アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2024年10月 >>
    1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31    
最新記事
最新コメント

2021年10月22日

ドイツ(deutschland)
関連の人々【ケプラーから】10/22改定

ドイツ関係の纏めを更新します。


見返せば見返すほど大きな役割を果たしてきた国です。


定期改定に伴う作業で大きな変更はありませんでした。


ご覧下さい。【以下原稿です】


↑Credit:Pixbay↑



正式には「ドイツ連邦共和国_Deutschland。その人口は8300万人で歴史的にも現在の工業技術面でもヨーロッパで指導的な役割を果たしています。この国の人々が居無ければ後の量子力学の発展もなかったような気もします。単純に考えて、ゲルマンの生真面目な血筋は物理学に向いている気がします。実際、ケプラー・ガウス・プランク・ハイゼンベルグと続いていく系譜は物理学の成立に不可欠だと言いきれます。所が、
、ヒットラーの台頭の中で物理学者は苦労します。白いユダヤ人と呼ばれた人も居ますし、アメリカ等の国外へ亡命をした人も多いです。大きな損失でしたね。その後の進展は科学史上の遺産【マックスプランク研究所など】に大きく依存していると思えてしまいます。ドイツでの新しい研究成果に期待します。ご覧下さい。


N・コペルニクス_1473年2月19日 ~ 1543年5月24日_独系ポーランド人


ヨハネス・ケプラー_1571年12月27日 ~ 1630年11月15日


ヨハン・C・F・ガウス_1777年4月30日 ~ 1855年2月23日_

ハインリヒ・レンツ_1804年2月12日 ~ 1865年2月10日_
ドイツ系ロシア人


J・R・マイヤー_1814年11月25日 ~ 1878年3月20日


H・L・F・ヘルムホルツ_1821年8月31日生まれ - 1894年9月8日没


G・ロベルト・キルヒホフ_1824年3月12日 ~ 1887年10月17日


ヴィルヘルム・C・レントゲン1845年3月27日~1923年2月10日


ハインリヒ・R・ヘルツ_1857年2月22日 ~ 1894年1月1日


マックス・プランク_1858年4月23日 ~ 1947年10月4日


W・C・ヴィーン_1864年1月13日 ~ 1928年8月30日


ゾンマーフェルト_1868年12月5日 ~ 1951年4月26日


高木 貞治_1875年4月21日 ~ 1960年2月28日_ヒルベルトに師事


A・アインシュタイン _1879年3月14日~1955年4月18日【後に亡命】


マックス・ボルン_1882年12月11日 ~1970年1月5日【後に亡命】


F・W・マイスナー_1882年12月16日 ~ 1974年11月16日


ピーター・デバイ_ 1884年3月24日 ~ 1966年11月2日


オットー・シュテルン_1888年2月17日 ~ 1969年8月17日


ヴァルター・ゲルラッハ_1889年8月1日 ~ 1979年8月10日


W・E・パウリ_1900年4月25日 ~ 1958年12月15日


ハイゼンベルク 1901年12月5日 ~ 1976年2月1日


J・R・オッペンハイマー_1904年4月22日 ~ 1967年2月18日


ハンス・アルプレヒト・ベーテ__1906年7月2日 ~ 2005年3月6日


エドワード・テラー _1908年1月15日 ~ 2003年9月9日【後に亡命】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に関しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/11/29_初稿投稿
2021/10/22_改定投稿


旧舞台別まとめ
纏めサイトTOP

舞台別のご紹介
時代別(順)のご紹介へ

古典力学関係
電磁気関係
熱統計関連
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】

エドウィン・パウエル・ハッブル
_【1889年生まれ-10/22改定】

「ハッブル」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。原稿文字数は2231文字です。また、アマゾン関連の作業は嫁任せでしたがサイトの運営として記載してます。読者満足度を考え関連書籍を記載します。【学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。】作業として10月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1889年11月20日 ~ 1953年9月28日】




ハッブルの意外な側面


ハッブルは近代の天文学者で、


膨張宇宙論を特徴づける


ハッブルの法則等が有名です。


そんな大天文学者ですが、


高校時代は陸上でイリノイ州の


記録を更新したりしていました。


そんな少年時代は後の人生と


全く違いますね。そして、


大学時代はボクシングでならし、


とあるプロモーターから


世界チャンピオンとの一戦を


持ちかけられた程の強さでした。


これまた意外ですね。



ハッブルの業績


ハッブルの業績で大きいのは
赤方偏移の発見でしょう。
1929年にセファイド変光星の観測


から明るさと変光周期の関係を


観測していく事で


赤方偏移の考え方を導きました。


赤方偏移とはドップラー効果を考慮した考えで


観測可能な大部分の銀河の光が


波長の短い方向


(赤い色の方向)へ偏している現象です。


遠ざかっていく救急車の音が鈍く


なっていく様子を思い出してください。 


ハッブルが考える宇宙論では、
無論、直接の実験は出来ません。
使える理論も検証の為に理論が
必要となる学問体系でした。
反面ハッブル提唱の赤方偏移は
宇宙理論に明快な方向性を与え、
次の考えに繋がっていくのです



