アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2024年11月 >>
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
最新記事
最新コメント

2024年05月13日

シャルル・ド・クーロン
5/13改訂【「ねじり天秤」での実験で微細な力を考察】

こんにちは。コウジです。
クーロンの原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)


実験用分銅
【スポンサーリンク】
【1736年6月14日生まれ ~ 1806年8月23没】



 クーロンの人物像


クーロンの名前は正確には


シャルル=オーギュスタン・ド・クーロン


(Charles-Augustin de Coulomb)


と記載されます。フランス人です。調べてみると
もともとクーロンは測量の仕事などもしていました。
時代柄、色々な分野で功績を残しています。


 

 クーロンの研究生活


まず、力学的な側面では摩擦に関する研究があります。


とても意外な側面だと思えました。電磁気学で著名なクーロンが


表面状態の考察をしているのです。


電磁気の担い手はとても微細な存在、電子であるのに反して


摩擦現象はそれら微細粒子が物凄い数集まって


相互作用の複雑な運動した結果として論じられる現象なのです。


後述する「ねじり天秤」のデリケートさとは


結びつきませんでした。


 

クーロンは特定の機械が動く時点を考察しています。


「部品間での摩擦とロープの張力」を考慮して


機械全体での動きを論じています。


詳細を追いかけたらきっと


現代の我々から見ても興味深い筈です。


工学的な側面と表面物性からアプローチして


細かく考察すると面白い筈です。そして何より、


当時の視点からは革新的な研究だろうと思えます。


 

 クーロンと電磁気学


電磁気的な側面では「ねじり天秤」での実験が有名です。


微細な力を検知出来るような仕組みで導体表面


での帯電状態を計測したのです。生活の視点では、


力学は目で見て分かりやすく、電磁力学は目で見て


分かり辛いと言えます。それだから、今でも


静電気でびっくりしたり、手品の種として


電気的性質が使われたりします。


当然、今でも高電圧の配線は子供の手の


届かない所に敷設され、運用されているのです。


クーロンは結果的に電荷に働く力は距離の自乗


に反比例すると示しました。こうした電磁気学における


業績が広く認められ、クーロンの名前は電荷の単位


として今も使われています。クーロンの考えは


後の電磁気学、長い目で見れば


場の理論につながっているのです。


〆 




テックアカデミー無料メンター相談
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/09/29_初稿投稿
2024/05/13_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
電磁気学関係
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


【2021年8月時点での対応英訳】



About Coulomb


The name of Coulomb is written exactly as Charles-Augustin de Coulomb. He is french When I looked it up, Coulomb was also doing surveying work. He has made achievements in various fields due to his time.



Coulomb job


First, on the mechanical side, there is research on friction. This fact seemed to be a very surprising aspect. Coulomb, a well-known in electromagnetism, considers the surface state.


The bearer of electromagnetism is a very fine existence, an electron, whereas the friction phenomenon is a phenomenon that is discussed as a result of the complicated movement of the interaction by gathering a tremendous number of these fine particles. It was not related to the delicacy of the "torsion scales" described later.


Coulomb considers when a particular machine will move. He discusses movement throughout the machine, taking into account "friction between parts and rope tension". If he chases the details, it will surely be interesting to us today. It should be interesting to approach him from the engineering side and the surface physical characteristics and consider it in detail. And above all, from the perspective of those days, it seems to be an innovative research.



 Electric side of Colomb job


On the electromagnetic side, experiments with "torsion scales" are famous. He measured the state of charge on the surface of the conductor with a mechanism that could detect minute forces. From the perspective of life, mechanics is easy to understand visually, and electromagnetic dynamics is hard to understand visually. Therefore, they are still surprised by static electricity and electrical properties are used as a seed for magic tricks.


Of course, high-voltage wiring is still laid and operated out of the reach of children. Coulomb eventually showed that the force acting on the charge is inversely proportional to the square of the distance. His work in electromagnetism has been widely recognized, and the Coulomb name is still used as a unit of charge. Coulomb's ideas led to later electromagnetism, the theory of fields in the long run.

