アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2024年10月 >>
    1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31    
最新記事
最新コメント

2021年11月11日

ニコライ・N・ボゴリューボフ
【1909年生まれ-11/11改定】

「ニコライ」の原稿を投稿します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1909年8月21日 ~ 1992年2月13日】




ロシアの物理学者


名前から分かるかとおもいますが、


ボゴリューボフはロシアの物理学者です。


本稿を記載するにあたり改めてボゴリューボフ


の「人となり」を調べてみましたが


伝わっていません。その名で検索をかけると


私のブログが上位に出てきてしまう有様です。


ボゴリューコフは20世紀初頭の生まれなので


革命前後のソビエト連邦で青年期を迎え、


閉鎖的な学会環境で研究を進めていたと


考えるべきなのでしょう。因みに、


プランクメダルを受けていますので


ドイツ関係の画像を使っています。



ボゴリューボフの業績


何よりも、数学的に


ボゴリューボフ変換と呼ばれる考えを打ち出し


行列形式で表される状態遷移を対角化する事で


表現していると言えるでしょう。


別言すれば、観測にかかる定常状態を
数学手法を使って作りだしています。

つまり、数学的にいう固有値問題に帰着させて
定常的な状態を表現しているのです。


数学的な作業をしてみた結果が
どういった現象に対応しているか
物理的に説明する事が出来るのです。 


この定常状態を使い、ボゴリューボフは
現実にヘリウムの超流動状態を表しました。
ボーズ粒子の超流動をボゴリューボフ変換で示し
フェルミ粒子の超電導をボゴリューボフ変換で
示す訳です。役にたちますね。









以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/08_初稿投稿
2021/11/11_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
ドイツ関連のご紹介
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Russian physicist


As you can see from the name, Bogoliubov is a Russian physicist. In writing this article, I re-examined Bogoliubov's "becoming a person", but it has not been conveyed. If you search by that name, my blog will appear at the top. Since Bogoryukov was born in the early 20th century, it should be considered that he was adolescent in the Soviet Union before and after the revolution and was conducting his research in a closed academic environment. By the way, he has received a Planck medal, so he uses images related to Germany.



Bogoliubov achievements


Above all, it can be said that he mathematically expresses the idea called Bogoliubov transformation by diagonalizing the state transitions expressed in the form of a matrix.


In other words, the steady state of observation
It is created using mathematical methods.
In other words, reduce it to the mathematical eigenvalue problem.
It represents a steady state.


The result of doing mathematical work
What kind of phenomenon is supported
It can be explained physically. Twice


Using this steady state, Bogoliubov
He actually represented the superfluid state of helium.
Bogoliubov transformation shows the superfluidity of boson particles
Superconductivity of fermions by Bogoliubov transformation
It is a translation to show. It will be useful.


アイザック・バロー
【1630年生まれ-11/11改定】

以下、バローの原稿を改定します。


大きな変更はありません。ページリンクと


装丁の改定が主です。


ご覧下さい。(以下原稿です)


【1630年10月生まれ ~ 1677年5月4日没】




 バローとルーカス職


今回のご紹介するバロー教授は
イギリス・ケンブリッジ大学の数学者です。
バローはケンブリッジ大学での
ルーカス教授職に初めて任命されています。
ルーカス職とはケンブリッジ内大学の称号(職位)で
クール(Cool)な物理学者に国王から贈られる称号です。
特に数学系の理解が高い人に贈られます。



 筆者とバローの出会い


私がバローの名を初めて知ったのは
高校の時の英語の教材で、
次の様な文章だった気がします。


Just under three hundreds years ago,
the professor of mathematics
at Canbride did distinctly unusual
thing. He decided one of his pupil was..…


上記英文での教授がバロー先生で
その後に出てくる弟子(生徒)がニュートン
なのです。バローはニュートン
ルーカス職を譲ります。彼の方が
職位に相応しいと判断したのです。


異例な判断だったようですが
その後のニュートンの業績を考えると
バローの判断は素晴らしいと分かります。
因みに、その後名誉あるルーカス職は
ディラック
ホーキング

引き継いでいきます。



 バローの業績


上記、英語の文書が書かれた時代
から更に時代は進んでますが、
バローの残した業績は物理学のみ
ならず、工学、ひいては産業に
大きな成果を残しています。


具体的にバローが残した業績で
特筆すべきは微分と積分が
真逆の数学的行為であると幾何学的
に証明した事だと言われています。
今では当たり前なのかも知れません
がバローが整理、体系化した結果
なのです。



〆最後に〆


効果がものすごい高い英会話「アクエス」


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/06_初稿投稿
2021/11/11_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
ケンブリッジのご紹介


【このサイトはAmazonアソシエイトに参加しています)】


【2021年8月時点での対応英文】



 Barrow and Lucas


Professor Barrow is a mathematician at the University of Cambridge, England. Barrow has been appointed for the first time as a Lucas professor at the University of Cambridge. The Lucas professor is the title (position) of the University of Cambridge and is given by the king to a cool physicist. It is especially given to those who have a high understanding of mathematics.



 My Memory


The first time I learned the name of Barrow was in English teaching materials when I was in high school, and I think it was the following sentence.


Just under three hundreds years ago,
the professor of mathematics
at Canbride did distinctly unusual
thing. He decided his pupil his was ..…


The professor in English above is Mr. Barrow, and the disciple (student) who appears after that is Newton. Barrow hands over Lucas to Newton. He decided that he was more suitable for his position.


It seems that it was an unusual decision, but considering Newton's subsequent achievements, Barrow's decision is wonderful. By the way, Dirac and Hawking will take over the prestigious Lucas profession after that.



 Barrows work


Although the times have progressed further from the time when the above English documents were written, Barrow's achievements have made great achievements not only in physics but also in engineering and eventually in industry.


