世界中で日本だけ
「コロナ感染のグラフが可笑しい」と云う不気味
〜プレジデントオンライン 5/7(木) 19:16配信〜
〜新型コロナウイルスに依る日本の死者数は欧米に比べて少ない。だが感染者数と死亡者数を「対数グラフ」で分析すると、日本だけが異常な推移を辿って居る。統計データ分析家の本川裕氏は「他国の様に収束へ向かう横ばい化への転換が認められず、増加ペースが落ちて居ない。ソコには3つの理由が考えられる」と云う〜

似たテンポで感染拡大が推移した欧米諸国に対して東アジアの推移は特異
新型コロナウイルスは、海外でも日本でも「感染爆発」と呼ばれた一時期程の急拡大は見られ無く為って来た。だが、それでも尚深刻な感染状況が続き、医療が対応し切れ無い事も有って各国で死者が増えて居る。
1月に中国・武漢で始まった新型コロナの感染拡大は、その後、韓国、イラン、イタリア等と広がり、又、更に欧州各国や米国等を中心に全世界に拡大して来て居る。この4カ月余りを過ぎた時点で、地域に依って感染拡大のテンポや規模がどの様に違って居るかを、世界各国と日本の国内で振り返ってみたい。
感染拡大を表すデータとしては「累積の感染者数の推移」を折れ線グラフで表す事が多かった。その後、感染拡大のピークを過ぎたかどうかに焦点が移り「毎日の新規感染者数の推移」の棒グラフをみる機会が増えている。
本稿では、地域間の比較に重点を置いて「累積の感染者数の推移」の折れ線グラフ、しかも「対数」でのグラフを使用する。対数グラフは、データの大きさが大きく異なる系列の比較に適して居り、又指数関数的な拡大のテンポを傾きで表現出来る事から、欧米メディアでは定番に為って居る。
又欧米メディアでは、グラフの時間軸の起点を「累積感染者数が100人を超えた時点」とするのが通例だ。コレは、感染拡大の時期が大きくズレて居る中国とイタリア、英国等を比較する上で適切だからである。
コロナ感染者数・死者数 日本だけ「増加ペース」が一向に落ち無い