2024年05月12日

J・L・ラグランジュ
5/12改訂【変分の原理を考案|解析力学を発展】

こんにちは。コウジです。
ラグランジュの原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)

解析力学
【スポンサーリンク】
【1736年1月25日生まれ ~ 1813年4月10日没】


 

その名を全て書き下すと、


ジョゼフ=ルイ・ラグランジュ


Joseph-Louis Lagrange



ラグランジュの生きた時代


ラグランジュはイタリアのトリノで生まれ


プロイセン王国・フランスで活躍しました。


そんな彼の生きた人生は革命の起きていた時代でした。


同時代のラボエジェが処刑された事に際し
ラグランジュは何故自身が生き延びたか
自問自答したと言われています。
何故ならラグランジュはマリー・アントワネット
先生を務めていたからです。


 

ラグランジュの業績 


学問の世界でラグランジュは多大な業績を残しています。
物理学者というより数学者としての仕事に思えてしまいます。


力学体系の整理をしてラグランジュ形式と言われる
理解を進めています。私も学生時代に
ラグランユアンと呼ぶ関係を多用しました。


解析力学と呼ばれる分野で、


ラグランジュ方程式につながります。


後の数論につながる議論もしていますし、


天体に関する研究等もしています。


 

 考え方の有効性


ラグランジュの解析的な考えが有効だったのは


各種物理量を一般化して変分と呼ばれる類の


「数学的な形式」につながるからです。


後の量子力学はニュートンの作った微積分


だけではなく物理量の関係を


ラグランジュの使ったような関係で表現します。


つまり、


「ラグランジュアン」と呼ばれる数学形式を使います。


また、ラグランジュはエネルギー保存則から


最少作用の原理を導きその考えは力学に留まらずに


電磁気学・量子力学でも使われています。


こういった定式化が後の体系理解に不可欠です。


 

ラグランジュの未定乗数法や


定式化されたラグランジュアン


は誰しもが認める見事なものです。


そして、ラグランジュの名は


今でもエッフェル塔に刻まれています。


彼の残した仕事と栄誉と共に。




テックアカデミー無料メンター相談
【スポンサーリンク】


以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。


nowkouji226@gmail.com


2020/10/02_初稿投稿
2024/05/12_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
力学関係のご紹介


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年8月時点での対応英訳)


If you write down all the names,


Joseph-Louis Lagrange



The era of Lagrange's life


Lagrange was born in Turin, Italy and was active in the Kingdom of Prussia, France. His life was a revolutionary era.


When his contemporary Labo Eger was executed, Lagrange might have asked himself why he survived.


Because he was a teacher of Marie Antoinette.



Lagrange's achievements


In the academic world, Lagrange has made great achievements. He seems more like his job as a mathematician than as a physicist.


He organizes the mechanical system and promotes the understanding of what is called the Lagrangian form. I also used a lot of relationships called Raglan Yuan when I was a student.


In a field called analytical mechanics, it leads to the Lagrange equation. We are also discussing things that will lead to later number theory, and we are also doing research on celestial bodies.



Effectiveness of thinking


Lagrange's analytical idea was effective because it generalizes various physical quantities and leads to a kind of mathematical form called variation.


Later quantum mechanics expresses not only the calculus made by Newton but also the relationship of physical quantities with the relationship used by Lagrange. In other words, it uses a mathematical form called "La Grand Juan".
In addition, Lagrange derives the principle of minimum action from the law of conservation of energy, and the idea is used not only in mechanics but also in electromagnetism and quantum mechanics. A paradigm shift in these formulations is essential for later systems.


The Lagrange's undetermined multiplier method and the formalized Lagrange Jean are undisputed and stunning.


And the name of Lagrange is still engraved on the Eiffel Tower. With the work and honor he left behind.