Specifically, it is said that what is remarkable about the achievements left by Barrow is that he geometrically proved that differentiation and integration are the opposite mathematical acts. It may be natural now, but it is the result of Barrow's organization and systematization.


 

2021年11月10日

ジョン・バーディーン
【1908年生まれ-11/10改定】

「バーディン」の原稿を投稿します。英訳も加え、原稿文字数は4571でした。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1908年5月23日 ~ 1991年1月30日】



超電導現象の理論的基礎


本稿は何度も追記したいです。


それは私にとって、関心のある


低温電子物性の話だからです


今回は極低温での現象理解を進めた


バーディンについてご紹介致します。


バーディンは二回のノーベル賞を受けています。


一回目はベル研での仲間とのトランジスタの発明、


二回目は以下に記載するBCS理論です。


前述したカメリー・オネスの超電導現象の発見以後、


その現象を説明する為に色々な理論が試みられ


たでしょうが、イリノイ大学のバーディンを中心


とした3人がBCS理論を確立します。バーディン、


レオン・クーパーロバート・シュリーファー  


3人の名前の頭文字を並べてBCS理論と呼ばれます。


このコンビの始まりはバーディンがクーパーを招聘する事から始まります。そこにバーディン研究室の大学院生、シュリーファー が加わり研究が進みます。



BCS理論とは 


BCS理論の内容はフォノン(音子)を介した電子が対になった結果(クーパ対の考え方)、そのコンビがスピンを打ち消し合って結合するという理論でした。相転移温度をその理論で説明し、今日、超伝導を考えるうえで理論の基礎となっています。このBCS理論の妙はフェルミオンである電子が凝縮状態をとるところにあります。本来、同じ状態をとる事が出来ない電子が対になってボゾン化することで巨視的な現象にとして観察される超伝導現象が実現するのです。


そもそも、金属中を移動する電子を単純な質点のモデルで考えると正の荷電をもった原子核の間を負の電荷が自由自在に無抵抗で動き回る事は到底出来ません。何らかの相互作用が起きて抵抗に繋がります。ところが、電子の波動関数を考え、波動的側面が顕著に現れる状態を作っていくのが超伝導現象だと言えます。その条件として大事な尺度の一つが温度だったのです。現時点での関心は遷移を起こす温度のメカニズムを解明する事です。現在での転移温度は高温超電導と言ってもマイナス百℃以下ですので転移温度に至るまでは液体ヘリウムや液体窒素を使って冷却しなければいけません。



超電導現象の応用 


実用化しているリニアモーターカーや量子コンピューター等の応用技術も冷却した上で超電導現象を実現しているので、コストと安定性が課題となっています。転移温度が変わっていって、より常温に近い温度で現象を起こすことが出来ればメリットは非常に大きいです。温度に関わるメカニズムとして中嶋貞雄がバーディンに与えたヒントが繰り込み理論の応用でした。そのヒントは手法だったともいえますが、電気伝導に関わる要素(素粒子)が「どういった条件で」、「どういった役割を果たすか」が重要です。その手掛かりの一つが「ゆらぎ」に関するメカニズムではないかと考えている人が居ます。今後の大きな課題です。





以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/15_初稿投稿
2021/11/10_改定投稿


効果がものすごい高い英会話「アクエス」

舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関連のご紹介へ
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Theoretical basis of superconducting phenomenon


I would like to add this article many times. That's because it's about the low-temperature electronic characteristics that I'm interested in. This time, I would like to introduce Birdin, who has advanced the understanding of the phenomenon at extremely low temperatures.


Birdin has received two Nobel Prizes. The first is the invention of the transistor with his colleagues at Bell Labs, and the second is the BCS theory described below. Since the discovery of the superconducting phenomenon of Camery Ones mentioned above, various theories may have been tried to explain the phenomenon, but three people led by Birdin of the University of Illinois establish the BCS theory. Bardeen, Leon Cooper, and Robert Schrieffer are called BCS theory by arranging the initials of the three names.


The beginning of this duo begins with Birdin inviting Cooper. Schrieffer, a graduate student from the Badin laboratory, will join the group to advance the research.



What is BCS theory?


The content of BCS theory was the theory that as a result of pairing electrons via phonons (sounds) (the idea of ​​Cooper pairs), the combinations cancel each other out and combine. The phase transition temperature is explained by the theory, and today it is the basis of the theory when considering superconductivity.
The mystery of this BCS theory is that the fermion electrons take a condensed state. Originally, electrons that cannot take the same state are paired and bosonized, and the superconducting phenomenon observed as a macroscopic phenomenon is realized.


In the first place, considering the electrons moving in a metal as a simple mass model, it is impossible for a negative charge to move around freely and without resistance between nuclei with a positive charge. Some interaction occurs and leads to resistance. However, it can be said that the superconducting phenomenon is to create a state in which the wave function appears prominently by considering the wave function of electrons. One of the important measures for that condition was temperature. At this time, the interest is to elucidate the temperature mechanism that causes the transition. At present, the transition temperature is less than minus 100 ° C even if it is called high-temperature superconductivity, so it is necessary to cool it with liquid helium or liquid nitrogen until the transition temperature is reached.



Application of superconducting phenomenon


Since the superconducting phenomenon is realized after cooling the applied technologies such as linear motor cars and quantum computers that have been put into practical use, cost and stability are issues. If the transition temperature changes and the phenomenon can occur at a temperature closer to room temperature, the merit is very great. The hint given to Bardeen by Sadao Nakajima as a mechanism related to temperature was an application of renormalization theory. It can be said that the hint was a method, but "under what conditions" and "what role" the elements (elementary particles) involved in electrical conduction play are important. Some people think that one of the clues is the mechanism related to "fluctuation". This is a big issue for the future.

