓蒙を進めていました


最後に、朝永振一郎は湯川秀樹


京都大学で同期でした。それぞれの形で


当時の物理学で完成形を作り上げたのです。




英語が話せるようになる「アクエス」
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/09/12_初稿投稿
2022/02/11_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
京大関連のご紹介
力学関係のご紹介
電磁気関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



The background of Shinichiro Tomonaga


Shinichiro Tomonaga was the translator of the textbook I was using [Dirac's "Quantum Mechanics"]. Its ancestors follow the flow of the Omura domain (currently in Nagasaki prefecture). And Shinichiro Tomonaga's father was a professor of philosophy at Kyoto University. With such a background, Shinichiro Tomonaga teaches at Tokyo University of Education, the predecessor of the current University of Tsukuba, and eventually becomes the president. He was born in Tokyo, raised in Kyoto, and discussed around the world.



Achievements of Shinichiro Tomonaga


The greatest research achievement of Shinichiro Tomonaga is the renormalization theory. There is a reaction of elementary particles that is also expressed in a mysterious schematic diagram called the Feynman diagram, but it explains the mathematical contradiction in the process. Feynman's path integral also has a mathematical beauty, but Shinichiro Tomonaga's theory is more intuitive and convincing.


Speaking of taste, it is a matter of taste, but when the Lamb shift is correctly examined for the big problem of divergence and ∞ and the calculation can be done relativistically, the story is connected in an instant and it seems that it was "correct" sensuously. is. With the understanding of Shinichiro Tomonaga, quantum electrodynamics was organized and particle physics made great progress. Shinichiro Tomonaga also promoted scientific enlightenment for young people before entering university in his later years.


Finally, Shinichiro Tomonaga was in sync with Hideki Yukawa at Kyoto University. Each form was completed by the physics of the time.

朝永 振一郎
【1906年生まれ-2/11改訂】

「朝永振一郎ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1906年3月31日生まれ ~ 1979年7月8日没】


【↑_Credit:Wikipedia】



【スポンサーリンク】



朝永振一郎の生い立ち


朝永振一郎は私が使っていた教科書


【Diracの「量子力学」】の訳者でした。


そのご先祖様は大村藩


(現在の長崎県内にありました)の流れをくみます。


そして、そんな朝永振一郎の父は


京都大学哲学科教授でした。


そんな生い立ちをもった、


朝永振一郎は現在の筑波大学の前身


となった大学、東京教育大学で教鞭をとり、


最終的には学長を務めます。


東京に生まれ京都で育ち、


世界で議論しました。


 

朝永振一郎の業績


朝永振一郎の研究業績で私が最も偉大


であると思えるのは繰り込み理論です。


ファインマン・ダイアグラムと呼ばれる


不可思議な模式図でも表現される


素粒子の反応がありますが、


そこでの過程における


数学的矛盾を見事に説明しています。


ファインマンの経路積分にも数学的な


美点を感じますが朝永振一郎の理論の方が


直感に訴える説得力を持っています。


好みといえば好みの問題ですが、


発散・∞という大問題に対して


ラムシフトを正しく吟味して相対論的に


計算が出来た時に一瞬にして話が繋がり


感覚的に「正しかったんだ」と思えるのです。


朝永振一郎の理解で量子電磁気学の整理が進み、


素粒子物理学が大きく進歩したのです。


朝永振一郎はまた晩年、大学入学以前の


若者に対し科学的な啓蒙を進めていました


最後に、朝永振一郎は湯川秀樹


京都大学で同期でした。それぞれの形で


当時の物理学で完成形を作り上げたのです。




英語が話せるようになる「アクエス」
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/09/12_初稿投稿
2022/02/11_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
京大関連のご紹介
力学関係のご紹介
電磁気関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



The background of Shinichiro Tomonaga


Shinichiro Tomonaga was the translator of the textbook I was using [Dirac's "Quantum Mechanics"]. Its ancestors follow the flow of the Omura domain (currently in Nagasaki prefecture). And Shinichiro Tomonaga's father was a professor of philosophy at Kyoto University. With such a background, Shinichiro Tomonaga teaches at Tokyo University of Education, the predecessor of the current University of Tsukuba, and eventually becomes the president. He was born in Tokyo, raised in Kyoto, and discussed around the world.



Achievements of Shinichiro Tomonaga


The greatest research achievement of Shinichiro Tomonaga is the renormalization theory. There is a reaction of elementary particles that is also expressed in a mysterious schematic diagram called the Feynman diagram, but it explains the mathematical contradiction in the process. Feynman's path integral also has a mathematical beauty, but Shinichiro Tomonaga's theory is more intuitive and convincing.


Speaking of taste, it is a matter of taste, but when the Lamb shift is correctly examined for the big problem of divergence and ∞ and the calculation can be done relativistically, the story is connected in an instant and it seems that it was "correct" sensuously. is. With the understanding of Shinichiro Tomonaga, quantum electrodynamics was organized and particle physics made great progress. Shinichiro Tomonaga also promoted scientific enlightenment for young people before entering university in his later years.


Finally, Shinichiro Tomonaga was in sync with Hideki Yukawa at Kyoto University. Each form was completed by the physics of the time.

2022年02月10日

「フォン・ノイマン」の原稿を改定します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1903年12月28日 - 1957年2月8日】



【スポンサーリンク】



フォン・ノイマンの生い立ち


ノイマンはハンガリー系のドイツ人でアメリカに亡命します。ハンガリー名ではナイマン・ヤーノシュ:nɒjmɒnˌjɑ̈ːnoʃ、ドイツ名ではヨハネス・ルートヴィヒ・フォン・ノイマン:Johannes Ludwig von Neumann, 少年時代から英才教育を受け、ディケンズの小説を一字一句間違えず暗唱していたと言われます。また、車を運転しながら読書していたと言われます。数学・物理学・コンピューター科学で多才な才能を発揮した人で映画のモデルにもなっています。冒頭に掲載した映画作品は
フォン・ノイマンをモデルにしたと言われています。




原子爆弾やコンピューターの開発


フォン・ノイマンは1930年にプリンストンに招かれ、プリンストン高等研究所の所員に選ばれています。因みに、その時に同時にメンバーとして選ばれた一人がアルベルト・アインシュタインでした。戦争へ向かうアメリカで軍事関係の研究を進めます。




特に、フォン・ノイマンはロスアラモス国立研究所でアメリカ合衆国による原子爆弾開発のためのマンハッタン計画に参加します。そして、弾道研究所に関わるENIACのプロジェクトに参加してノイマンもこの電子計算機のプロジェクトを進めていくのです。

ノイマンの別の関心事として衝撃波の伝達の研究分野がありました。所謂FAT・MAN(長崎に投ちたプルトニウム型原子爆弾)のための爆縮レンズを開発していくのです。兵器開発に科学者が関わっていく良い例です。「(効率的に)人を沢山殺そう」という考えと「科学的探究心」は瞬時に置き換える事が出来るのです。


フォンノイマンの考え方を表す言葉



名言として残されている一つをご紹介します。

「思考こそが一次言語であり、
数学は二次言語である。

数学は、思考の上に作られた、
一つの言語に過ぎない。」


実際に物理モデルを構築する前の思考が大事で、それは掴み用の無い物です。幾何学的な図形で抽象的に表現してみたり群論を使って整理してみたりします。見つかった「秩序」を数学的表現で表すのはその後の段階で、さらには大衆に分かるように色々な言葉で肉付けします。物理学者はこの作業を無限に繰り返さなければいけません。そんなノイマンは1955年に骨腫瘍あるいはすい臓がんと診断されました。放射能に関わる研究を重ねた結果でもあります。同僚のエンリコ・フェルミも1954年に骨がんで亡くなっています科学の発展の為に晩年を捧げた人生でした、ご冥福をお祈りいたします。



英語が話せるようになる「アクエス」
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com


2021/10/01_初版投稿
2022/02/10
_原稿改定


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介
電磁気関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



The background of von Neumann


Neumann is a Hungarian German who goes into exile in the United States. He is said to have been reciting Dickens' novels word for word, having been educated as a gifted boy in Hungary for Naiman Janos: nɒjmɒnˌjɑ̈ːnoʃ and in Germany for Johannes Ludwig von Neumann. increase. He is also said to have been reading while driving a car. He is a versatile talent in mathematics, physics and computer science and is also a movie model. The movie work posted at the beginning is
It is said to have been modeled after von Neumann.