2024年05月11日

ジェームズ・ワット
5/11改訂【産業革命時に蒸気機関を改良しフライフォイールを発明】

こんにちは。コウジです。
ワットの原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)






産業革命史
【スポンサーリンク】
【1736年1月19日生まれ ~ 1819年8月25日没】




 ワットはどんな人でしょう


ワットは蒸気機関の改良を通じて産業革命に
大きな成果を残したイギリスの偉人です。

イギリスにおいて産業革命が起きて、
年4回の耕作が行われ始めていき、多くの
農業従事者が自営業から雇われ農夫となったり、
植民地からの労働力を含めて人が大きく動き、
工場稼働率が高まっていきます。

急激に市場が拡大して産業が大きく変化していくのです。
そうした時代に蒸気機関や紡績機に対しての
技術開発に対する研究の重要性は増していきました。

そんな中、ワットはグラスゴー大学でジョゼフ・ブラックら

の協力を得て工房を作り作業を続けます。

蒸気機関を対象に研鑽を続けます。

 ワットによる蒸気機関の開発


ワットは具体的な改良には蒸気機関における凝縮器の設計をします。具体的には排熱効率を見直すことによってロスを減らして出力効率を大きく高めたのです。当初の設計でシリンダー部での熱の出入りが非効率である事情に着目していて、そこを改良した訳です。ポールトンという資金面での協力者も得て、ワットは事業化に成功して成功を修めます。

ワットが最終的に成功を収めた話を初めにしましたが、

実際の所は製品化までに大きな道のりがありました。

当時の加治屋さん達は今と比べて精度の低い生産過程

を当たり前だと思っていたので、ミリ単位

(場合によっては更に高精度)の加工を

現在考えるような誤差範囲でこなしていく事は

出来なかったのです。蒸気機関の性質上、

ピストンとシリンダー間の寸法誤差は

大きく性能を損ねます。丸い形で摺動方向に

延びていくピストンとシリンダーの精度を

上げていく事は大変な作業だった筈です。最終的には

大砲製造に向けて開発された「精密、中ぐり技術」

を使い製造していきます。また一方で、ワットはこれらの

製造に関わる技術に対しての特許習得にも

配慮しなければなりませんでした。

そういった創意工夫を重ねる中でワットは

関連会社の仕事として「鉱山の揚水機械」

の仕事を受けます。それは大変大きなもので、

直径127センチメートルのシリンダーをもった

7メートル以上の大きさの機械でした。

あまりに大きいので専用の建屋を建てて

運営していたそうです。その後、

機械に色々な改良を加えていきます。

益々効率的な機械になっていったのです。

 そのほかのワットの業績


現代の自動車のエンジンで当たり前に使われている、フライホイールもワットの発明です。回転ムラを無くして機械を円滑に動作させることで動きの効率を上げて振動を抑え、耐久性を向上させるのです。

何より、

ワットはそうした仕事の中でエネルギーの定式化を進め

力(Newton)の概念から仕事量(Watt)の概念
を発展させました。


多くの人々から尊敬を受けました。考え抜いた
討論をして自分の見識を広げていった人でした。
近年、イギリスのお札に肖像画が用いられています。


【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。


nowkouji226@gmail.com


2021/07/07_初回投稿
2024/05/11_原稿改定


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
イギリス関係のご紹介
力学関係のご紹介
熱統計関連のご紹介


AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】


 

(2021/年8月時点での対応英訳)

What kind of person is Watt?


Watt is a great British man who has made great strides in the Industrial Revolution through the improvement of steam engines.

Due to the Industrial Revolution in Britain, four farms are cultivated a year, farmers are hired from self-employment to become farmers, people including labor from the colony move significantly, and the factory utilization rate increases. In the meantime, the market will expand rapidly and the industry will change drastically.

In that era, the importance of research on technological development for steam engines and spinning machines increased.

Meanwhile, Watt continues his work at the University of Glasgow with the help of Joseph Black and others to create a workshop. He continues his studies on steam engines.