クリスティアーン・ホイヘンス
【1629年生まれ-11/10改定】

以下にホイヘンスの原稿を改定します。


オランダで時代を作った人ですよね。


初めの時点での困難を乗り越えていった人です。


ご覧下さい。【以下原稿です】


【1629年4月14日‐1695年7月8日】




ホイヘンスの生い立ち


オランダの名家にホイヘンスは生まれ、ライデン大学では


数学と法律を修めました。物理学はその知見を活かす


フィールドだったとも言えます。特に


数学で優秀さを発揮していたと言われています。


光学でのモデルは幾何学的なイメージを


しっかり作ると分かり易く,話が整理しやすいのです。



ホイヘンスの業績


物理学関係の業績としては特に、光学での業績が


顕著です。所謂、ホイヘンスの原理は後の物理学者達


が波動を考えていく上でとても有益だった筈です。


波の性質が突き詰められていき、縦波とか横波とか周波数とか周期とか最終的には波面や、さざ波も、光も同じ定数で表現出来る現象となるのです。この理解が重ね合わせの原理の土台として役立ち、振動解析や音階解析へと話が進んでいくのです。



ホイヘンスに繋がる人脈


更に今世紀初頭にエーレンフェストアインシュタインがホイヘンスの母校であるライデン大学で議論していた事を鑑みると、人々の繋がりに小さな感動さえ覚えます。加えてライデン大学ではローレンツカメリー・オネスも研究を進めていくのです。


科学での一番最初の障壁は一般化を含めた理解だ


と感じます。一般の人々にも説明出来る


「言葉」を出来るだけ沢山、科学者が


作り出すことが大事です。その点で


ホイヘンスは初めの難しさを超えたのです。


 

その他の業績


別途、ホイヘンスは土星の衛星タイタンの発見したり、振り子の原理を理解して時計を制作したり、オリオン大星雲を発見してスケッチしたり、その進取の精神には驚かされます。特に1675年に世界で初めて火薬を使った往復型の内燃機関を形にしているそうです。ニュートンのプリンキピア刊行が1687年ですので、「瞬時に伝番していく撃力」に関する考察を、ホイヘンスが独自に形にしていると想定されます。特筆すべき一面かと思えます。


なお、いわゆるエーテルの存在をホイヘンスは想定して


後の物理学に議論の土壌を残しました。


この功績も非常に重要だと思います。



〆最後に〆


 

効果がものすごい高い英会話「アクエス」


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/18_初版投稿
2021/11/10_改定投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
オランダ関係の紹介へ       
ライデン大学のご紹介へ
電磁気学の纏め
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(以下は2021年8月時点での対応英訳です)



Base of LIFE


Huygens was born into a well-known Dutch family and studied mathematics and law at Leiden University. It can be said that physics was a field where he could make use of his knowledge. He is especially said to have showed his excellence in mathematics. An optical model is easy to understand if you make a solid geometric image, and it is easy to organize the story. His physics-related work is particularly remarkable in "Optics". The so-called "Huygens principle" should have been very useful for later physicists to think about waves.



His work


The nature of the wave is scrutinized, and it becomes a phenomenon that the longitudinal wave, the transverse wave, the frequency, the period, and finally the wavefront, the ripples, and the light can be expressed by the same constant. This understanding serves as the basis for the principle of superposition, and the discussion progresses to vibration analysis and scale analysis.



His reration


Also, given that Ehrenfest and Einstein were discussing at Leiden University, Huygens' alma mater, at the beginning of this century, I am even impressed by the connections between people. In addition, Leiden University will also pursue research by Lorenz and Kamerlingh Ones.


I feel that the very first barrier in science is understanding, including generalization. It is important for scientists to create as many "words" as possible that can be explained to the general public. In that respect, Huygens surpassed his initial difficulties.



His other works


You will also be amazed at the enterprising spirit of discovering Saturn's moon Titan, understanding the principles of the pendulum to make watches, and discovering and sketching the Orion Nebula. Especially in 1675, it is said that the world's first reciprocating internal combustion engine using gunpowder was formed. Since Newton's Principia was published in 1687, it is assumed that Huygens has uniquely shaped his thoughts on "instantaneous transmission power." I think this is a noteworthy aspect.


Huygens also left the ground for debate in later physics, assuming the existence of so-called ether. I think this achievement is also very important.

2021年11月09日

レフ・D・ランダウ
【1908年生まれ-11/9改定】

「ランダウ」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。原稿文字数は7075文字です。また、アマゾン関連の作業は嫁任せでしたがサイトの運営として記載してます。読者満足度を考え関連書籍を記載します。【学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。】作業として10月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1908年1月22日生まれ ~ 1968年4月1日没】




レフ・ダヴィドヴィッチ・ランダウ


その名をフルネームで表記すると、


レフ・ダヴィドヴィッチ・ランダウです。


ランダウは有名なユダヤ系ロシア人の


科学者で日本でも教科書を目にしたことが


あるのではないでしょうか。1962年に


「絶対零度近傍でのヘリウムの理論的研究」


でノーベル物理学賞を受けています。


さて、ランダウは石油技術者の父と教育者の母


から生まれます。12歳で微分法を理解し、


14歳で国立大学に入学、物理数学科と化学学科


を同時に履修します。19歳で学士の称号を


得るとレニングラード物理工学研究所で


電磁場の中での電子性質である量子電磁気学


を研究していきます。そしてコペンハーゲン


にあるボーアの研究所で大きな影響を受けました。



ランダウの主な業績


その後、ケンブリッジでディラック・カピッツァと共同研究を進め所謂「ランダウ反磁性」の研究をまとめます。その後にチューリッヒでパウリと共同研究をした後にランダウはレニングラードに戻りました。


ランダウの幸せだった時期を中心に記載しましたがモスクワの研究所で要職を務めていながらスターリン批判をしたことで、刑務所に服役したりしています。そして交通事故にあったりもしています。水素爆弾の製造にも不本意ながら加担しています。そして60歳でこの世を去ります。