の後のハッブルの軌跡


赤方偏移の考えから
膨張宇宙論の考えが裏付けられ、
ひいては
ビックバーン理論へと
つながっていったのです。


また、我々が暮らす銀河と
別の銀河を見つけた業績も特筆するべきです。




 

英語が話せるようになる「アクエス」


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/11/08_初稿投稿
2021/10/22_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係へ
力学関係
電磁気関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)


The surprising side of Hubble


Hubble is a modern astronomer who is famous for Hubble's law, which characterizes the theory of expanding cosmology. Although he is such a great astronomer, he used to break records in Illinois on land when he was in high school. Such a boyhood is completely different from later life. And when I was in college, I was so strong that I was able to get used to boxing and a promoter offered me a fight against a world champion. This is also surprising.


Hubble's achievements


Hubble's achievements will be the discovery of a redshift. He derived the idea of ​​redshift by observing the relationship between brightness and variable period from the observation of Cepheid variable stars in 1929. Redshift is a phenomenon in which the light of most galaxies that can be observed is biased toward a shorter wavelength (red direction) in consideration of the Doppler effect. Recall that the sound of an ambulance moving away is slowing down. Twice


Hubble's cosmology, of course, does not allow direct experiments. The theory that can be used was also an academic system that required theory for verification. On the other hand, Hubble's redshift gives a clear direction to the theory of the universe and leads to the next idea.


Hubble's trajectory after that


The idea of ​​redshift supported the idea of ​​expanding cosmology, which in turn led to the Big Burn theory.


Also noteworthy is his achievement in finding a galaxy different from the one we live in.



 

2021年10月21日

ヴァルター・ゲルラッハ
【1889年生まれ-10/13原稿改定】

「ゲルラッハ」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。原稿文字数は3434文字です。また、アマゾン関連の作業は嫁任せでしたがサイトの運営として記載してます。読者満足度を考え関連書籍を記載します。【学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。】作業として10月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1889年8月1日生まれ ~ 1979年8月10日没】




 有名な実験家ゲルラッハ


ゲルラッハはシュテルンと共に行った


実験で有名です。


シュテルンのご紹介は関連人物を中心としており、


実験内容が伝えられていませんでした。


ゲルラッハと実験内容について語りたいと思います。


その実験はゼーマンとローレンツ


による実験と通じる部分があります。


古典的な考えだけでは説明出来ない


量子力学的な状態の縮退を考慮する


必要があるという結論に繋がります。


ゼーマン効果ではナトリム原子からの電磁波が対象で波動的側面から現象が理解できます。一方のゲルラッハの実験では加熱して蒸発した銀粒子が対象ですで粒子的側面から現象が理解できます。其々の実験対象において磁場をかけた時に縮退が解けていく様子が観察されます。古典的な予測では輝点に幅が出ると予想されます。二つの輝点に分かれる現象は古典的に説明が出来ません。



実験の歴史的意義 


具体的にゲルラッハとシュテルン


が行った実験では、磁場で銀粒子の中の


電子スピンが分離されています。


加熱された銀粒子がビーム状に


放射されている時にビーム経路


に対して垂直に磁場をかけます。


壁に当てたビームの輝点


を見てみた時に古典論では


輝点は一つです。所が、


ゲルラッハとシュテルンの実験


では「縮退の解けた」2点が


はっきりと見てとれたのです。


量子力学的な考えに従うと、


電子はスピンを持ち、磁場に対して


同じ方向のスピンと


逆の方向のスピンが存在します。


だから、


磁場に対する軌跡が異なるのです。


この実験はゲルラッハが実現したようですが


シュテルンがドイツから亡命していた事情と、


政治絡みの判断、が相まって


当初はゲルラッハの名は表に出ませんでした。



後日談 


さて、話を現代に近づけると、


2012年に日本で半導体内部で


同じ原理を使い同じ結果を得てます。


アイディアの種は色々な所にありますね。


強磁性体や外部磁場を用いずに電子のスピンを


揃えることに世界で初めて成功_2012年12月


https://www.ntt.co.jp/journal/1212/files/jn201212058.pdf




英語が話せるようになる「アクエス」


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/31_初稿投稿
2021/10/13_改定投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
ドイツ関係のご紹介へ
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


詳しくはコチラへ→【テキストポン】


 

(2021年10月時点での対応英訳)



Famous experimenter Gerlach


Gerlach is famous for his experiments with Stern. The introduction of Stern was centered around related people, and the content of the experiment was not communicated. I would like to talk about Gerlach and his experiments. The experiment has some similarities to the experiment by Zeeman and Lorenz. It leads to the conclusion that it is necessary to consider the degeneracy of quantum mechanical states that cannot be explained by classical ideas alone.