Development of steam engine by Watt


As a concrete improvement, in the design of the condenser in the steam engine, Watt reduced the loss and greatly increased the output efficiency by reviewing the exhaust heat efficiency. His original design focused on the inefficiency of heat in and out of the cylinder, which was improved. With the help of Paulton, a financial collaborator, Watt succeeds in commercializing it.

We started with the story of Watt's ultimate success, but in reality there was a big road to commercialization.

At that time, Kajiya and others took it for granted that the production process was less accurate than it is now, so it was possible to handle machining in millimeters (or even higher precision in some cases) within the margin of error that we are currently thinking about. I didn't. Due to the nature of the steam engine, dimensional errors between the piston and cylinder will significantly impair performance. It must have been a difficult task to improve the accuracy of the piston and cylinder, which have a round shape and extend in the sliding direction. in the end

We will manufacture using the precision and boring technology developed for cannon manufacturing. On the other hand, Watt had to consider obtaining patents for these manufacturing technologies.

While repeating such ingenuity, Watt receives the work of "pumping machine of the mine" as the work of the affiliated company. It was a very large machine, over 7 meters in size with a cylinder with a diameter of 127 centimeters.

It was so big that he built and operated a dedicated building. After that, he made various improvements to the machine. It has become an increasingly efficient machine.

Other Watts achievements


The flywheel, which is commonly used in modern automobile engines, is also Watt's invention. By eliminating uneven rotation and operating the machine smoothly, the efficiency of movement is increased, vibration is suppressed, and durability is improved.

Above all, Watt proceeded with the formulation of energy in such work and developed the concept of work (Watt) from the concept of force (Newton).

He was respected by many. He was a person who had a well-thought-out discussion and broadened his insight. In recent years, portraits have been used on British bills.




2024年05月10日

平賀源内
5/10改訂【秩父で鉱山を開設|オランダからエレキテル等を日本人に紹介し啓蒙】

こんにちは。コウジです。
平賀源内の原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)


平賀源内
【スポンサーリンク】
【1728年生まれ ~ 1780年1月24日没】



平賀源内について
少し時代が古いです。平賀源内は江戸時代、
田沼意次が老中を務めていた時代で
多彩な能力を発揮しています。物理学関係に留まらない。
埼玉県秩父市で鉱山開発を行い、
炭焼き、通船の指導を行いました。 


そもそも、平賀源内は讃岐の国に生まれています。
家祖は信濃源氏の平賀氏。平賀氏は武田氏に敗れ、
一度、改姓して源内の時代に平賀姓に復姓しています。



時代考察


 

科学史の観点から平賀源内の時代を考えてみると欧米と日本の時代のずれを感じます。その「ずれ」は大きなものでニュートンがバローからルーカス職を受けたのが1664年、万有引力を定式化したのが1665年であることを思い起こせば西洋と日本の隔たりはとても大きいです。そんな時代には源内は未だ生まれていません。


加えて、平賀源内が「発明」したであろうものの独自性を考えていくと「新規性」という部分が殆ど見受けられません。内容は後述しますが、後世に残して人類の財産と出来るものは作り出せなかったのです。無論、当時の人々には目新しく、庶民に啓蒙をして意識を変えていった業績は大きいです。


だがしかし、「数学」なりの学問体系を整えてはいません。足し算引き算が出来ても「微分。積分」それなあに?って有様でした。教育制度が大きく異なる事情があるのですが、結果は大きく異なるのです。日本ではその後、
数理学の学問体系は数百年間未開のままでした。



平賀源内の業績


 

平賀源内が手掛けた分野は医学、薬学、漢学、


浄瑠璃プロデュース、鉱山の採掘、金属精錬、


オランダ語、細工物の販売、


油絵、俳句と多岐にわたりました。


その一つが「発明」で平賀源内は物理現象の啓蒙に一役買っているのです。所謂、エレキテルの紹介ですね。エレキテルは不思議な箱で内部にガラスによる摩擦起電部と蓄電部を持っています。じつのところ、平賀源内が発明したというよりオランダ製の物を平賀源内が紹介した訳ですが江戸時代の庶民達には摩訶不思議な魔法に見えたでしょうね。