ただ、ランダウの業績は不変です。準粒子・フェルミ流体やギンツブルグ&ランダウ理論は低温凝縮系の世界を大きく進ませました。




英語が話せるようになる「アクエス」


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に関しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/09/24_初稿投稿
2021/11/09_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介へ
ケンブリッジ大学のご紹介へ
イギリス関係のご紹介
デンマーク関係
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


 

(2021年11月時点での対応英訳)



Lev Davidovich Landau


The full name is Lev Davidovich Landau. Landau is a well-known Jewish-Russian scientist who may have seen textbooks in Japan. He received the Nobel Prize in Physics in 1962 for his "Theoretical Study of Helium Near Absolute Zero". Now, Landau is born of a father of oil engineers and a mother of educators. He understood differential calculus at the age of 12, entered a national university at the age of 14, and he took both physical mathematics and chemistry at the same time. When he earned his bachelor's degree at the age of 19, he studied quantum electrodynamics, which is an electronic property in an electromagnetic field, at the Leningrad Institute of Physical Engineering. And I was greatly influenced by Bohr's laboratory in Copenhagen.



Landau's main achievements


He then collaborated with Dirac Kapitsa in Cambridge to conclude his so-called "Landau diamagnetism" research. Landau then returned to Leningrad after collaborating with Pauli in Zurich.


I mainly described Landau's happy times, but he was sentenced to jail for criticizing Stalin while he was in a key position at a research institute in Moscow. And he is also in a car accident. He is also reluctantly involved in the production of hydrogen bombs. And he died at the age of 60.


However, Landau's performance remains unchanged. Quasiparticle-Fermi liquid theory and Ginzburg-Landau theory have made great strides in the world of low-temperature condensate systems.


ロバート・ボイル【1627年生まれ-11/9改定】

「ボイル」の原稿を投稿します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1627年1月25日生まれ ~ 1691年12月31日没】


【1627年1月25日生まれ ~ 1691年12月31日没】




アイルランドの貴公子ボイル


その名は正確には


サー・ロバート・ボイル: Sir Robert Boyle_


英国アイルランド生まれの物理学者です。


初代コーク伯爵リチャード・ボイルと


キャサリンの間に7番目の男子として生まれ


アイルランド現地の家庭に里子に出されます。


その結果、ボイルはアイルランド語を


理解し、通訳レベルまで習得しました。


ボイルはフランス人の家庭教師と


海外旅行をしていて、1641年冬には


イタリアのフィレンツェで過ごし、


ガリレオ・ガリレイの教えを受けます。


ガリレオは1642年に亡くなりますが、


まさに晩年のガリレオと接したのですね。


今の日本人ならボイルは中学生の年齢でしょうか。


多感な時期に良い刺激を受けた事でしょう。



帰国後のボイル


1644年に大陸の長旅を終えるとボイルは


多くの時間を科学に使い、後の王立協会


に繋がる集まりである「ロンドン理学協会」、


別名、「不可視の学院」とも呼ばれた集まりに


参加するようになります。


ボイル家の先代が亡くなって


いましたので、ボイルはアイルランドでの


立場もあったのですが、ロンドンで頻繁に


会合が開かれた事情もあり、ボイルは最終的には


オックスフォードに移り住みます。


実験器具が入手し辛いといった切実な


側面もあったようです。



ボイルとその法則


その後、フックを助手としてボイルは空気


ポンプを制作して圧力の研究を始めます。


フランスのパスカルが同じ時代に研究をしていること


を考えると当時の物理学会での関心が


圧力にあった事が分かりますね。ニュートン力学


が成立していない時代には「力を加える」こと


よりも「圧力を加える」方が定量的に現象を把握出来る


作業だったとも言えるでしょうか。フック


ボイルの助手なので、ばねに関わる力の定式化が


出来ていないと思われます。そんな時代に力は


重力と関連して評価するしかなかったのでしょうか。


個人的に関心を持ってしまいました。


やがてはボイルの研究は圧力と体積との関係を


示す、ボイルの法則に繋がります。


ただ1660年迄にボイルは


「体積は圧力に反比例する」と明言していて、


書物での記録はあるようですが、


温度や分子量との関連を含め、


現象の定式化には至らなかったようです。


『実際の定式化はヘンリー・パワー


Henry Power FRS (1623–1668))によって


1661年になされているようです。』


【以上、3行は英訳版Wikipedia情報】


このボイルの考案した「ボイルの法則」が一つの基礎となり


統計力学の土台が構築されていきます。更にこの後、


J・C・シャルルが考案した「シャルルの法則」が


温度との関係を与えますので高校レベルの知識として


「ボイル・シャルルの法則」が確立される訳です。


低圧力・高温度の条件下で、異なる気体間で法則が成


り立つことは自明ではないのですが


経験的法則として成り立ち、


後に様々な方式で発展していきます。


最後に、ボイルは錬金術の伝統を受継いで


いましたが、近代的な視点を持ち「元素」を想定して、


混合物と化合物を明確に区別した点で秀でています。


ボイルが明確にしたパラダイムシフト


は非常に大きな業績だと言えるのではないでしょうか。



英語が話せるようになる「アクエス」


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/11/04_初稿投稿
2021/11/09_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
イタリア関係のご紹介

オックスフォード関連
熱統計関連のご紹介


【このサイトはAmazonアソシエイトに参加しています】


テキストポンへの査定申込はコチラ


【2021年11月時点での対応英訳】



His name is Sir Robert Boyle.


He is a physicist born in Ireland, England. He was born as the seventh boy between the first Earl of Cork Richard Boyle and Catherine and is fostered in a local Irish family. As a result, Boyle understood Irish and mastered it to the level of an interpreter.