Development of atomic bombs and computers


Von Neumann was invited to Princeton in 1930 and was selected as a member of the Princeton Institute for Advanced Study. By the way, one of the members who was selected at the same time was Albert Einstein. He pursues military research in the United States heading for war.


In particular, von Neumann will participate in the United States' Manhattan Project for the development of an atomic bomb at the Los Alamos National Laboratory. And Neumann will also proceed with this computer project by participating in the ENIAC project related to the Ballistic Research Laboratory.


Another concern of Neumann was the field of study of shock wave transmission. He will develop a detonation lens for the so-called FAT MAN (plutonium-type atomic bomb thrown at Nagasaki). It's a good example of how scientists get involved in weapons development. The idea of ​​"killing a lot of people (efficiently)" and "scientific inquiry" can be instantly replaced.



A word that expresses the idea of ​​von Neumann


I would like to introduce one that remains as a saying.
"Thinking is the primary language,
Mathematics is a secondary language.
Mathematics was built on thought,
It's just one language. "


It is important to think before actually building a physical model, which is something that cannot be grasped. Try to express it abstractly with geometric figures or organize it using group theory. The mathematical expression of the found "order" will be expressed later, and will be fleshed out in various words so that the public can understand it. Physicists have to repeat this task indefinitely. Neumann was diagnosed with bone tumor or pancreatic cancer in 1955. He is also the result of his repeated research on radioactivity. His colleague Enrico Fermi also died of bone cancer in 1954. I pray for the souls of his later life for the development of science.


2022年02月09日

セシル パウエル
【1903年生まれ‐2/9改訂】

「セシルパウエル」の原稿を改定します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1903年12月5日生まれ ~ 1969年8月9日没】



【スポンサーリンク】



パウエルとハイゼンベルグとゾンマーフェルト


単なる偶然の産物といえば偶然ですが、
今回ご紹介するセシル パウエルと
ハイゼンベルクとゾンマーフェルトは
同じ誕生日でした。また同様に
西川 正治も同じ誕生日でした。


さて、
今回の紹介は英国のセシル パウエルです。

素粒子の軌跡を記録する方法
を改良しました。


つまり、


Photographic Emulsionsの中での粒子軌跡を


直接記録する方法を採用したのです。


当時は未知なる粒子が次々と発見され


様々に予想されていたのですが、


観測手段も試行錯誤が成されていました。


例えば、


霧箱で飛んでくる粒子の軌跡を捉えたり、


高い山の上で観測して飛来宇宙線の大気減衰を


克服したり写真技術を活用したりしました。


パウエルの手法は写真のイメージから考える


のでしょうか。機会があれば更に確認します。


 

 パウエルによるπ中間子の観測


またパウエルは湯川秀樹が予想した
パイ中間子の観測・発見の為に
研究スタッフを派遣しています。生成後の
寿命が短く地表に到達できないパイ中間子
観測の為にボリビアにあるアンデス山脈の
標高5000mの山から上記乾板を使って発見
しています。ダイナミックな観測だった
と言えるでしょう。加えて、気球を使い
高度を確保したりもしています。
観測の為に様々な工夫をこらして
結果を得ています。



英語が話せるようになる「アクエス」
【スポンサーリンク】


以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。


nowkouji226@gmail.com


2020/12/15_初稿投稿
2022/02/09_改定投稿


舞台別のご紹介
時代別(順)のご紹介

イギリス関連
ケンブリッジのご紹介
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Powell, Heisenberg and Sommerfeld


It's just a coincidence, but C. Powell, Heisenberg, and Sommerfeld have the same birthday. Similarly, Shoji Nishikawa had the same birthday.


By the way, this time I would like to introduce you to Cecil Powell in the United Kingdom. The method of recording the trajectory of elementary particles has been improved. In other words, we adopted the method of directly recording the particle trajectory in Photographic Emulsions. At that time, unknown particles were discovered one after another and various expectations were made, but the observation method was also trial and error. For example, we captured the trajectory of particles flying in a cloud chamber, observed them on a high mountain to overcome the atmospheric attenuation of flying cosmic rays, and used photographic technology. Do you think of Powell's method from the image of a photograph? I will check further if there is an opportunity.



Observation of pions by Powell


Powell also dispatches research staff to observe and discover the pions predicted by Hideki Yukawa. It has been discovered using the above-mentioned dry plate from a mountain at an altitude of 5000 m in the Andes Mountains in Bolivia for the purpose of observing pions that have a short life after formation and cannot reach the surface of the earth. It can be said that it was a dynamic observation. In addition, we also use balloons to secure altitude. We have obtained results by making various efforts for observation.


2022年02月08日

E・ウィグナー
_【1902年生まれ‐2/8改訂】

「ウィグナー」の原稿を改定します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1902年11月17日 ~ 1995年1月1日】



【スポンサーリンク】



その名を書き下すと


ユージン・ポール・ウィグナー


(Eugene Paul Wigner)。


ハンガリー生まれのユダヤ人です。


後程詳しくご紹介しますが、ウィグナーは


ポール・ディラックの義理のお兄さんで、


BCS理論の作成者3人組の中心、


バーディーンの指導教官です。


物凄い人脈を持っている人ですね。また、


「原子核と素粒子の理論における対称性の発見」


に対して1963年の


ノーベル物理学賞を受賞しています。


対称性に着目した素粒子の整理は有効で


その分類方法が無ければ


進まなかった話が沢山あります。


 

 ドイツでのウィグナー


ユージン・ウィグナーは現在のベルリン工科大学


を卒業後そこで勤務していましたが


ナチスドイツのユダヤ人迫害に対して


研究継続の困難を感じアメリカに亡命をします。


米国に亡命後はウィスコンシン大学で


物理学の教授を務め、その後に


プリンストン大学で数学の教授を務めました。


そんなウィグナーはレオ・シラード


エドワード・テラーらと、ナチスドイツが


原子爆弾を開発した時の危険性を


アメリカ政府に対して訴えていきました。


実際にベルリンを追われた過去を持つ


ウィグナーは現実に当時の状況を分析


していたのだろうと思います。つまり、


当時のドイツの科学の水準を分かっていて


ナチスが有していた兵器を理解していたから、


ナチスによる原爆開発の危険を強く感じて


いたのだと思えます。ただ、


実際の歴史を知っている


今の我々にとって見たら取り越し苦労です。


ノルマンディー上陸作戦以降の連合軍の


通常兵器での反攻を思えば、優秀とはいえ、


一国のドイツがヨーロッパ大陸を長期間占領し続ける


事は出来なかったでしょう。


現在で考えると強大化する中国に対して欧米諸国


がどういった対応をするか


気になる所でありますよね。いずれにせよ、


英米が原爆を所有するきっかけを


ウィグナー達は作ったのです。




 原爆とウィグナー


ウィグナーはアメリカの原爆開発のきっかけ


となったアインシュタイン名による大統領宛書簡


の起草対してシラードやテラーと連名で加わり


ました。加えて、原爆を開発するマンハッタン計画


にはメンバーとして加わりました。


晩年にウィグナーは哲学的な傾向を深め、講演録


「自然科学における数学の理不尽な有効性」を残しています。


著名なこの著作は多分野に影響を与えています。また、


ウィグナーの妹は食事の席にディラックを招いた縁で、


彼の奥さんになっています。とても意外な取り合わせですね。




英語が話せるようになる「アクエス」
【スポンサーリンク】



以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をしていきます。


nowkouji226@gmail.com


2021/04/06_初版投稿
2022/02/08_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
ドイツ関連のご紹介

アメリカ関連のご紹介へ
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


 

(2021年11月時点での対応英訳)



If you write down the name


Eugene Paul Wigner.