In the Zeeman effect, electromagnetic waves from Natrim atoms are targeted, and the phenomenon can be understood from the wave side. On the other hand, in the Gerlach experiment, the target is silver particles that have been heated and evaporated, and the phenomenon can be understood from the particle side. It is observed that the degeneracy is released when a magnetic field is applied to each experimental object. The classical prediction is that the bright spots will be wider. The phenomenon of splitting into two bright spots cannot be explained classically.



Historical significance of the experiment


Specifically, in the experiments conducted by Gerlach and Stern, the electron spins in the silver particles are separated by a magnetic field. When the heated silver particles are radiated in a beam shape, a magnetic field is applied perpendicular to the beam path. When you look at the bright spots of the beam that hits the wall, there is only one bright spot in classical theory. However, in the experiments of Gerlach and Stern, two points that were "degenerate" were clearly visible.


According to quantum mechanics, electrons have spins, and there are spins in the same direction and spins in the opposite direction to the magnetic field. Therefore, the trajectory with respect to the magnetic field is different. This experiment seems to have been realized by Gerlach, but the name of Gerlach was not revealed at the beginning due to the combination of Stern's exile from Germany and political judgment.



Later talk


Now, let's get closer to the present age. In 2012, we used the same principle inside semiconductors in Japan and obtained the same results. There are many seeds of ideas.


World's first success in aligning electron spins without using ferromagnets or external magnetic fields_December 2012

https://www.ntt.co.jp/journal/1212/files/jn201212058.pdf



ジュネーヴ大学関連の物理学者のご紹介
【特に天文学で有名です】10/21改定

以下、ジュネーブ関連を改定します。


全体の定期改定に伴う作業で内容に変更はありません。


ご覧下さい。【以下原稿です】


宗教改革の指導者カルヴァンによって1559年にスイスにおいて創設された大学でスイス内では二番目の規模を誇ります。ヨーロッパの大学でも名門の評価を受けていて特に薬学、歯学、哲学において評価が高いです。ご覧下さい。


 

ラウール・ピクテ・1846年4月4日 - 1929年7月27日


M・G・マイヨール・1942年1月12日 ~ (ご存命中)


ディディエ・P・ケロー・1966年2月23日 ~(ご存命中)





以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信できていませんが、
適時、返信・改定をします。


nowkouji226@gmail.com


2021/08/15_初回投稿
2021/10/15_改定投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
力学関係

電磁気関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】



2021年10月20日

ハリー・ナイキスト
_【1889年生まれ-10/20改定】

「ナイキスト」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。原稿文字数は2830文字です。また、アマゾン関連の作業は嫁任せでしたがサイトの運営として記載してます。読者満足度を考え関連書籍を記載します。【学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。】作業として10月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1889年2月7日 ~ 1976年4月4日】




アメリカに帰化したナイキスト


ナイキストはスウェーデンに生まれました。


1907年に家族がアメリカ合衆国に移り住み


その後、帰化しています。その時点でナイキストは


ハイスクール修了くらいでしょう。アメリカの名門


イェール大学を卒業した後に1917年からAT&T研究所


で研究します。その後にナイキストは


ベル研究所で研究します。


アインシュタインがブラウン運動で考えた様に、


ナイキストは微視的な分子の運動と巨視的に観測


される物理量の間の応答関係を考えています。


ベル研究所でナイキストは研究を進め


1926年にジョンソンが発見した熱雑音に対して、


「揺動散逸定理」を駆使して理論的な根拠を与えます。


そこでいう熱雑音とは揺らぎという言葉でも表現


されます。例えば交流電流が流れる時の熱雑音


を考えてみると、流れる交流の周波数に関わらずに


回路の設計とも無関係に電流が流れる時点で生じます。


熱雑音とはそうした性質を持つ物理量なのです。


 

 ナイキストの様々な業績


また、ナイキストは一方でFB増幅器の安定性を研究します。別途、特筆すべきは離散化された信号のサンプリングに関する処理手法でしょう。そのナイキストが提唱した周波数はナイキスト周波数と呼ばれ信号処理の世界では今や基礎的な理念となっています。実用的には2の8乗である256から考えて、2.56倍のサンプリング周波数を使い計測する事で(主流となっている回路設計では)ナイキスト周波数を保証しています。


また、彼の考案した「ナイキスト線図」は極座標を使い対象系の安定性を議論します。ナイキスト線図も系の安定性を考える為に現代の信号処理の世界で使われていて、今でも市販のアナライザーに機能として搭載されています。





英語が話せるようになる「アクエス」




以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ
イェール大学関連のご紹介へ
熱統計関連のご紹介


2020/11/10_初稿投稿
2021/10/20_改定投稿


詳しくはコチラへ→【テキストポン】


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Nyquist naturalized in the United States


Nyquist was born in Sweden. He has been naturalized since his family moved to the United States in 1907. At that point, Nyquist will have completed high school. He has been studying at the AT & T Institute since 1917 after graduating from the prestigious Yale University in the United States. Nyquist then studies at Bell Labs.