In his younger days, Boyle travels abroad with a French tutor and spends the winter of 1641 in Florence, Italy, where he is taught by Galileo Galilei.


Galileo died in 1642, and Boyle had in contact with Galileo in his later years. Is Boyle the age of junior high school for Japanese people today, isn't it? He would have been well inspired during a sensitive period.


After completing his long journey on the continent in 1644, Boyle spent a lot of his time in science, attending a gathering that later led to the Royal Society, also known as the "London Science Society," also known as the "Invisible College." 


Boyle had a position in Ireland because the predecessor of the Boyle family had died, but due to frequent meetings in London, Boyle eventually moved to Oxford.


He seems to have had an urgent aspect that it was difficult to obtain laboratory equipment. After that, with Hook as his assistant, Boyle created an air pump and began researching pressure.


Considering that Pascal in France was doing research at the same time, you can see that the interest at the Physical Society  at that time was about" pressure ". In an era when Newtonian mechanics was not established, it can be said that "applying pressure" was a task that could quantitatively grasp the phenomenon rather than "applying force". Since the hook is a boil assistant, it seems that the force related to the Spring has not been formulated. Was force only evaluated in relation to gravity in such an era?



I'm personally interested. Boyle's research eventually led to Boyle's law, which shows the relationship between pressure and volume.


However, by 1660, Boyle had stated that "volume is inversely proportional to pressure," and although there seems to be a record in his book, the phenomenon was not formulated, including the relationship with temperature and molecular weight. It seems.


"The actual formulation seems to have been done in 1661 by


Henry Power FRS (1623–1668))."


[The above 2 lines are English translation version of Wikipedia information]


The "Boyle's Law" devised by Boyle will be the basis for building the foundation of statistical mechanics. Furthermore, after this, "Charles's law" devised by JC Charles gives a relationship with temperature, so "Boyle-Charles's law" as high school level knowledge is established. It is not obvious that the law holds between different gases under low pressure and high temperature conditions, but it holds as an empirical law and later develops in various ways.


Finally, Boyle has inherited the tradition of alchemy, but excels in having a modern perspective and assuming "elements" to make a clear distinction between mixtures and compounds. It can be said that the paradigm shift that Boyle clarified is a very big achievement.


2021年11月08日

エドワード・テラー
【1908年1月15日生まれ ~ 2003年9月9日没】

「E・テラー」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。原稿文字数は2758文字です。また、アマゾン関連の作業は嫁任せでしたがサイトの運営として記載してます。読者満足度を考え関連書籍を記載します。【学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。】作業として10月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1908年1月15日生まれ ~ 2003年9月9日没】




水爆の父・テラー


エドワード・テラーは水爆の父と呼ばれ、


晩年のオッペンハイマーと対立します。


エドワード・テラーはハンガリーのブタペスト


で弁護士の父と4か国語を使う母から生まれ


ました。ユダヤ系であったエドワード・テラー


の父は職を追われ、ハンガリー・ドイツ・アメリカ


と移住を重ねました。ただ、学問の世界では良い出会い


に恵まれています。ハイゼンベルクの下で博士論文


を書き、ボーアの居たコペンハーゲンで有益な


時間を過ごします。そうした中で原子核物理学


分子物物理で多くの業績を残しました。


ヤーン・テラー効果やBETの吸着等温式


はエドワード・テラーの業績です。



マンハッタン計画とテラー


アインシュタインと共にエドワード・テラーは


原爆の研究をアメリカ政府に働きかけ、実際に


その計画は進んでいきます。政治的な思想では


ドイツ時代に資本主義の崩壊を目の当たりにした


テラーは共産主義に対して当初は関心を抱いて


いたようです。ところが、友人のランダウ


ソ連政府に逮捕された時期に反共思想を強め


ます。反共思想と新兵器の開発にかける熱意


が結びついていくのです。そしてまた、



テラーとオッペンハイマー


その時期以降にエドワード・テラーと
オッペンハイマーとの確執の始まります。


特に兵器としての原爆の利用に関しては
エドワード・テラーとオッペンハイマーは


対極の立場をとります。
エドワード・テラーは原爆開発の推進派で、
オッペンハイマーは否定派でした。


実際に、
エドワード・テラーは原爆・水爆と


兵器の開発の中心に居ました。水爆を


「My・Baby」と呼んでいた


と言われています。その立場は変わらず、


生涯その事を悔いることはなかったと言われています。
エドワード・テラーはそんな研究人生を歩みました。







以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/22_初稿投稿
2021/11/05_改定投稿


舞台別のご紹介
時代別(順)のご紹介
ドイツ関係のご紹介
イギリス関係のご紹介
アメリカ関係のご紹介
UCBのご紹介
デンマーク関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Teller, the father of the hydrogen bomb


Edward Teller, called the father of the hydrogen bomb, confronts Oppenheimer in his later years. Edward Teller was born in Budapest, Hungary, to a lawyer's father and a four-language mother. Edward Teller's father, who was of Jewish descent, was forced out of work and emigrated to Hungary, Germany, and the United States. However, I am blessed with good encounters in the academic world. He writes his dissertation under Heisenberg and spends a useful time in Copenhagen, where Bohr was. Under such circumstances, he made many achievements in nuclear physics and molecular physics. The Jahn-Teller effect and the adsorption isotherm of BET are the achievements of Edward Teller.



Manhattan Project and Teller


Edward Teller, along with Einstein, urged the US government to study the atomic bomb, and the plan actually goes on. In political terms, Teller, who witnessed the collapse of capitalism during the German era, seemed initially interested in communism. However, when his friend Landau was arrested by the Soviet government, he intensified his anti-communism. His anti-communist ideas and enthusiasm for the development of new weapons are linked. and again,



Teller and Oppenheimer


After that time, the feud between Edward Teller and Oppenheimer began. Edward Teller and Oppenheimer are at the other end of the spectrum, especially when it comes to the use of the atomic bomb as a weapon. Edward Teller was a proponent of atomic bomb development, and Oppenheimer was a denial.