He is a Hungarian-born Jew. As I will explain in detail later, Wigner is Paul Dirac's brother-in-law and the supervisor of Bardeen, the center of the trio of creators of BCS theory. He has a tremendous network of contacts, isn't he? He also received the 1963 Nobel Prize in Physics for his "discovery of symmetry in the theory of nuclei and elementary particles". There are many stories that the arrangement of elementary particles focusing on symmetry is effective and would not have progressed without the classification method.



Wigner in Germany


Eugene Wigner worked there after graduating from the current Berlin Institute of Technology, but found it difficult to continue his research on the persecution of Jews in Nazi Germany and went into exile in the United States.


After his exile in the United States, he was a professor of physics at the University of Wisconsin and then a professor of mathematics at Princeton University. Wigner, along with Leo Szilard and Edward Teller, appealed to the US government about the dangers of Nazi Germany developing an atomic bomb.


I think Wigner, who had a past of being ousted from Berlin, was actually analyzing the situation at that time. In other words, he knew the level of German science at the time and understood the weapons that the Nazis had, so it seems that he was strongly aware of the danger of the Nazis developing an atomic bomb. However, for those of us who know the actual history, it is a difficult move. Given the counterattack of the Allied forces with conventional weapons since the Invasion of Normandy, Germany would not have been able to continue to occupy the continent for a long time, albeit excellent. When you think about it now, you are wondering how Western countries will respond to the growing power of China. In any case, the Wigners created the opportunity for Britain and the United States to own the atomic bomb.



Atomic bomb and Wigner


Wigner joined Szilard and Teller jointly in drafting a letter to the president in the name of Einstein, which triggered the development of the American atomic bomb. In addition, he joined the Manhattan Project to develop the atomic bomb as a member.


In his later years Wigner deepened his philosophical tendencies, leaving behind his lecture "The Unreasonable Effectiveness of Mathematics in the Natural Sciences". His prominent work has influenced many disciplines. Wigner's sister is also his wife because he invited Dirac to his dining table. It's a very surprising combination.



2022年02月07日

ポール・ディラック
【1902年生まれ‐2/7改訂】

「ディラック」の原稿を改定します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1902年8月8日生まれ ~ 1984年10月20日】



【スポンサーリンク】



無口なディラック


イギリスのディラックは


とても謙虚で無口な人でした。


ノーベル賞が決まった際には、


有名になる事を恐れて受賞の辞退を


考えていた様です。そんな人なのですが、


20世紀初頭の天才達がひしめく中で


ファインマンハイゼンベルクシュレディンガーなど


と量子力学を確立します。特にシュレディンガーとは


同じタイミングでノーベル賞を受賞します。


ディラックの人柄を考えるにあたり少し、


その家族について言及します。


ディラックが10代後半の時期にスイスから


家族は国籍を移しています。そしてディラックの


性格形成を語っていく上で家庭環境は大きな要素


だったようです。まず1924年にディラックの


兄が自ら命を断っています。


色々考えた末だったのでしょうか。


ディラック自身も、その父と会話し辛い


場面が多々あったようです。そして、


極端に無口な人になっていったようです。



ディラックと数学


しかしディラックは、闇に沈まずに数学を駆使して輝かしい成果を残しています。特にデルタ関数やブラケット記法は素晴らしいのです。そんな足跡を沢山残しました。


デルタ関数は超関数の仲間で
積分を使って定義されます。
多分野で有用である関数ですが、
物理の分野では観測に伴い、
波束が収束する様子が表現出来るのです。
数学上ではヘビサイド関数を表現出来ます。
現象は捉え方次第で色々な観測が出来て
周波数軸の観点で物事を考える時と
実座標軸(長さの観点)で考える時と
数式上の表現が異なります。
工学的にこの視点を応用した解析も
実用上で非常に便利に利用されていて
市販品のアナライザーで簡単に
業務解析をする事が出来ます。


ブラケット記法とは日本語で「括弧」
の記号を使った表記です。その定式化では
カギカッコ<>の形の 「<」 の部分
だけを「ブラベクトル」と呼び
カギカッコ<>の形の 「>」 の部分
だけを「ケットベクトル」と呼びます。
非常に分り易い表現でブラの部分がベクトル量
に相当してケットの部分が、それと作用するベクトル量に相当する定式化です。作用する前のケットが固有値を持つ場合に固有状態を持つと表現されます。ここでのベクトルがヒルベルトベクトル(無限次元に対応)であることが学部時代の私にとって感動的でした。一瞬にして物理量に対応する状態が記述された気がしました。一次元が線で、二次元が平面で、三次元が立体空間だというくらいしか想像がつかなかった高校時代から想像は大きく膨らみ、いきなり無限次元に話が拡張したのです。一つのベクトルが多くの情報を担います。他方でデルタ関数は観測が一瞬にして波束の収縮を引き起こす様子を表現していると思います。


こうした定式化をディラックは進め、理論から提唱される物質を考え出しています。具体的に反物質と呼ぶ存在がいくつも提唱され、見つかっています。反物質は寿命が通常の物質より若干短かったりしますので日常的ではありませんが、粒子の生成消滅を論じたりする際に大事な要素です。陽子には反陽子があり中性子には反中性子があります。



ディラック来日


そして、何よりディラックは無口な人です。多くの成果を出していく中で各国の物理学会で招待する動きがあって日本にも来ていたようです。ただ性格が性格でですので余り逸話が残っていません。「仁科さんとお茶飲んだ時に・・・」みたいな話が残っていないのです。無論、歳下の朝永さんとか湯川さんは尚更の事、話しづらかったと思えます。話しかけても無言だったのでしょう。多分オランダでも日常会話はほとんどなかったと思われます。ケンブリッジでは「1Dirac」という単位を使われていました。仲間内での意味としては
「1Word/1Hours」が「1Dirac」に相当して
一時間あたりに単語二つを使ったら「2Dirac」消費されたとして換算されました。ディラックは一時間に数Dirac程度しか言葉を残さなかったそうです。


しかし、そんなディラックは真面目な性格、人を騙さない性格もあって周囲から大事にされていた様子が伺われます。このブログのTOP画面で使っている集合写真でも真ん中の列の中央に居ます。若き天才ディラックにアインシュタインやキューリ夫人が気を遣って「君の研究は素晴らしい。これからも頑張って下さいよ!」といった気持で尊重しているような
気がするのです。そして、

ディラックはイギリスの伝統を受け継いだ人でもあります。
ケンブリッジではルーカス教授職を務めました。この名誉は初代・アイザック・バローから始まり二代目・アイザック・ニュートンと続き、最近では宇宙論で名を成したS・W・ホーキング博士が受け継いでいます。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2020/08/17_初稿投稿
2022/02/07_改定投稿


舞台別のご紹介へ
時代別(順)のご紹

イギリスのご紹介へ
ケンブリッジのご紹介へ
オランダ関係の紹介へ
ライデン大学のご紹介へ

アメリカ関連のご紹介へ
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Quiet Dirac


Dirac in England was a very humble and reticent person. When the Nobel Prize was decided, he seemed to be thinking about declining the award for fear of becoming famous. Although he is such a person, he establishes quantum mechanics with Feynman, Heisenberg, Schrodinger, etc. in the midst of the geniuses of the early 20th century. In particular, he won the Nobel Prize at the same time as Schrodinger. In considering Dirac's personality, I would like to mention his family for a moment.