As Einstein thought in Brownian motion, Nyquist considers the response relationship between microscopic molecular motion and macroscopically observed physical quantities. At Nokia Bell Labs, Nyquist pursues his research and uses the "fluctuation-dissipation theorem" to provide a rationale for the thermal noise discovered by Johnson in 1926. The thermal noise there is also expressed by the word fluctuation. For example, considering the thermal noise when an alternating current flows, it occurs when the current flows regardless of the frequency of the flowing alternating current and regardless of the circuit design. Thermal noise is a physical quantity that has such properties.


Various achievements of Nyquist


Nyquist also studies the stability of FB amplifiers, on the other hand. Separately, what should be noted is the processing method related to sampling of discretized signals. The frequency advocated by Nyquist is called the Nyquist frequency and is now a basic idea in the world of signal processing. Practically, considering from 256, which is 2 to the 8th power, the Nyquist frequency is guaranteed (in the mainstream circuit design) by measuring using a sampling frequency of 2.56 times.


In addition, his "Nyquist diagram" uses polar coordinates to discuss the stability of the target system. The Nyquist diagram is also used in the modern signal processing world to consider the stability of the system, and is still installed as a function in commercially available analyzers.

2021年10月19日

オットー・シュテルン
【1888年生まれ-10/19改定】

「シュテルン」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。原稿文字数は2634文字です。また、アマゾン関連の作業は嫁任せでしたがサイトの運営として記載してます。読者満足度を考え関連書籍を記載します。【学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。】作業として10月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1888年2月17日生まれ ~ 1969年8月17日没】




 戦時下の物理学者シュテルン


シュテルンはドイツ生まれの物理学者でナチスに追われ


アメリカへ移ります。シュテルンは先ず、ポーランドの


プラハ大学でアインシュタインに会い、


共にチューリッヒ工科大学に移ります。


気の合う議論相手だったのでしょうか。


調べを進めていくと共にユダヤ系である事情


が大きい気がしてきました。何より、


ホロコーストが実際に行われていた時代ですからね。


同じ恐怖と憤りを感じて反体制の話もしていたことでしょう。


シュテルンはドイツ本国で当時の感心事であった原子線の研究をします。実験の様子としては、温度をどんどんあげていって金属が光り出してからもさらに温度をあげていきます。例えば、具体的に金属を恒温槽の中にいれて小さな窓から出てくる様子を見るのです。



シュテルンの実験の様子 


その窓から連続して特定の粒子を放出する事で粒子の性質を明らかにしていきます。結果としてヴァルター・ゲルラッハと共に歴史的な実験を完成させました。この実験で注目されるのは「個別粒子の磁気的性質」です。加熱して蒸発させた銀の粒子をビーム状に放出した時にその粒子線に対して磁界をかけるのです。すると、粒子は二つに分かれて
一点だった輝点(粒子の当たった場所)が
二点の輝点となります。この事実は
粒子にスピンがある事で説明が出来るのです。


戦争に伴い、


ナチスにハンブルグ大学の


地位を追われたシュテルンは


アインシュタインと共に


1933年アメリカに亡命します。


戦後ナチス政権下で教授を続けた


ゲルラッハと対照的ですね。


最終的にはUCB
(カリフォルニア大学バークレー校)で
名誉教授を務めます。81歳の生涯でした。



〆 


英語が話せるようになる「アクエス」


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には返信・改定をします。


nowkouji226@gmail.com


2020/10/31_初版投稿
2021/10/19_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関連のご紹介へ
カリフォルニア大学関連のご紹介へ
ドイツ関連のご紹介

量子力学関係


詳しくはコチラへ→【テキストポン】


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Wartime physicist Stern


Stern is a German-born physicist who is chased by the Nazis and moves to the United States. Stern first met Einstein at the University of Prague in Poland and moved to the ETH Zurich together. Was he a friendly debate? As he proceeded with his investigation, I felt that he was of Jewish descent. Above all, it was the time when the Holocaust was actually taking place. He would have felt the same fear and resentment and talked about the dissident.


Stern will study atomic beams in Germany, which was a sensation at the time. In his experiment, he keeps raising the temperature even after the metal shines. For example, he specifically puts metal in a constant temperature bath and sees it coming out of a small window.



Stern's experiment


We will clarify the properties of particles by continuously emitting specific particles from the window. As a result, he completed his historic experiment with Walther Gerlach. The focus of this experiment is on the "magnetic properties of individual particles." When the heated and evaporated silver particles are emitted in the form of a beam, a magnetic field is applied to the particle beams. Then, the particle is divided into two and the bright spot (the place where the particle hits), which was one point, becomes two bright spots. This fact can be explained by the fact that the particles have spin.


Stern, who was displaced by the Nazis from the University of Hamburg due to the war, went into exile in the United States in 1933 with Einstein. This is in contrast to Gerlach, who continued to teach under the Nazi regime after the war.


He will eventually be an emeritus professor at UCB (University of California, Berkeley). He was 81 years old.