主要感染国の感染者数推移の対数グラフをまとめたのが図表1だ。Y軸(縦軸)の目盛りが100人、1000人、10000人と10倍ずつ増えて行くのが対数グラフの特徴だ。米国と日本では感染者数の規模は大きく異なって居る。グラフの最終日で有る5月4日時点で米国が118万人に対して日本は1万5000人と100倍違う。
普通のグラフでは米国の推移は追えても、日本の推移はX軸(横軸)に張り付いた横ばいの線にしか見え無いだろう。対数グラフの場合、軌跡線の傾きが直線の場合は、指数関数的な増加、即ち、ネズミ算式の倍々ゲームで増えて居る事を示している。
図表中に、参照線として「黒の点線」で、累積感染者数が「1日目100人から始まって、2〜3日に2倍のペースで増え、25日目からは1カ月に2倍のペースで増える様にペースダウンした場合」の軌跡線を描いた。この参照線より傾きが急で有るなら拡大テンポもより高い事を示し、より緩やかなら拡大テンポもより低い事を示す。
こう理解した上で各国の軌跡を追うと、欧米諸国(米国、スペイン、イタリア、ドイツ、フランス等)では感染拡大と収束へ向かう右方向に折れ曲がる動きが相互に非常に似て居り、参照線に近い形で推移して居る事が分かる。
勿論、米国は人口規模が3億3000万人と6000万〜8000万人の欧州諸国の数倍大きいので感染者数の規模も異なって居るが、拡大テンポと収束へ向かう横ばい化傾向は好く似ているのである。
世界で日本だけ「横ばい化」せず、「右肩上がり」の不気味
更に興味深いのはこうした欧米諸国と東アジア諸国との対照的な推移パターンである。感染の発生地である中国、そして次に感染が拡大した韓国は、感染100人を超えてからの経過日数別の推移で観ると、当初はホボ欧米諸国と同様の拡大テンポが続いたが、欧米諸国より可成り早い段階で横ばいに転じて居る点が目立って居る。中国の人口規模は特段に大きいので人口当たりの感染者数の推移で見れば、感染拡大と収束へ向かうパターンに付いては中国と韓国は見掛けよりモッと似て居ると云う事に為ろう。
一方、これ等の海外諸国の推移と全く違うパターンで進んで居るのが日本である。日本の感染拡大のペースは、これ迄の処、他国の様に当初急速に拡大(所謂オーバーシュート)、そして一定の日数を経て、伸びが急速に落ちると云ったパターンで無く、一貫して「9日間に2倍位のテンポ」(図表1のグレーの点線)で増加して居る。他国のドラスチックな変化とは明確に異為って居るのである。
日本の感染者数・死亡者数が「横ばい化」しない3つの理由
次に、累積死亡者数の数に付いて、同様の対数グラフにまとめたのが図表2だ。こちらでは感染拡大の起点を累積死者数が10人に達してからの経過日数にして居る。グラフを見れば、感染者数の推移グラフと似たようなパターンが認められるが、各国のバラつきはより大きい事が分かる。
例えば、ドイツは、感染者数は他の欧米諸国と殆ど同じパターンだが、死亡者数は可成り早い段階で拡大テンポが落ち、他の欧米諸国より良好なパターンを示して居る。理由としては、感染拡大の地域的な偏りの小ささ、ベッド数など医療体制の充実、PCR検査の充実により感染者が高齢者に偏って居ない点等が指摘される(『The Ecomist』March 28th 2020)
韓国等も早い段階で増加ペースが落ち、或る時点から日本を下回る良好な推移を示して居る。日本は死亡者数自体の規模は大きく他国を下回って居るものの、推移パターンは可成り日数が経過して居るのに、他国の様に収束へ向かう横ばい化への転換がナカナカ認められ無い点が懸念される。
感染者数の推移にせよ、死亡者数の推移にせよ、日本の感染拡大のパターンが諸外国と大きく異なって居る事は、この2つのグラフから明らかだ。問題は、その理由である。考えられるのは、以下の要因、或いはその組み合わせであろう。
@感染拡大抑止対策の違い
「クラスター潰し」等個別ケースに密着した極め細かな感染拡大抑止策が、当初、功を奏して感染拡大を低く抑える事が出来たが、或る一定レベルの累積数に至ると、この対策では限界が生じ一方で当初の成功体験から別個の対策へと大きくシフト出来ず、ジリジリと感染拡大を許してしまって居るのかも知れない。
最も対策の差が、感染拡大パターンの差に繋がって居るのでは無く、逆に、感染拡大パターンの差が対策の差に繋がって居ると云う考え方も有り得る。
Aもともとの体質や生活習慣の差
BCG接種を行って居るかどうかが欧米と東アジアの感染率の差に為って居ると云う説が有るが、それに加え、お酒に弱いと云った日本人が持って居る遺伝的な体質が逆に新型コロナには強いと云った可能性も考えられる。
体質的な差では無く、日本には、ハグやキス等個々人が身体を密着させる習慣が無い、風呂に好く漬かる、家の中では靴を脱ぐと云った独自の生活習慣が有る為、感染拡大に差が生じたと云う可能性も有ろう。
Bウイルスの変異
国立感染症研究所によるウイルス検体の検査・分析に依ると、国内で初期に発生した複数のクラスターやダイヤモンドプリンセス号の患者から検出されたウイルスは、1月初旬に中国・武漢市で検出されたウイルスと関係が深く、これは3月以降、国内で広がる事は無く、終息したと観られると云う。
一方、これに代わって国内で確認される様に為ったウイルスは、武漢市で確認されたウイルスよりも、欧州各国で感染を広げたウイルスの遺伝子に特徴が近く、3月以降、欧州等海外からの旅行者や帰国者を通じて全国各地に広がった可能性が有ると云う。
こうしたウイルスの変異が、@と組み合わさって、ナカナカ感染拡大が収束へと向かわ無い理由に為って居るのかも知れない。
都道府県別の感染者数と感染率(人口10万人当たり感染者)ランキング
次に、国際比較から国内の地域差に目を転じよう。先ず、都道府県別の感染状況のランキングを感染者数自体と人口10万人当たりの人数とで16位迄掲げたグラフを図表3に掲げた(何れも5月4日確定分までの累計、以下同)感染者数そのものに付いては、1位の東京が4708人と2位の大阪の1674人の2倍以上と為って居る。東京、大阪と云った大都市圏の中心地域で特別に感染率が高く為って居る。
3位以下、10位迄の上位地域としては、北海道を除くと東西の大都市圏の近郊地域や愛知、福岡と云った中枢都市が占めて居り、概して都市部の感染がウエートとして大きいと云える。
処が、人口当たりの感染者数(感染率)の都道府県ランキングは実数規模のランキングとは可成り様相を異にしている。1位は34.3の東京であるが、2位の石川も23.5人、3位の富山も19.7人で高い値を示して居る。今は6位の福井は一時期1位だった事もある。
首都圏近郊の神奈川、埼玉は、実数規模では3〜4位と大きいが、感染率のランキングについてはズッと低く為る。神奈川は11位であるし、埼玉は13位である。感染率は両県の場合、全国平均と同水準である。そして、飲み会、ライブ、高齢者施設、医療機関等を通じた特定の感染集団に依るクラスター感染が偶発的に発生し、それが連鎖的にある程度の広がりを持った特定感染地域とも云うべき都道府県が寧ろ上位を占めているのである。
しかし、石川、福井、富山と云った北陸3県が人口当たりで揃って上位なのは何故だろうか。偶発的にしては地域的なまとまりが有るのが気になる処である。
東京は他地域と比べ、感染拡大の規模とテンポが群を抜いている
こうした状況を踏まえ、国際比較と同様に対数グラフで主要な都道府県の感染者数の推移パターンを比較してみよう(図表4参照)。