His family transferred nationality from Switzerland when Dirac was in his late teens. And it seems that the family environment was a big factor in talking about Dirac's personality formation. First, in 1924, Dirac's brother died himself. Was he the end of many thoughts? It seems that Dirac himself had many difficult conversations with his father. And he seems to have become an extremely reticent person.



Dirac and math


However, Dirac has achieved brilliant results by making full use of mathematics without sinking into the darkness. Especially the delta function and bracket notation are great. I left a lot of such footprints.


The delta function is a family of generalized functions defined using integrals. It is a useful function in many fields, but in the field of physics, it is possible to express how the wave packet converges with observation. Heaviside functions can be expressed mathematically. Various observations can be made depending on how the phenomenon is perceived, and the mathematical expression differs between when thinking about things from the perspective of the frequency axis and when thinking from the perspective of the actual coordinate axis (from the perspective of length). Analysis that applies this viewpoint engineeringly is also very convenient in practical use, and business analysis can be easily performed with a commercially available analyzer.


Bra-ket notation is a notation that uses the "parentheses" symbol in Japanese. In that formulation
Only the "<" part in the shape of the key bracket <> is called the "bra vector".
Only the ">" part in the shape of the key bracket <> is called the "ket vector".
The bra part is a vector amount in a very easy-to-understand expression
The part of the ket corresponding to is the formulation corresponding to the amount of vector acting on it.



Eigenstate and dirac


It is expressed as having an eigenstate when the pre-acting ket has an eigenvalue. It was impressive to me when I was an undergraduate that the vector here is a Hilbert vector (corresponding to infinite dimensions). I felt that the state corresponding to the physical quantity was described in an instant. From high school, when I could only imagine that one dimension was a line, two dimensions were a plane, and three dimensions were a three-dimensional space, my imagination expanded greatly, and the story suddenly expanded to infinite dimensions. One vector carries a lot of information. On the other hand, I think that the delta function expresses how the observation causes the wave function collapse in an instant.


Dirac is proceeding with this formulation and has come up with substances proposed by theory. A number of specific antimatter entities have been proposed and found. Antimatter is not routine because it has a slightly shorter lifespan than normal matter, but it is an important factor when discussing the formation and annihilation of particles. Protons have antiprotons and neutrons have antineutrons.



Dirac visits Japan


And above all, Dirac is a reticent person. While he has produced many achievements, he seems to have come to Japan as he was invited to the Physical Society of Japan. He just doesn't have much anecdotes because he has a personality. There is no such thing as "when I drank tea with Nishina-san ...". Of course, it seems that Mr. Tomonaga and Mr. Yukawa, who are younger, were even more difficult to talk to.


He would have been silent when he spoke. Perhaps there was little daily conversation in the Netherlands. In Cambridge, the unit "1 Dirac" was used. As for the meaning within the group, "1 Word / 1 Hours" is equivalent to "1 Dirac", and if two words are used per hour, it is converted as "2 Dirac" consumed. Dirac left only a few words per hour.


However, it seems that such Dirac was taken care of by the people around him because of his serious personality and personality that does not deceive people. The group photo used on the TOP screen of this blog is also in the center of the middle row. I feel that Einstein and Mrs. Curie care about the young genius Dirac and respect him with the feeling that "Your research is wonderful. Please continue to do your best!"


And Dirac is also a man who inherited the British tradition.
He was a Lucas professor in Cambridge. This honor begins with the first Isaac Barrow, continues with the second Isaac Newton, and has recently been inherited by Dr. SW Hawking, who has made a name for himself in cosmology.


2022年02月06日

ハイゼンベルク
【1901年生まれ-2/6改訂】

「ハイゼンベルグ」の原稿を改定します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1901年12月5日生まれ ~ 1976年2月1日没】





【スポンサーリンク】



 ハイゼンベルグの不確定性関係


ハイゼンベルクは行列形式


の導入や、不確定性関係等


の適用で、量子論を形作った


一人です。バイエルン王国


に生まれミュンヘン大学


ゾンマーフェルトに学び


マックス・ボルンの下で


助手を務め、コペンハーゲン


ニールス・ボーアの下で


修業します。そうした一線級の


議論の中で理論の形式を整えます。


量子論の本質的な概念である


不確定性原理はボルンやヨルダン、


ハイゼンベルクによって確立されました。


可視化で想像できる世界がどこまで細かく


考えていけるかという命題に対しての一つの


回答が不確定性関係を含む量子力学の体系です。



 ハイゼンベルグと同時代の偉人達


そして加えて、ハイゼンベルクはシュレディンガーポール・ディラックと同じ時代に生き、積極的に行動すればアインシュタインボースとも議論が出来ました。。そうした天才達がミクロの原理を一つ一つ解きほぐしたのです。


まだ見えない原子レベルの大きさの事象を推察する手法が色々と試みられて、その結果を説明する理論が発展したのです。不確定性関係の発表が1927年なのですが、同時期には数多くの革新的な発表がされて量子力学の対象の理論と応用技術が飛躍的に発展した時代でした。


同時に大変な時代背景、第二次世界大戦があり
ハイゼンベルクはアインシュタインが作った
相対論を駆使したりユダヤ人物理学者を養護
していたので、ナチス党員の物理学者から
「白いユダヤ人」と呼ばれ苦労しています。
プランクからの指摘もあり
戦後の体制を見据えてハイゼンベルクはドイツ
に残りました。



 サイクロトロンとハイゼンベルグ


しかし戦時下ですので物理の知識を
ナチスの為に使う事になり、色々考えたようです。
実際にハイゼンベルクのシンクロトロンが火災を起こし
世界でニュースとなったと聞き、アメリカに亡命していた
アインシュタインは大変驚きます。
実際にその事件が彼に原爆開発を決意させたとも言われています。そして、大戦が深まる中でナチス側も原子力爆弾の実用化を模索していた中で当時のドイツ内でのハイゼンベルグの立場は極めて苦しくなります。実際にハイゼンベルグが積極的な態度をとったとしたら恐ろしい事です。歴史には「たら・れば」はよく語られていて、、仮にナチスが原爆を持っていたら、
連合国との原爆の応酬で
とても恐ろしい状況になっていた筈です。


量子力学の計算を進めていて感じたのですが、オブザーバブルに対する状態の時間発展を表す表式は数学的な厳密さを持つ半面で、状態を表している物理表現として洗練されてます。ハイゼンベルク等の提唱した行列形式はそこにつながっていきます。又、いくつかの思考実験で裏打ちされた不確定性関係は量子力学の現象理解の中では本質的です。


またハイゼンベルクはピアノの名手
だったと言われていています。
聞いてみたかったですね。


 


英語が話せるようになる「アクエス」
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。


nowkouji226@gmail.com


2020/08/19_初回投稿
2022/02/06_改訂投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
オランダ関係
ライデン大学

ドイツ関係のご紹介
デンマーク関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】



(2021/10月時点での対応英訳)



Heisenberg's Uncertainty Principle


Heisenberg is one of the people who shaped quantum theory by introducing the matrix form and applying the uncertainty relation. Born in the Kingdom of Bavaria, he studied under Sommerfeld at the University of Munich, worked as an assistant under Max Born, and trained under Niels Bohr in Copenhagen. He formalizes his theory in such first-class discussions. The uncertainty principle, which is an essential concept of quantum theory, was established by Born, Jordan, and Heisenberg. One answer to the proposition of how finely the world that can be imagined by visualization can be considered is the system of quantum mechanics including the uncertainty relation.