In fact, Edward Teller was at the center of the development of atomic and hydrogen bombs and weapons. He is said to have called the hydrogen bomb "My Baby". His position has not changed and it is said that he never regretted it throughout his life. Edward Teller went through such a research life.


ブレーズ・パスカル
【1623年生まれ -11/8改定 】

「パスカル」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。原稿文字数は3470文字です。また、アマゾン関連の作業は嫁任せでしたがサイトの運営として記載してます。読者満足度を考え関連書籍を記載します。【学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。】作業として10月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1623年6月19日生まれ 〜 1662年8月19日没 】





数学者にして哲学者のパスカル


フランスに生まれたブレーズ・パスカルは


物理学者にして数学者にして哲学者です。


17世紀頃までの自然科学に関わる学者達は


細分化が出来ていない傾向があり、


時代を感じさせる部分ではあります。


そして何よりパスカルといえば、その残した言葉、


「人間は考える葦である」がまず思い浮かびます。


思考法を確立していった人であって、


その点では古代ギリシャの哲学者に近い印象です。


中世に至るまでの人間の歴史には「科学的な側面」を


あまり感じません。経験の蓄積、文化の蓄積から生じた


機能美があるのですが、素材も含めて経験からの


アプローチが大きかったのではないでしょうか。


無論、思想の停滞は今迄に沢山の場で


論じられてきた話題だと思えます。話戻って、


パスカルは考え続けた人でした。



パスカルの業績 


パスカルの遺稿集であるパンセは有名です。


総合的に物事を考えています。


死後、遺品整理で改めて分かったのは


「神」をも思考の対象として考えて、


様々な思考を繰り返し


確率論、優先順位を考え、様々な証明方法


を使っていたということです。


実際に分かり易い例として、


数学の上では三角形の内角の和を考えた時に


合計180度であると子供時代に証明していたようです。


平行になる工夫をして補助線を一本引く


だけなのですが、それを思い付いたときは


どれだけ嬉しかったことでしょう。


きっと感動があったはずです。


 

物理学の面では圧力に関する


パスカルの原理が有名で


その後、今に至るまで油圧機器に多用されてます。


またパスカルは実業家としての側面も持っていて、


今日で言うバスのシステムを乗り合いタクシー


という形で実現しています。またパスカルは


子供時代から機械式計算機の制作をしています。


徴税吏員である


父親の仕事軽減が目的だったようです。


少し、ほのぼのする逸話ですね。また、


昔フランスでの500フランにパスカルの顔


が描かれていたようです。そしてパスカル


は39歳で亡くなっています。


何よりも圧力の概念を面積との関係で確立していき、


後の定量的議論の土台として確立した


功績は大きいのではないでしょうか。


現在では圧力の単位としてパスカルは名を残してます。



フランスの誇る偉人ですね。





以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


【このサイトはAmazonアソシエイトに参加しています】




(対応英訳)


 Blaise Pascal ,Born in France, is a physicist, mathematician and philosopher. Until around the 17th century, scholars involved in the natural sciences tended to be undivided, which is a part that makes us feel the times.


And above all, when it comes to Pascal, the remaining word, "human beings are reeds to think about," comes to mind first. He was the one who established the way of thinking, which gives an impression close to that of an ancient Greek Philosopher. I don't really feel the "scientific side" of human history up to the Middle Ages. There is a functional beauty that arises from the accumulation of experience and culture, but I think the approach from experience, including the materials, was the main part of Way Of Tinking. Of course, the stagnation of thought seems to be a topic that has been discussed in many places. Returning to the story, Pascal was the one who kept thinking. His collection of Pascal's manuscripts, Pensées, is famous. He thinks about things comprehensively.


After his death, what he learned from his relics was that he also considered "God" as an Object  Of Thought, repeated various thoughts, considered probability theory and priorities, and used various proof methods. .. As a practically straightforward example, he seems to have proved in his childhood that mathematically, when considering the sum of the angles of a triangle, the total is 180 degrees. He only draws one auxiliary line, but how happy he was when he came up with it. He must have been impressed.


In terms of physics, Pascal's principle regarding pressure is famous, and since then, it has been widely used in hydraulic equipment. Pascal also has an aspect as a businessman, and realizes the Bus System that we call today in the form of a shared taxi. Pascal has also been making mechanical calculators since his childhood. It seems that his purpose was to reduce the work of his father, his tax collector. It's a little heartwarming anecdote. Also, it seems that Pascal's face was drawn on 500 francs in France long ago. And Pascal died at the age of 39.


Above all, he established the concept of pressure in relation to area, and I think he has made great achievements in establishing it as the basis for later quantitative discussions. Today, Pascal has left its name as a unit of pressure.
He is a great man in France.

2021年11月07日

湯川秀樹
【1907年生まれ-11/7改定】

「湯川秀樹」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。原稿文字数は4602文字です。また、アマゾン関連の作業は嫁任せでしたがサイトの運営として記載してます。読者満足度を考え関連書籍を記載します。【学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。】作業として10月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1907年1月23日生まれ ~ 1981年9月8日没】


【↑_Credit:Wikipedia】




湯川秀樹の生きた時代


冒頭に紹介している本「旅人」は湯川秀樹の


自伝です。その湯川秀樹は朝永振一郎と同じ時代


を生きています。


互いに刺激しあう関係を築き、共に


時代のテーマに取り組んでいます。


伝記を読んでいくと湯川秀樹が情熱を持って


物理学に取り組んでいた様子が分かります。


色々な所で引用されているのですが


「アイデアの秘訣は、執念である。」


と湯川秀樹は明言しています。一見、


不可解な現象を紐解き、単純明快な原理を抽出


する仕事をしてきたのです。


 