 

以下原稿を更新します。時代別・場所別・分野別に
リンクを入れます。ご覧下さい。【以下原稿です】




謎に包まれたピタゴラスの人生


ピタゴラスは古代ギリシャの数学者です。

皆さんもピタゴラスの定理(三平方の定理)

という言葉は聞いた事があると思います。

初等幾何学で出てくる話で、色々と応用が効きます。

同じギリシャのデモクラテスは朗らかなイメージ

なのに対し、ピタゴラスのイメージは暗く

謎に包まれています。トルコの辺りで生まれた

らしいと言われています。そして、

その後は現代に余り情報が残っていません。そもそもピタゴラスが組織したと言われた教団は秘密主義を徹底して、組織内の話しを外部に漏らすことを厳しく禁じました。実際に秘密結社ですから掟に背いた時は罰を受け、海に突き落とされたそうです。何度聞いても残酷な話しみたいで、その時代の人は泳げなかったから死刑に相当しました。たまたま漁師だった信者が浮かんでいたとしたら、船から棒で突かれたりしたのでしょう。こうした秘密主義の教団だったので、ピタゴラスの肖像画も見れませんし、遺稿も無いそうです。我々が垣間見れるのは2次情報で教団との関わりが無くなってきた御弟子さんの話とか著作物なのです。そうした2次情報によると、ピタゴラスの若い時代にはエジプトやインドを旅したりしていて、幾何学、天文学、算術、比率、宗教密儀、ゾロアスター教などに関わりピタゴラスは知識を深めました。

 ピタゴラスの独自性


ピタゴラスの考え方で特徴的なのは「あらゆる事象には数が内在している」という客観的な事実の提唱でした。確かに後の理解で整理すると、その時々に万物には質量があり、「固体・気体・液体」といった状態があり、空間上で占めている体積があって、その時の温度があります。そうした各種パラメターを使い、後の学者たちはそれぞれの関係を法則化して体系化していくのですが、それは後の話です。そうした議論の土壌をピタゴラスじは作っていきました。非常に大きな進歩だったと思えます。音楽の世界や天文の世界でも数か大きな役割を果たすことをピタゴラスは示したのです。

ピタゴラス学派の活動と顛末


エジプトでは幾何学と宗教の密儀を学び、フェニキアで算術と比率の知識を得て、ゾロアスター教の司祭のもとで学んだといわれています。そうした修行・研修の時期を過ごした後にイタリア半島を拠点とし活動しています。色々な人々をピタゴラスは言動で惹き付け、やがては沢山の弟子を集めピタゴラス学派(ピタゴラス教団)と呼ばれる団体を組織します。この組織にはいつしかパトロンが出来たりした時期もあったのですが、組織に対抗する人も出てきたりして、最終的には暴動を起こされてピタゴラスも殺されてしまったようです。

〆最後に〆





以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2021/10/07_初回投稿
2021/10/19_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イタリア関係のご紹介
ドイツ関連のご紹介
力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】


 

2021年10月18日

デモクリトスの原稿を改定します。そして、


イタリアにリンクを入れて時代別、力学関係に


それぞれリンクを入れます。ご覧下さい。


【以下原稿です】 





 原子論の始まり


デモクリトスは、古代ギリシアの哲学者です。苗字と名前がありそうだから調べてみたら見つかりません。この時代には未だ無いのかも知れません。何よりデモクリトスは初期の原子論を明確に示した人です。

デモクリトスはレウキッポスを師匠として、その理論を確立しました。ベルシャの僧侶やエジプトの神官に学び、果てはインドやエチオピアで出かけて見聞を広めたそうです。そんな活動的な人生を歩んでいて、仕舞いには生活に困るようになってしまい、最後は故郷のご兄弟に扶養の世話になっていたそうです。ただ死後はデモクスの著作物の公開朗読によって多額の贈与を受け国葬されたと伝えられています。

デモクラテスは哲学、詩学、倫理学、数学、天文学、音楽、生物学などで博識を示し、「知恵 (Sophia)」の異名を受けていました。私の視点では(物理学の観点から)原子論を創り出した点が特に重要です。

物質根源への定性的アプローチ 


物質の根元についての学説は、(後の)アリストテレスが完成させた四大元素(火・空気・水・土)が別途あって、時代ごとに原子論か四代元素かのどちらかが主流となって人々は根源物質を考えていました。デモクラテス以後、原子論は長らく反主流でしたが、ジョン・ドルトンの時代に彼によって優勢となりました。【ドルトン以降の原子論は、デモクリトスの説と全く同じではありません。】対象原子の質量やサイズに関する議論は無かったようですが、物質の根源物質を原子として考えて、元素の種類があると考えたのです。実際には核反応で原子は変化していきますが、日常生活を支えている物質が「元素」という最少単位を使って表現出来るとデモクラテスは議論していったのです。化学的手段が無い時代に、こうした基礎知見を確立できたのは驚くべき考察録です。デモクラテスの導き出した洞察は後の物理学の発展に大きく寄与しました。どんどん現在でも知識が深められているのです。