Heisenberg and his contemporaries


In addition, Heisenberg lived in the same era as Schrodinger and Paul Dirac, and if he acted positively, he could argue with Einstein and Bose. .. These geniuses unraveled the micro-principles one by one. Various methods have been tried to infer events of atomic level that are not yet visible, and the theory that explains the results has been developed. The Uncertainty Principle was announced in 1927, and at the same time, many innovative announcements were made and the theory and applied technology of the object of quantum mechanics developed dramatically.


At the same time, due to the difficult historical background and World War II, Heisenberg used the relativity created by Einstein and cared for Jewish physicists, so he was called "white Jew" by Nazi physicists. I'm having a hard time. Heisenberg remained in Germany in anticipation of the postwar regime, as pointed out by Planck.



Cyclotron and Heisenberg


However, since it is during the war, knowledge of physics
It was decided to use it for the Nazis, and it seems that he thought about various things.
The Heisenberg synchrotron actually ignited
Einstein, who was in exile in the United States, is very surprised to hear that he has become news in the world.
It is said that the incident actually made him decide to develop the atomic bomb.


And as the war deepened, the Nazi side was also searching for the practical application of nuclear bombs, and Heisenberg's position in Germany at that time became extremely difficult. It would be scary if Heisenberg actually took a positive attitude. "Tara, if" is often spoken in history, and if the Nazis had an atomic bomb, it would have been a very scary situation due to the exchange of the atomic bomb with the Allies.


He felt that he was proceeding with the calculation of quantum mechanics, but the expression that expresses the time evolution of the state with respect to the observable is mathematically rigorous, but it is refined as a physical expression that expresses the state. .. The matrix format proposed by Heisenberg and others will lead to that. Also, the uncertainty relation backed by some thought experiments is essential in understanding the phenomenon of quantum mechanics.


Heisenberg is a master of the piano
It is said that it was.
I wanted to listen.


2022年02月05日

エンリコ・フェルミ
【1901年生まれ-2/5改訂】

「フェルミ」の原稿を改定します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1901年9月29日生まれ ~ 1954年11月28日没】



【スポンサーリンク】



イタリア生まれのフェルミ


フェルミはイタリアのローマに生まれアメリカで没してます。


アメリカではフェルミの名前を冠した研究所が今でも


シカゴ大学内にあって、そこで議論が交わされています。


その業績は社会的側面が大きいものもある一方で


純理論を突き詰めた後世の多くの物理学者が使う


原理・概念もあります。まさにパラダイムシフトを起こした


立役者です。ミクロの世界を切り開きました。


 

そもそも、フェルミは学生時代から抜きん出た優秀さ


を備えています。一歩一歩、フェルミは議論を展開して


ノーベル賞を受け、その授賞式の際にイタリアから


アメリカに亡命しました。時節柄、奥様がユダヤ人


だつた為迫害されていたのです。



フェルミとマンハッタン計画


アメリカ移住後に


フェルミは有名なマンハッタン計画に参画し、


原子力発電所の創設に携わり社会を大きく変えていきます。


そもそも、計画への参加はオットー・ハーンが


ドイツで核分裂実験に成功した事情が大きいです。


フェルミを初めとした物理学者達が時代に


危惧感を抱いたのです。アメリカを中心とする


資本主義圏が自由を謳歌した点でフェルミの業績は


計り知れないです。反面でスリーマイル島の事故や


福島での原発事故を思い起こすと、


気楽に賞賛ばかりはしていられません。


このブログの中で私が何回か主張しているように


識者が知恵を集結して問いかけなければいけません。


かってのラッセルーアインシュタイン宣言を


思い起こしたいです。一方で我々、大衆も


皆で分かる範囲の言葉を使い意見を交わさねばなりません


可能な範囲で意見を交わして民衆の英知を集結させるべきです。個人個人が平和に対して語る時に少しでもしっかりした考えをもって話さないといけないのです。色々な人と語る時に話が繋がっていく様な議論の土壌を、少しずつ育んでいかないといけないのです。会話をする個人それぞれが、より平和と現実に対してしっかりした考えを持ってほしいです。そんな人が話しやすい雰囲気を出していけるような人になって下さい。自分が話を広げるだけではなくて、相手の意見や気分を理解する力も大きいです。
考えを作るうえで政治家には頼れない昨今です。
各人、しっかりした考えを育んで下さい。



 フェルミトとスピン


さてフェルミに話を戻します。
フェルミは純理論の中で
スピン角運動量に関して議論を進めました。
別のご紹介でボゾン・アインシュタイン
の系を紹介しましたが、フェルミと
ディラック
は別の粒子群に着目します。

後世の理解ではスピン角運動量が
半整数(1/2とか3/2とかいった数)
の粒子はフェルミ粒子(フェルミオン)
と呼ばれボゾンとは別の振る舞いを示します。
具体的なフェルミオンとしてはク
ォークや電子、ミュー粒子、ニュートリノ、
陽子、中性子もフェルミ粒子の仲間です。

こうした概念は電気伝導率の物性を
議論するときには欠かせません。


フェルミの排他律に従う電子の集団を統計的に扱い、
フェルミ統計を確立したのです。例えばこの理論で
金属他の熱伝導が非常によく説明されます。。


こうして沢山の業績を世に残し、


フェルミは天に召されました。


彼は病床で点滴が落ちるのを眺めて、


その流速を出していたと言われています。


フェルミこそ、生粋の物理学者でした。


謹んでご冥福をお祈り致します。





【スポンサーリンク】


以上、間違いやご意見があれば
以下アドレスまでお願いします。
問題点に会しては適時、
改定・訂正を致します。


nowkouji226@gmail.com


2020/09/13_初回投稿
2022/02/05_改定投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
イタリア関係のご紹介

オランダ関係の紹介へ
ライデン大学のご紹介へ
アメリカ関連のご紹介へ
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Italian-born Fermi


Fermi was born in Rome, Italy and died in the United States. In the United States, there is still a research institute named after Fermi at the University of Chicago, where discussions are held. While some of its achievements have a large social aspect, there are also principles and concepts used by many posterity physicists who have pursued pure theory. He is the driving force behind the paradigm shift. He opened up the micro world.


In the first place, Fermi has outstanding excellence since his school days. Step by step, Fermi developed his discussions, received the Nobel Prize, and went into exile from Italy to the United States at the award ceremony. At his time, his wife was persecuted because he was Jewish.



Fermi and Manhattan Project


After moving to the United States, Fermi participated in the famous Manhattan Project and was involved in the creation of a nuclear power plant, which would significantly change society. In the first place, participation in the project is largely due to Otto Hahn's successful nuclear fission experiment in Germany. Fermi and other physicists were worried about the times. Fermi's achievements are immeasurable in that the capitalist sphere centered on the United States enjoyed freedom. On the other hand, when he recalls the Three Mile Island accident and the nuclear accident at Fukushima, he cannot easily praise him. As I have argued several times in this blog, wisdom must be gathered and questioned. I want to recall the old Russell-Einstein Declaration. On the other hand, we, the general public, must exchange opinions using words that everyone can understand.