前出の各国の動きを表した対数グラフと同じように、主要都道府県別に感染拡大経過日数別の対数グラフを描いてみると感染拡大傾向の地域別の違いが明らかに為る。東京は他地域と比べ、感染拡大の規模とテンポが群を抜いて居る事が判る。
埼玉、神奈川などの東京圏の近郊県も100人超過後15日ぐらいは、東京とほぼ同様の軌跡を描いていたが、それ以降は、やや横ばい方向に転じており、大きな都心部を抱える東京とはその点が異なっている。実は福岡はこうした東京近郊県と同様のパターンを辿って居る。
これら地域に対して、大阪、兵庫、京都と云った大阪圏の府県は拡大のテンポが一段低く為って居る事が判る。名古屋圏の愛知、或いは北海道は拡大ペースでは更に緩やかである。

但し、北海道に付いては、緩やかだったと過去形で言わ無ければ為ら無い。最近の北海道は再度拡大テンポが上がって居り、第二波に襲われて居ると云う印象が強い。
政府は都心部特有の感染拡大要因をどう抑えたら好いか判ら無い
図表4を好く見ると、東京と大阪では感染拡大のレベルでは違いがあるが、最初はやや遅く始まり、一気に加速し、最近やや拡大テンポが落ちて居ると云う感染拡大のカーブでは、お互いに似通って居る点に気付く。
東京・大阪以外では、クラスター連鎖の勃発による急拡大と、その後、それを強力に抑えて収束へと向かう、と云う動きが認められるが、大きな都心部を抱える東京や大阪では、都心部特有の感染拡大要因が作用して、どう抑えたら好いか判ら無い様な感染拡大の軌跡を描いて居るのではないかと思われる。
この都心部特有の感染拡大要因に付いては、
@ 接待を伴う様な飲食店が多い大きな繁華街からの波及
A 海外赴任や海外旅行からの帰国者が多く海外からのウイルスの持ち込みが多い
B 都心に居住する事が必要な職業人が抱えるその他の感染拡大要因
と云ったものが可能性として考えられるが、未だ定かではない。
「繁華街&富裕層」中央区、港区、世田谷区、渋谷区に感染者多いワケ
最後に最も感染拡大が突出している東京に付いて、都内の地区別のこれ迄と同様な対数グラフを描いてみた(図表5参照)都内でも感染拡大が大きく進んでいるのは、銀座、新宿、赤坂、六本木と云った我が国の代表的な繁華街を有する「都心地区」(中央区、港区、新宿など)、及び富裕層も多い住宅地域である「西部地区」(世田谷区・渋谷区など)であり、この2地区が感染者数規模に置いても、又感染拡大のテンポに置いても他地区を圧倒している。
他方、感染拡大のテンポが緩やかなのは「下町地区」と「東部地区」であり、累積感染者数100人以上の本格的感染拡大が始まる時期も遅かったし、その後の拡大規模も比較的小さい。こうした「都心・山の手方面」と「下町方面」との間の地域的な傾向差からも、偶発的なクラスター感染の連鎖とは異なる上述の様な都心部特有の構造的な感染拡大の要因が作用して居る筈だと感じられる。
ともあれ、都道府県別に見ても都内の地区別に見ても、エリアによって感染者数の偏りは有るものの、全体として数の「横ばい化」は認められず、日本国内に置いて予断を許さ無い事は確かだ。
本川 裕(ほんかわ・ゆたか) 統計探偵 統計データ分析家 1951年神奈川県生まれ。東京大学農学部農業経済学科、同大学院出身。財団法人国民経済研究協会常務理事研究部長を経て、アルファ社会科学株式会社主席研究員。「社会実情データ図録」サイト主宰。シンクタンクで多くの分野の調査研究に従事。現在は、インターネット・サイトを運営しながら、地域調査等に従事。著作は、『統計データはおもしろい!』(技術評論社 2010年)、『なぜ、男子は突然、草食化したのか――統計データが解き明かす日本の変化』(日経新聞出版社 2019年)など。

統計探偵 統計データ分析家 本川 裕 以上