〆最後に〆





以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2021/10/06_初版投稿
2021/10/13_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イタリア関係のご紹介
ドイツ関連のご紹介
力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】

シュレディンガー
【1887年生まれ-10/18改定】

「シュレディンガー」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。原稿文字数は5663文字です。また、アマゾン関連の作業は嫁任せでしたがサイトの運営として記載してます。読者満足度を考え関連書籍を記載します。【学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。】作業として10月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1887年8月12日生まれ ~ 1961年1月4日没】




シュレディンガーの生い立ち


シュレディンガーはオーストリア=ハンガリー帝国


に生まれました。彼はその父に影響を受けた


言われていますが、その父とははバイエルン王国


に生まれ広い教養をもった人だったようです。その点が、


シュレディンガーの性格に影響しているかと思われます。


色々調べるにつけ分かってくるのですが、


シュレディンガーの考えは物理学の枠に囚われない


所があります。未知の事象を捕まえていく際に、


また対象を色々な視野から洗い出していく際に、


活用できるような「考え方のモデル」が


沢山作られていったのでしょう。


他の人が作りえないような独自のモデルを作るという


大きな目標が物理学にはあります。



シュレディンガーの猫


シュレディンガーは猫の例えで有名です。


具体的には「量子力学的現象」と連動して


「猫を毒殺する仮想実験」を議論しました。


議論の帰結としてミクロな物理現象が


確率的な実在として表現出来るという


シュレディンガーの解釈が完成したのです。


具体的には


空間的に広がる確率波を数学的に考えていきます。


確率波の時間発展はシュレディンガー方程式


と呼ばれ量子力学の基礎方程式となるのです。私は


大学院時代にそこから考え始めて超伝導現象に挑みました。


新しい現象理解に繋がっていったのです。


今もその枠組みで議論がされています。


世界中で議論がされています。



シュディンガ―音頭


こぼれ話となりますが、若手の物理学者の


勉強会である「物性若手夏の学校」


ではシュレディンガー音頭という歌があり


Ψ(ぷさい)とφ(ふぁぃ)を取り入れて


楽しげに、形の違いを確認出来ます。


英文で表記したりする時にこの二つは似ていて


混同しがちなのですが、直ぐに思い出せます。


シュレディンガー音頭で手のひらを


上にあげる方がΨです。一度踊ると


踊った人は一生忘れません。 



シュレディンガー形式 


そうした量子力学の表現形式としては、


ハイゼンベルク形式(描像)と


とシュレディンガー形式があり、


その2つは完全に等価です。数学の側面から


大まかに表現すると、ハイゼンベルク形式は


ヒルベルト空間上の行列とベクトルを使い、


シュレディンガー形式では同空間での


演算子と波動関数を使います。共に


直感に響く側面を持ち相補して


全体を補い合うのですが、私には


「粒子の二面性を感じる時などに初学者が


イメージを作る段階」ではシュレディンガー形式


が適していると思われました。そんな記述を


シュレディンガーは纏めたのです。



ボルツマンとシュレディンガー


最後に、もう一度シュレディンガーの人となり


に話を戻したいと思います。シュレディンガー


はウィーン大学でボルツマンの後任であるハゼノール


の教えを受けていて、ボルツマンと関わりが出来たのです。


彼はボルツマンの示した道筋を


受け継いでいた人でした彼はボルツマンに対して


い想いを持っていました。曰く、


「ボルツマンの考えた道こそ
科学に於ける
私の初恋
と言っても良い亅_


【万有百科大事典 16 物理・数学の章より引用しました。】


いわば、ボルツマンが完全に確立出来なかった原子論を


シュレディンガーは彼らしい表現方法で具現化したのです。


また、


ボルツマンを中心に考えると、もう一人の弟子である


エーレンフェストが思い浮かびます。


彼は統計力学の切り口から原子の表現に挑みました。


エーレンフェストの定理は個別粒子の運動を


分かり易い形で記述すると思えます。


他方でシュレディンガーは波動的側面から


原子の表現に挑みました。量子力学の初学者がこの二人の


どちらを先に知るかといえばシュレディンガーでしょう。


量子力学の議論の範囲で説明出来るからです。


大学ごとの教育カリキュラムで別途統計関係の講義


との兼ね合いも考えなければいけません。ただ、


歴史的にはシュレディンガーの理解が後なのです。


そして二人ともボルツマンの考えを受け継いでいるのです。



英語が話せるようになる「アクエス」


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。


nowkouji226@gmail.com


2020/08/16_初稿投稿
2021/10/18_原稿改定


舞台別のご紹介
時代別(順)のご紹介

オーストリア関連のご紹介
ウィーン大関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】




(2021年10月時点での対応英訳)



Schrodinger's upbringing


Schrodinger was born in the Austro-Hungarian Empire. He is said to have been influenced by his father, who seems to have been born in the Kingdom of Bavaria and well-educated. It seems that this influences Schrodinger's personality. As you can see from various investigations, Schrodinger's idea is not bound by the framework of physics. It seems that many "models of thinking" have been created that can be used when capturing unknown events and when identifying objects from various perspectives. Physics has the big goal of creating unique models that no one else can.