We should exchange opinions to the extent possible and bring together the wisdom of the people. When an individual talks about peace, he or she must have a firm idea. We have to gradually nurture the ground for discussions that will connect the conversations when talking to various people. I want each individual who has a conversation to have a firmer idea of ​​peace and reality. Please become a person who can create an atmosphere that makes it easy for such people to talk. Not only do I spread the story, but I also have a great ability to understand the opinions and moods of the other person. Nowadays, we cannot rely on politicians to make ideas. Please nurture a solid idea for each person.



Fermit and spin


Now let's get back to Fermi. Fermi proceeded with the discussion on spin angular momentum in pure theory. He introduced the Boson Einstein system in another introduction, but Fermi and Dirac focus on different particle swarms. In later understanding, particles with a half-integer spin angle momentum (numbers such as 1/2 and 3/2) are called fermions and behave differently from bosons. As specific fermions, quarks, electrons, muons, neutrinos, protons, and neutrons are also fermions. These concepts are indispensable when discussing the physical characteristics of electrical conductivity.


He established the Fermi statistics by statistically treating the group of electrons that obey the Fermi exclusion principle. For example, this theory explains the heat conduction of metals and others very well. .. In this way, Fermi was called to heaven, leaving many achievements in the world.


Fermi is said to have watched the drip drop on the bed and set the flow velocity. Fermi was a true physicist. He humbly prays for his soul.



 

2022年02月04日

E・O・ローレンス
【1901年生まれ−2/4改訂】

「ローレンス」の原稿を改定します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1901年8月8日~1958年8月27日】



【スポンサーリンク】



 優れた実験家ローレンス


その名はErnest Orlando Lawrence。


ローレンスは優れた実験家で今でも頻繁に


応用されているサイクロトロンを発明した事


で広く知られています。


 

ノルウェー系の両親に生まれ少年時代はMerle Tuveと


共に簡易無線装置を作成したりしていました。


その後、


サウスダコタ大学時代は医学を志望してましたが、


化学の学士号、物理学の修士号を習得


します。Tuveと共にスワン先生の下で学びます


ローレンスがイェール大学で博士号をとった時


には光電効果に関する研究をしていたようです。


その後、恩師だったスワン先生がイェール大学


を去るタイミングでカリフォルニア大


に移ります。ローレンスは実験家として大変、


有望視されていました。



ローレンスの業績 


サイクロトロンを使った実験で、
ローレンスがその装置を活用
した応用例が人工放射性元素でした。
ローレンスと彼の率いる
バークレー国立研究所は
自然界に存在する元素だけでなく、
不安定な元素を作り出したのです。


強い磁場を使い帯電しているイオンを


ビーム状に出す事が出来るので


ローレンスの作ったサイクロトロンは


イオンが反応する状態を作れるのです。


日本、イギリスが同様な措置を計画していきます。


サイクロトロンを使えば特定金属にイオンビームを


当て続ける事が出来たりする訳です。


こうした装置の開発を通じて
ローレンスは人類に新しい知見を
もたらしたのです。





【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/31_初回原稿
2022/02/04_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関連のご紹介へ
イェール大学関連のご紹介へ
UCBのご紹介

熱統計関連
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Excellent experimenter Lawrence


Its name is Ernest Orlando Lawrence. Lawrence is a well-known experimenter and widely known for inventing the cyclotron, which is still frequently applied.


Born to Norwegian parents, he worked with Merle Tuve as a boy to create simple radios.


Later, Lawrence aspired to medicine when he was at the University of South Dakota, but he earned a bachelor's degree in chemistry and a master's degree in physics. He studies with Tuve under Dr. Swan. When Lawrence got his PhD at Yale University, he seems to have been studying the photoelectric effect.


After that, his teacher, Swan, will move to the University of California when he leaves Yale University. Lawrence was very promising as an experimenter.



Lawrence's achievements


In his cyclotron experiments, Lawrence's application of using the device was an artificial radioactive element. Lawrence and his Berkeley National Laboratory created unstable elements as well as those that exist in nature.


Since it is possible to emit charged ions in the form of a beam using a strong magnetic field, the cyclotron made by Lawrence can create a state in which the ions react. Japan and the United Kingdom will plan similar measures.


If you use a cyclotron, you can keep shining an ion beam on a specific metal.


Through the development of such equipment
Lawrence gives humanity new insights
I brought it.


2022年02月03日

W・E・パウリ
【1900年生まれ-2/3改訂】

「パウリ」の原稿を改定します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1900年4月25日生まれ ~ 1958年12月15日没】




その名はWolfgang Ernst Pauli


パウリはオーストリア生まれの


スイスの物理学者。パウリの排他率律で有名です。


排他律を排他率と書いてしまいがちですが


排他律です。その「パウリの排他律」は


「パウリの原理」とも呼ばれています。


1945年にアインシュタインの推薦で


ノーベル物理学賞を受けています。


ミドルネールのエルンストはパウリの名付け親、
パウリが尊敬するマッハに由来します。
父方はユダヤ系で有名な出版社を
経営していたようです。


さて、


排他律の具体的な内容に関してですが、


ナトリウムの分光実験から話が始まります。


再現性の高い事実として磁場付加時の分光は


電子の自転に由来するという仮説をパウリは立て、


後にそれをスピンと名付けます。


新しい量子的自由度です。


後に行列力学を基盤とした定式化


を行い数学的に表現します。 




パウリと著名人の交流


個人的に興味を引くのはミュンヘン大学でパウリがゾンマーフェルト_の指導を受けている点です。私が講義を受けた先生がゾンマーフェルト_を研究していて、マッハの名前も、その先生から教えてもらいました。そして、マッハ・ゾンマーフェルト・パウリとつながったのです。そしてもう一つ個人的な話を続けます。今使っているドメインへの投稿です。


何故か半歳程、投稿漏れに気づかずにいたのですが、ある日「パウリ」について気になって上記ゾンマーフェルトとの関係を思い出したのです。そして急ぎ作業を続けていて驚いたのは、その日がパウリの誕生日だったのです。


パウリが生まれてから220年が終わった瞬間でした。後述するユング達が極めた深層心理の世界では意識下と無意識下の間に「潜在意識」を想定しますが、そんなことも少し考えてしまいました。よもや潜在意識下で決めた投稿日だったのでしょうか。とか考えてしまいました。
まぁ、普通に考えたら単なる偶然ですね。


私の頭の中での奇妙な三角関係はさておき、


パウリは人間的にも面白い人だと思えます。


独自に培った知性で各界の著名人を魅了しているのです。


例えば、博士号を習得した直後、パウリは


ゾンマーフェルトに独逸語での百科事典の記事執筆


を依頼されます。内容は相対性理論に関する記事


でしたが、2か月ほどをつかって完成させました。


その結果はアインシュタイン本人の査読にかなう


見事なもので、今日においても読み応えのある


ものとなっているそうです。アインシュタインは


パウリのミドルネームに気付いていたのでしょうか。


マッハとの関係を知っていたのでしょうか。


機会があれば調べてみたいと思います。


マッハ・アインシュタイン・パウリの三角関係です。


更に妙な繋がりは心理学者C・G・ユングとの関連です。パウリは離婚後に精神を病んでいた時期がありました。今や、夢分析の世界で有名なユングに完璧主義者のパウリが出合ったのです。先生と生徒という関係を築き、生徒としてユングにパウリは科学的な批評を加えます。互いに有益な関係だったのでしょう。