湯川秀樹の興味


そもそも、


湯川秀樹の関心は物質の相互作用であって、


その世界は全く目に見えません。彼は


情熱で綿密に話を組み立てます。


重力・電磁力以外の微細粒子間の


相互作用を引き起こす「強い力」


に着目して議論を進めました。


湯川秀樹の時代には場の考えが発展


していく過程で原子の中での相互作用を


湯川秀樹は中間子という概念で紐解いたのです。


湯川秀樹のアイディアは「場を担う粒子」


という考え方です。そもそも、重力(万有引力)


を考えると二つの質点が存在した時に


その質点同士が互いを引き合い現象が説明


されます。この明快なモデルに反して、


「電子の数百倍の質量をもつ中間子の仮定」


は当時の観測とは別に設定されていて、


ボーアハイゼンベルクは内容の吟味


を求めていたと言われます。


最終的には1947年の英国物理学者セシル・パウエルによる「中間子観測」が契機となり、湯川秀樹はノーベル賞を受けます。「物理での概念確立の危うさ」を感じてしまう歴史です。


理論的な要請と言えなくはないですが、辻褄合わせの為の概念は色々な角度から真剣に議論されなければいけません。別の言い方をすれば、その概念を磨き上げて納得のいく説明をすることが出来た時に「大きな仕事をした」と言えるのではないでしょうか。


湯川秀樹はボゾンの一つとして中間子を仮定して強い力を説明してみせたのです。



湯川秀樹こぼれ話 


湯川秀樹の業績は京都大学の原子力研究を初めとして日本の物理学者たちに引き継がれています。


個人的なご縁としては私が幼少時代を過ごした東京板橋にあった理化学研究所の分室で研究をしていたようです。少し時代がずれますが、私の故郷で彼が活動していたと思うと不思議な気持ちです。ノーベル賞受賞者の朝永振一郎もそこに居ました。最近までは、理化学研究所は本駒込にも拠点があり、今でもホンダ朝霞の近くに拠点があります。

何故か、と調べを続けていったら埼玉県にある平林寺に創始者の一人である大河内氏の墓所があります。そんな、理化学研の霊的な側面を知って、私は何となく納得してしまいました。


また、湯川秀樹はラッセル=アインシュタイン宣言にも参加しています。以前のブログでもこの関連の話は盛り込んでいますが私は研究者が異議を唱えても社会が破滅的な兵器を作る現実を大変、問題だと思っています。アインシュタインであれ湯川秀樹であれアシモフであれ社会が叡智を集結して対応することを私は夢見ています。




英語が話せるようになる「アクエス」


以上、間違い・ご意見は
以下アドレスまでお願いします。
全て返信は出来ていませんが
適時、返信・改定をします。


nowkouji226@gmail.com


2020/09/07_初稿投稿
2021/11/07_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
京大関連のご紹介
纏めサイトTOP
電磁気関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】

(2021年10月時点での対応英訳)


The time when Hideki Yukawa lived


The book "Traveler" introduced at the beginning is an autobiography of Hideki Yukawa. Hideki Yukawa lives in the same era as Shinichiro Tomonaga. We build relationships that inspire each other and work together on the themes of the times. As you read the biography, you can see that Hideki Yukawa was passionate about physics.


Although quoted in various places, Hideki Yukawa clearly states, "The secret of the idea is obsession." At first glance, he has worked to unravel mysterious phenomena and extract simple and clear principles.


Hideki Yukawa's interest


In the first place, Hideki Yukawa's interest is in the interaction of matter, and the world is completely invisible. He assembles the story with passion.


He focused on the "strong force" that causes the interaction between fine particles other than gravitational and electromagnetic forces. In the days of Hideki Yukawa, Hideki Yukawa unraveled the interaction in atoms with the concept of mesons in the process of developing the idea of ​​the field.


Hideki Yukawa's idea is the idea of ​​"particles that carry the field." In the first place, considering gravity (universal gravitational force), when two mass points exist, the mass points attract each other and the phenomenon is explained. Contrary to this clear model, the "assuming of a meson with a mass several hundred times that of an electron" was set separately from the observations at that time, and it is said that Bohr and Heisenberg sought scrutiny of the content.


Eventually, Hideki Yukawa received the Nobel Prize, triggered by "Meson Observation" by British physicist C. Powell in 1947. It is a history that makes us feel "the danger of establishing a concept in physics".


It can be said that it is a theoretical request, but the concept for Tsuji matching must be seriously discussed from various angles. In other words, when you can refine the concept and give a convincing explanation, you can say that you have done a big job.


Hideki Yukawa explained the strong force by assuming a meson as one of the bosons.



Hideki Yukawa Spill Story


Hideki Yukawa's achievements have been handed down to Japanese physicists, including nuclear research at Kyoto University.
As a personal connection, it seems that I was doing research in a branch office of RIKEN in Itabashi, Tokyo, where I spent my childhood. It's a little out of date, but it's strange to think he was active in my hometown. Nobel laureate Shinichiro Tomonaga was also there. Until recently, RIKEN also had a base in Hon-Komagome, and it still has a base near Honda Asaka. If you continue to investigate why, there is a graveyard of Mr. Okochi, one of the founders, at Heirinji Temple in Saitama Prefecture. Knowing such a spiritual aspect of RIKEN, I somehow convinced myself.


Hideki Yukawa also participates in the Russell-Einstein Declaration. I've included this related story in my previous blog, but I think the reality of society making catastrophic weapons is a big problem, even if researchers disagree. Whether it's Einstein, Hideki Yukawa or Asimov, I dream of society gathering wisdom and responding.