Schrodinger's cat


Schrodinger is famous for the analogy of cats. Specifically, we discussed "a virtual experiment to poison cats" in conjunction with "quantum mechanical phenomena". As a result of the argument, Schrodinger's interpretation that microscopic physical phenomena can be expressed as stochastic reality has been completed. Specifically, he mathematically considers the probability waves that spread spatially. The time evolution of stochastic waves is called the Schrodinger equation and becomes the basic equation of quantum mechanics. When I was in graduate school, I started thinking about it and challenged the superconducting phenomenon. It led to a new understanding of the phenomenon. Discussions are still being held within that framework. There is debate all over the world.



Shudinger Ondo


It's a spillover story, but at the study session for young physicists in Japan, "Schrödinger Young Summer School," there is a song called Schrodinger Dance, and Ψ (Psi) and φ (Phi) are incorporated to happily confirm the difference in shape. can. When writing in English, the two are similar and often confused, but I can easily remember them. It is Ψ to raise the palm up with Schrodinger dance. Once you dance, you will never forget the person who danced. Twice



Schrodinger format


There are two forms of expression of such quantum mechanics, the Heisenberg form (picture) and the Schrodinger form, and the two are completely equivalent. Roughly speaking from a mathematical point of view, the Heisenberg form uses matrices and vectors in Hilbert space, and the Schrodinger form uses operators and wavefunctions in the same space. Both have intuitive aspects and complement each other to complement each other, but I think that the Schrodinger format is suitable for "the stage where beginners create images when they feel the duality of particles". rice field. Schrodinger put together such a description.



Boltzmann and Schrodinger


Finally, I would like to return to Schrodinger's personality. Schrodinger was taught by Hazenor, Boltzmann's successor, at the University of Vienna, and was able to get involved with Boltzmann. He was the one who inherited the path Boltzmann showed. He had a passion for Boltzmann. He says


"The way Boltzmann thought
In science
My first love
You can say that _


[Encyclopedia of Banyu 16 Quoted from the chapter on physics and mathematics. ]


So to speak, Schrodinger embodied the atomism that Boltzmann could not completely establish in his own way of expression. Also, when we think about Boltzmann, I think of another disciple, Ehrenfest. He challenged the expression of atoms from the perspective of statistical mechanics. Ehrenfest's theorem seems to describe the motion of individual particles in an easy-to-understand manner. Schrodinger, on the other hand, challenged the expression of atoms from the wave side.


Schrödinger is the first to know which of these two scholars of quantum mechanics knows first. This is because it can be explained within the scope of the discussion of quantum mechanics. In the educational curriculum of each university, it is necessary to consider the balance with the lectures related to statistics. However, historically, Schrodinger's understanding was later. And both of them inherit the idea of ​​Boltzmann.


 

2021年10月17日

ニールス・ボーア
【1885年生まれ-10/17改定】

「ボーア」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。原稿文字数は7624文字です。また、アマゾン関連の作業は嫁任せでしたがサイトの運営として記載してます。読者満足度を考え関連書籍を記載します。【学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。】作業として10月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1885年10月7日生まれ ~ 1962年11月18日没】




ボーアの生い立ち


ボーアは量子力学の発展で需要な役割を果たしました。


ソルベー会議でも議論の中心に居て、TOP画で


使っている写真では中列右端に立っています。


北海に面したユトランド半島および、その近辺の


多くの島々からなる立憲君主制国家である、


デンマーク王国にボーアは生まれました。


若い時代にはアマチュアサッカー選手リーグの


ABコペンハーゲンでゴールキーパーを務めていた


という一面もあります。ボーアはそんな人でもあるんです。



ボーアと原子論


そしてボーアは前期量子論において先駆的な理論


を提供し続けました。ボーアは当時、不完全であった


原子像を洗練させて独自の原子模型を提唱します。


先ず1911年にイギリスへ留学し、J・J・トムソン


ラザフォード_の元で原子核に対する基礎知識を吸収して


先進的な考察を進めていきます。そもそも光学顕微鏡で


見えないほど小さいレベルにまで議論が進んでいくのですが、


その世界に対して、考察を止めることなく幾多の議論を重ね、


量子力学を確立していきます。例えば今でも原子の大きさを


議論する時に「ボーア半径」という言葉を使います。


この言葉はこの時代に確立された概念です。


その後、ボーアはイギリスから帰国後に幾多の仲間を


コペンハーゲンに集め、コペンハーゲン学派と呼ばれた


仲間を形成します。そこでまとまった解釈は


コペンハーゲン解釈と呼ばれるようになり、


それまでの物理学でのスタイルを変えていきます。



ボーアとコペンハーゲン解釈 


コペンハーゲン解釈は微視的世界での


「観測に対する考え方」です。光学顕微鏡で


微細な世界を覗いても分解能の問題でどうしても


画像がぼやけてしまう「限界」にいきつきます。


アルファー線やベータ―線といった粒子線を純度の高い物質に当てて光路から内部構造を予想しようとする試みも色々な形で繰り広げられました。日本では寺田寅彦の時代にそうした解析が行われています。そうした蓄積を辻褄(つじつま)の合う理論で結びつける体系が必要とされていたのです。