因みにユング関連での兄弟弟子フロイトもユダヤ系です。アインシュタインもユダヤ系です。この切り口で考えていっても特有の文化に起因する思考的な共有点が見いだせると思います。思考の方法を考えるうえで、少し興味深い対象です。




パウリと1/137


そして、


パウリは最後まで愛した物理学を愛し続けました。


戦争での苦難の時代の後に帰国して、


病床でも完璧主義者として見舞客と議論を続けました。


その中で語り継がれている話があります。


微細定数と呼ばれる無次元量があって、


それはプランク定数に関わる相互作用を


特徴付ける量です。パウリはその値に最後まで、


こだわり抜きました。


もし、パウリが神に謁見したら、
神に微細定数 1/137.036...の
理論的根拠を尋ねたとしたら、
神様は物凄い速度で計算式を
書き連ねるだろう。その後、
きっとパウリは「違う!」
と唱えて、話し続けるであろう。


よもや、神様さえも「あ!」
と唱えるのではないか、
と不遜にも想像してしまいました。


 



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/19_初稿投稿
2021/04/25_原稿改定
2022/02/03_改定投稿


纏めサイトTOP
舞台別のご紹介へ
時代別(順)のご紹介

スイス関係のご紹介へ
オランダ関係のご紹介へ
ドイツ関係のご紹介へ
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


大学教科書買取専門店【テキストポン】


 

(2021年10月時点での対応英訳)



Its name is Wolfgang Ernst Pauli


Pauli is an Austrian-born Swiss physicist. It is famous for Pauli exclusion principle. It is easy to write the exclusion principle as the exclusion rate, but it is the exclusion principle. The "Pauli exclusion principle" is also called the "Pauli principle". He received the Nobel Prize in Physics in 1945 on the recommendation of Einstein.


Middlener Ernst comes from Pauli's godfather, Pauli's respected Mach. His father seems to have run a well-known Jewish publisher.


Now, regarding the specific content of the exclusion principle, the story begins with a spectroscopic experiment of sodium.


As a highly reproducible fact, Pauli hypothesized that spectroscopy when a magnetic field was applied was derived from the rotation of electrons, which he later named spin. A new quantum degree of freedom. He later formulates based on matrix mechanics and expresses it mathematically. Twice



Exchange between Pauli and celebrities


Personally, I'm interested in Pauli's guidance at Sommerfeld at the University of Munich. The teacher I was giving a lecture on was studying Sommerfeld, and he also told me the name of Mach. And he was connected to Mach Sommerfeld Pauli. And I will continue with another personal story. This is a post to the domain you are currently using. For some reason, I was about half a year old and didn't notice the omission of posts, but one day I was worried about "Pauli" and remembered the relationship with Sommerfeld.


And what surprised me as I continued to work in a hurry was that day was Pauli's birthday. It was the moment when 220 years had passed since Pauli was born. In the world of deep psychology, which Jung and his colleagues have mastered, we assume a "subconscious" between consciousness and unconsciousness, but I have thought about that for a moment. Was it the posting date decided under the subconscious? I have thought about it.
Well, if you think about it normally, it's just a coincidence.


Aside from the strange love triangle in my mind, Pauli seems to be a humanly interesting person. His unique intelligence attracts celebrities from all walks of life.


For example, shortly after completing his PhD, Pauzo was asked by Nmarfeld to write an encyclopedia article in German. The content was an article about the theory of relativity, but it took about two months to complete. The result is excellent enough to be peer-reviewed by Einstein himself, and it seems to be readable even today. Did Einstein notice Pauli's middle name? Did he know his relationship with Mach? I would like to find out if I have the opportunity. It is a love triangle of Mach Einstein Pauli.


A more strange connection is with the psychologist CG Jung. Pauli had a period of mental illness after his divorce. Now, the perfectionist Pauli meets Jung, who is famous in the world of dream analysis. He builds a teacher-student relationship, and Pauli gives Jung a scientific critique as a student. It must have been a mutually beneficial relationship. By the way, Jung's brother and disciple Freud are also Jewish. Einstein is also Jewish. Even if you think from this perspective, you can find a thoughtful shared point due to the unique culture. It's a little interesting when thinking about how to think.



Pauli and 1/137


And Pauli continued to love his beloved physics until the end. He returned home after a period of hardship in the war and continued to discuss with visitors as a perfectionist in bed. There is a story that has been handed down in it.


There is a dimensionless quantity called the fine constant, which is the quantity that characterizes the interactions involved in Planck's constant. Pauli was particular about that value until the end. If Pauli had an audience with God and he asked God for the rationale for the fine constant 1 / 137.036 ..., God would write the formulas at a tremendous speed. After that, Pauli will surely say "No!" And continue talking.


I have imagined that even God would say "Ah!".

2022年02月02日

S・ナート・ボース
【1894年1月1日生まれ‐1/22改訂】

「ボース」の原稿を改定します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1894年1月1日生まれ ~ 1974年2月4日没】



【スポンサーリンク】



BOSEという名前の読み方


ボーズ(BOSE)は珍しいインド人物理学者です。


フルネームで名前を書き下すと、


 サティエンドラ・ナートボース


:Satyendra Nath Bose となります。


以下、ボーズの名前に濁音がついていますがご了承下さい。


名前の最後の「ズ」の所です。


BEC(ボーズアインシュタイン凝縮)、


ボゾンといった用語で学生時代に議論して、


その感覚がどうしても消えません。


そもそも実際の綴りはBOSEでしすし、
正式にはボースと発音するようで、
Wikipediaの記載もボースです。しかし、そもそも、
ここに拘っている人は少ない印象です故、
特に訂正しません。



BOSEの物理学での業績


さて、インドは独自の数学体系を持ち
計算(暗算)方式も独自の形式を持ちます。
そんな学問体系で素粒子の世界に
挑んだボーズは統計力学で
今世紀初頭にEinsteinと共に
今でいうBOSE粒子群(BOSON)の
振る舞いを定式化するのです。


1924年にアインシュタインへ


論文を送った時点が始まりです。


その論題は「プランクの放射法則と光量子仮説」


でした。アインシュタインはその仕事を


高く評価して後にそれを発展させますが、


学会で討議する以上の交流は未だ私には


調べきれていません。インド独自の学問体系の中で


ボーズ粒子は育っていったと考えています。


後に英国の王立協会からフェローに


任命されていますので


最後のリンクにイギリスは含めました。



BOSNとFERMION


前段の知識として後世の理解で整理すると
素粒子はスピン角運動量の数でBOSONとFERMIONの
二種類に分かれます。いわゆる凝縮系の世界でも
BOSONは特異な振る舞いを示します。
具体的にBOSONとは光子、音子、ウィークボソン、
グルーオン、π中間子やK中間子、D中間子、
B中間子、ρ中間子、等で
スピンの奇遇性からボゾンに分類されて、
BOSE−EINSTEIN統計に従います。



BOSEの人物像


ただ残念な事に西洋の学者と異なり、


インド系のボーズは「人となり」が


伝わっていません。


何よりボーズの業績である、


BOSONで名を残しています。


私がインドに行って調べたいくらいですが
あいにく機会ができません。
いつか調べてみたいと思っています。
その時は関係者と話す時に「ボース」と心がけながら話そうと思います。人の名前は間違えると違和感を与えますからね。いや、ひょっとしたら関係者も「ボーズ」を多用するかもしれません。その確認も小さな楽しみです。



英語が話せるようになる「アクエス」
【スポンサーリンク】


以上、間違いやご意見があれば
以下アドレスまでお願いします。
問題点には適時、
返信・改定を行います。


nowkouji226@gmail.com


2020/09/12_初回投稿
2022/02/02_改訂投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
イギリス関係
熱統計力学関係

量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



How to read BOSE(iN jAPAN)


BOSE is a rare Indian physicist. If you write down the name with the full name,


Satyendra Nath Bose


: It will be Satyendra Nath Bose. Please note that the name of Bose has a voiced sound below. This is the last "Z" in the name. When I was a student, I argued with terms such as BEC (Bose-Einstein Condensation) and Boson, and that feeling never disappeared.