ヨハネス・ケプラー:Kepler
【1571年1生まれ11/7改定】

「ケプラー」の原稿を投稿します。私のサイトは外国からもアクセスがありますので文末に拙いながらも英訳を付けました。英語文章を作成していて確認出来るのは内容の正確さです。原稿文字数は3964文字です。また、アマゾン関連の作業は嫁任せでしたがサイトの運営として記載してます。読者満足度を考え関連書籍を記載します。【学術論文を読む時には英語必須、他国の方と議論の時にも英語必須です。少しでも話せるようになる機会は大事ですので、オンライン英会話をご紹介しています。】作業として10月からの四半期で登場場所別、時代別のリライトをしてます。そして、私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1571年12月27日生まれ ~ 1630年11月15日没】




ケプラーの生い立ち


ドイツに生まれたケプラーは天文学者にして数学者、


哲学者、占星術師でありました。そして、


ケプラーの母は薬草治療をしてました。


ケプラーの天文物理学の仕事として素晴らしい点は、


年間の観測情報から数学を使った考察を進め、


天体の星達が(基本的には平面上で)楕円軌道を描く


とか公転周期と面積速度の関係を導き出すといった


秩序だった理論的な結果を導き出した点です。


ケプラーは「数学モデル」を物理学に当てはめた


初めての物理学者だったという事実も見逃せ無い点です。


今では当たり前に思えるのですがケプラーの時代は


物事を考える土壌が出来上がっていませんでした。


更に実験を結びつけて議論の裏付けをとり、


後の時代の物理学者たちは説得力を増すのです。


 

そんなケプラーは幼少期に苦労します。


ケプラーの父は家族の為に傭兵として戦いに参加します。


ケプラーが5歳から17歳の間、その父は家族と離れ


暮らしていました。そして八十年戦争と呼ばれた戦いで、


父はネーデルランド(今のオランダ)で亡くなります。


加えてケプラー本人は天然痘にかかり視力低下にあい、


一生苦労をしました。また天然痘では、、、


ケプラーは妻子を失ってしまいます。


 

ケプラーの業績


 

そんなケプラーは天文学者として地動説に出合いました。


特にコペルニクスがコペルニクス的転回を打ち出した


タイミングでケプラーは天文を学びましたが、


ケプラーはコペルニクスを全面的に支持します。


そういった考え方を読んだケプラーを


今度はガリレオ・ガリレイが支持します。


そして何よりケプラーはティコ・ブラーエに出会います。


科学が飛躍的に進化する時代があると思えますが、


ケプラーの前後の時代はまさに、そんな時代でしょう。


この時代の動きがあったからこそ、後の時代の思索の中で


力学が生まれてきて、電磁気学が生まれてきたのです。


20世紀の初頭にも国を超えて人々が議論して


科学技術に大きな進展が見受けられました。


そんな視点で「社会史」の側面を垣間見ながら


「科学史」を考えてみると人類の進化を感じられます。


私が「進化」と呼んだ「変化」が好ましいか


という議論がありますが、私は好ましいと思います。


可能性が広がるからです。


技術を制御する責任は別問題で別に議論します。


 

ティコ・ブラーエは遺言で集めた膨大な


データを遺産としてケプラーに残しました。


価値ある貴重なデータをケプラーがが受け取り


そして整理して様々な法則を作り出します。


2人の業績から今に残るケプラーの法則が完成したのです。


惑星の運動は体系立てて幾何学上で表現されています。


ケプラーは星を考える枠組みを作り出したのです。


そして次なる様々な理論体系に繋がっていったのです。



〆最後に〆


英語が話せるようになる「アクエス」


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/19_初版投稿
2021/11/07_改定投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
デンマーク関係の紹介へ
ドイツ関連のご紹介へ


【このサイトはAmazonアソシエイトに参加しています】



(対応英訳)


Kepler's Birth Born


Kepler's Birth Born in Germany, Kepler was an astronomer, mathematician, philosopher, and astrologer. And Kepler's mother was doing herbal remedies. The great thing about Kepler's work in astronomical physics is that it advances mathematical consideration from annual observation information, and the stars of the celestial body draw elliptical orbits (basically on a plane), orbital period and area velocity. It is the point that we have derived an orderly theoretical result such as deriving a relationship. It is also worth noting that Kepler was the first physicist to apply a "mathematical model" to physics.


Kepler struggles in his childhood. Kepler's father participates in the battle as a mercenary for his family. While Kepler was between the ages of five and 17, his father lived away from his family. Kepler's father died in the Netherlands in a battle called the Eighty Years War. In addition, Kepler himself suffered from smallpox and suffered from his poor eyesight for the rest of his life. Also in smallpox, Kepler loses his wife and children.



 Kepler's Work


Kepler came across the heliocentric theory as an astronomer. Kepler learned astronomical, especially when Copernicus launched a Copernican Revolution, but Kepler fully supports Copernicus. Galileo Galilei now supports Kepler who read such an idea. And above all, Kepler meets Tycho Brahe.


It seems that there is an era in which science will evolve dramatically, but the era before and after Kepler is exactly such an era. It seems that the movement of this era was the reason why mechanics was born and electromagnetics was born in the thoughts of later times. Even at the beginning of the 20th century, people from different countries discussed and made great progress in science and technology. If you think about "history of science" while glimpsing the aspect of "social history" from that perspective, you can feel the evolution of humankind. There is some debate about whether "change," which I called "evolution," is preferable, but I think it is preferable. Because the possibilities open up. Responsibility for controlling technology is discussed separately on a separate issue.



Kepler's Data


Tycho Brahe left Kepler with the vast amount of data he collected in his will as his legacy. Kepler receives valuable and valuable data and organizes it to create various laws. From the achievements of the two, Kepler's law that remains today was completed. The movement of planets is systematically and geometrically represented. Kepler created a framework for thinking about stars. And he was connected to the following various theoretical systems.