目で見て取れる現象は顕微鏡の分解能の範囲で終わってしまいます。実際にはそれ以下の大きさで繰り広げられる現象が存在していて、観測しようとして光を当てると(光子を作用させると)、「観測する事情」で「状態をかき乱してしまう」のです。位置と運動量の微視的分解能の限界をA・アインシュタインと論じた話などが残っています。


また段々に分かってくるのですが、後にパウリが示すスピンの自由度も電子は持っていて、軌道半径だけをイメージして議論すれば話が終わる訳ではないのです。


その中でボーアは本質的な「ボーアの量子化条件」を用いて様々な現象を説明してみせます。長さスケールで10の‐23乗メートルのスケールでの議論では「位置等の観測値」が「とびとびの値」を示すのですが、その事象を現実世界での本質的な性質であると提唱したのです。


原子半径、磁気的性質も現代では、その形式で考えるが方がわかりやすい訳です。師であるラザフォードの原子モデルに改良を加えてボーアモデルを作りあげます。



そして晩年


ボーアはデンマーク最高の勲章である


エレファント勲章を受けています。


その際には東洋密教で使う陰陽のマーク


を模してボーア家の紋章を


デザインしたと言われています。


また、英国の王立協会では


外国人会員の栄誉を受けていました。



英語が話せるようになる「アクエス」


以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/08/31_初版投稿
2021/10/17_改定投稿


纏めサイトTOP
舞台別のご紹介
舞台別のご紹介
時代別(順)のご紹介
デンマーク関係
イギリス関係

ケンブリッジ関連
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Bohr's upbringing


Bohr played a demanding role in the development of quantum mechanics. He was also at the center of the discussion at the Solvay Conferences, standing at the right end of the middle row in the photo used in the TOP picture.


Bohr was born in the Kingdom of Denmark, a constitutional monarchy of the Jutland Peninsula facing the North Sea and many of its surrounding islands. On the one hand, he was a goalkeeper in the amateur soccer player league, AB Copenhagen, when he was young. Bohr is also such a person.



Bohr and Atomism


And Bohr continued to provide pioneering theories in old quantum theory. Bohr refines the imperfect atomic image at the time and proposes his own atomic model.


He first studied abroad in England in 1911, and under the guidance of JJ Thomson and Rutherford, he absorbed basic knowledge about atomic nuclei and proceeded with advanced consideration. In the first place, the discussion goes to a level that is too small to be seen with an optical microscope.


He continues to discuss the world with many discussions and establish quantum mechanics. For example, he still uses the term "Bohr radius" when discussing the size of an atom. This word is a concept established in this era.


After returning from England, Bohr gathered many friends in Copenhagen to form a group called the Copenhagen School. The collective interpretation came to be called the Copenhagen interpretation, changing the style of physics up to that point.



Bohr and Copenhagen Interpretation


The Copenhagen Interpretation is the "thinking about observation" in the microscopic world. Even if you look into the minute world with an optical microscope, you will reach the "limit" where the image will be blurred due to the problem of resolution.


Attempts to predict the internal structure from the optical path by applying particle beams such as alpha rays and beta rays to high-purity substances have also been made in various forms. In Japan, such an analysis was carried out during the time of Torahiko Terada. There was a need for a system that would connect such accumulations with a theory that fits Tsujitsuma.


Phenomena that are visible to the eye end up within the resolution of the microscope. Actually, there is a phenomenon that unfolds in a size smaller than that, and when light is applied to observe it (when photons act), it "disturbs the state" due to "observation circumstances". There is a story that discusses the limit of microscopic resolution of position and momentum with A. Einstein.


Also, as we gradually understand, electrons also have the degree of freedom of spin that Pauli shows later, and the discussion does not end if we discuss only by imagining the orbital radius.


In it, Bohr explains various phenomena using the essential "Bohr's quantization condition". In the discussion on the scale of 10-23 meters on the length scale, "observed values ​​such as position" indicate "staggered values", but we propose that the phenomenon is an essential property in the real world. I did.


In modern times, it is easier to understand the atomic radius and magnetic properties in that format. He will improve the atomic model of his teacher, Rutherford, to create the Bohr model.



And his later years


Bohr has received the Order of the Elephant, Denmark's highest medal. At that time, he is said to have designed the coat of arms of the Bohr family, imitating the Yin-Yang mark used in Oriental esoteric Buddhism. He also received the honor of a foreign member at the Royal Society of England.