In the first place, the actual spelling is BOSE, and it seems to be officially pronounced as Bose, and the description on Wikipedia is also Bose. However, in the first place, I have the impression that few people are concerned about this, so I will not make any corrections.



BOSE's achievements


By the way, India has its own mathematical system and its own calculation (mental arithmetic) method. Bose, who challenged the world of elementary particles with such an academic system, uses statistical mechanics to formulate the behavior of what is now called the BOSE particle group (BOSON) with Einstein at the beginning of this century.


He began when he sent a treatise to Einstein in 1924. The subject was "Planck's law of radiation and the photon hypothesis." Einstein appreciates his work and develops it later, but I haven't been able to find out more than the discussions at the conference. I believe that bosons grew up in India's unique academic system. I was later appointed as a Fellow by the Royal Society of England, so I included the United Kingdom in the last link.



BOSN and FERMION


Elementary particles can be divided into two types, BOSON and FERMION, according to the number of spin angular momentums. Even in the so-called condensed world, BOSON behaves peculiarly.
Specifically, BOSON is classified into bosons based on the oddity of spins such as photons, phons, weak bosons, glueons, π mesons, K mesons, D mesons, B mesons, and ρ mesons, and follows BOSE-EINSTEIN statistics.



BOSE portrait


Unfortunately, unlike Western scholars, Bose of Indian descent does not convey "becoming a person". Above all, he has left his name in BOSON, which is the achievement of Bose. I would like to go to India to find out, but unfortunately I can't get the chance. I would like to find out someday. At that time, when I talk to the people concerned, I will try to talk with "Bose" in mind. If you make a mistake in a person's name, it will make you feel uncomfortable. No, maybe the people involved may also use "Bose" a lot. The confirmation is also a little fun.


2022年02月01日

アーサー・コンプトン
【1892年生まれ-2/1改訂】

「コンプトン」の原稿を改定します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1892年9月10日 ~ 1962年3月15日】



【スポンサーリンク】



コンプトン効果


アメリカのコンプトンは波動の粒子性を示した実績と


マンハッタン計画で指導的役割を果たしたこと


知られています。コンプトンは1919年に英国の


キャンデビッシュ研究所に留学し、


そこでガンマ線の散乱・吸収を研究します。


そこで「波動のコンプトン効果」


を発見するのです。この考えは今では量子力学の


基幹をなしていますが、大まかには以下の理解を


していれば良いと思います。つまり、


「微視的に物事を考え始めた時に粒子性と


波動性が同時に具現化する」


ということです。


その考えで話を進めると自由電子により散乱された


X線量子がより長い波長となるという事実に対して


「波長が長くなる状態」つまり


「光線のエネルギーが落ちる状態」で


子性に着目して弾性散乱の視点で考えていくのです。



コンプトンの微視的な視点 


具体的に量子力学では不確定関係という枠組みで物事を考えますので2つの値が同時に確定しなかったりします。例えば位置と運動量を同時に確定しません。また、時間とエネルギーを同時に確定しません。但し、時間×エネルギーや位置×運動量といった値を物理量として確定出来るのです。これは作用と呼ばれる次元の物理量です。時間という物理量やエネルギーという物理量と関連していますが異なります。


以上は量子力学を理解した人々には納得出来ても一般の人々には中々説明がし辛い部分です。誤解無く伝わっているかいつも不安になります。そんな意識改革をコンプトンが進めていたのですね。波動として考えていたガンマ線やX線に粒子性を見出したのです。



コンプトンとマンハッタン計画 


また、コンプトンはマンハッタン計画を進めた


主要メンバーでもあります。そもそも原子爆弾は


原子炉の製造から計画しなければいけません。


そこでウランをプルトニウムに変換して、プルトニウムと


ウランの混合物からプルトニウムを分離するプロセス


が必要です。コンプトンはこのプロセスをSEとして


設計してプロジェクトが進んでいく現場で働きました。


また、原子爆弾を兵器として使用するには


敵国で使用時に、出来るだけ早くに最大限の攻撃力を


発揮しなといけませんが、そうした損傷兵器


の仕組みをを設計する方法についても


コンプトンは計画をしていきました。


なお同計画はオッペンハイマーの設計もあり、


フェルミローレンスとの議論も経ています。


全米の知能を集め計画を進めていたのです。


 

そしてコンプトンの業績はノーベル賞を初めとする


々たる栄誉で称えられています。


それと同時に、


マンハッタン計画の主導者として


計画自体の是非を論じる際に


何度もその名があがります。


もともとは、


コンプトンはもともと星の好きな少年でした。


そんな所からガンマ線の究明に話が進みましたが、


彼の名はガンマ線検出の為の


NASAの衛星に残されています。




英語が話せるようになる「アクエス」


【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/11/07_初稿投稿
2022/02/01_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ
イギリス関係
ケンブリッジ関連

熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Compton effect


Compton in the United States is known for its track record of wave particle nature and for its leadership role in the Manhattan Project. Compton studied abroad at the Candevisch Institute in the United Kingdom in 1919, where he studied gamma-ray scattering and absorption.


There he discovers the "Compton effect of waves".
This idea is now the basis of quantum mechanics, but I think it is good to have the following general understanding. In other words, "when you start thinking microscopically, particle nature and wave nature are realized at the same time." If we proceed with that idea, we will focus on the particle nature in the "state where the wavelength becomes longer", that is, the "state where the energy of light rays falls", in contrast to the fact that the X-ray quantum scattered by free electrons has a longer wavelength. Think from the perspective of elastic scattering.



Compton's microscopic perspective


Specifically, in quantum mechanics, things are considered in the framework of an uncertain relationship, so two values ​​may not be fixed at the same time. For example, the position and momentum are not fixed at the same time. Also, time and energy are not fixed at the same time. However, values ​​such as time x energy and position x momentum can be determined as physical quantities. This is a physical quantity of a dimension called action. It is related to but different from the physical quantity of time and the physical quantity of energy.


The above is a part that is difficult to explain to the general public even if it is convincing to those who understand quantum mechanics. I'm always worried if it's transmitted without any misunderstandings. Compton was promoting such a change in consciousness. He found particle nature in gamma rays and X-rays, which he thought of as waves.



Compton and Manhattan Project


Compton is also a key member of the Manhattan Project. In the first place, the atomic bomb must be planned from the production of the reactor. Therefore, a process is required to convert uranium to plutonium and separate plutonium from the mixture of plutonium and uranium. Compton designed this process as an SE and worked in the field where the project progressed.


In addition, in order to use an atomic bomb as a weapon, it is necessary to exert maximum attack power as soon as possible when using it in an enemy country, and Compton also plans how to design the mechanism of such a damaged weapon. I went on. The plan was also designed by Oppenheimer and has been discussed with Fermi and Lawrence. He was gathering intelligence from all over the United States and working on a plan.


And Compton's achievements are praised for its lush honors, including the Nobel Prize. At the same time, as the leader of the Manhattan Project, he is often mentioned when discussing the pros and cons of the plan itself.


Originally, Compton was originally a star-loving boy. From that point on, we went on to investigate gamma rays, but his name remains on NASA's satellite for gamma ray detection.