なにより、平賀源内の現象理解は現在の学問体系


とは大きく異なっていたようです。


念の為にコメントしておくと、新しい考えを作り出して発表して他の国の人に内容を問いかけたりする動きは見受けられません。鎖国の時代ですからね。平賀源内の時代から百年以上後に海外の学問理解を学び、自ら論文を書いていき、世界に内容を問いかけるのです。そこまでの道のりは、まだまだ長いのです。平賀源内はそんな時代の先人でした。


そして、
文化的な功績も、そこかしこに残しています。
有名な言葉遊びで源内が作者であろう
と言われている句を最後にご紹介します。


「京都三条糸屋の娘 姉は十八・妹は十五
諸国大名弓矢で殺す 糸屋の娘は目で殺す 」



以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/18_初稿投稿
2024/05/10_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年8月時点での対応英訳)



about GENNAI


It's a little old story. Hiraga Gennai is demonstrating a variety of abilities during the Edo period and when Tanuma Okitsugu was a senior citizen. It goes beyond physics.


In the first place, Hiraga Gennai was born in Sanuki Province.


His ancestor is Mr. Hiraga of Shinano Genji Family. Mr. Hiraga was defeated by Mr. Takeda, and once changed his name to Hiraga in the Gennai era.


If you think about the times in Hiraga Gennai from the perspective of the history of science, you can feel the difference between the times of Europe, America and Japan. The "deviation" is large, and the gap between the West and Japan is very large, recalling that Newton received the Lucas job from Barrow in 1664 and formulated universal gravitation in 1665. In addition, when considering the uniqueness of what Hiraga Gennai would have "invented," there is almost no "novelty." I will explain the contents later, but I could not create something that could be left as a property of humankind for posterity. Of course, it was new to the people at that time, and although it was a great achievement to educate the common people and change their consciousness, it has not prepared an academic system like "mathematics". Even if addition and subtraction are possible, "differentiation. Integral" What is it? It was like that. There are circumstances where the education system is very different, but the results are very different. In Japan, the academic system of mathematics has remained undeveloped for hundreds of years since then.



Work of GENNAI


Hiraga Gennai's fields ranged from medicine, pharmacy, Chinese studies, joruri production, mine mining, metal refining, Dutch, craft sales, oil paintings, and haiku.


One of them is "invention", and Hiraga Gennai plays a role in enlightening physical phenomena. This is the introduction of so-called Elekiter.


Elekiter is a mysterious box that has a glass triboelectric generator and a power storage unit inside. As a matter of fact, Hiraga Gennai introduced a Dutch product rather than an invention by Hiraga Gennai, but it seemed like a mysterious magic to the common people in the Edo period.


Above all, it seems that the understanding of phenomena in Hiraga Gennai was very different from the current academic system.


If you comment just in case, there is no movement to create and announce new ideas and ask people from other countries about the content. More than 100 years after the time of Hiraga Gennai, he learned to understand foreign scholarship, wrote a treatise himself, and asked the world about the content. The road to that point is still long. Hiraga Gennai was a pioneer of that era.

2024年05月09日

L・オイラー
5/9改訂【単眼の巨人(サイクロプス)|自然対数を定式化】

こんにちは。コウジです。
オイラーの原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)


数学大辞典


【スポンサーリンク】
【1707年4月15日生まれ ~ 1783年9月18日没】


L・オイラーのLはレオンハルトのLです。



オイラーの業績 


スイスのオイラーは当時の18世紀の数学界の中心人物でした。その後の世に数学が厳密になっていく一方で、モデルが洗練されていくのですが、それを使いこなす為の基礎を固めたのです。その活動範囲は多岐にわたります。他の人が見つけたと思っていた業績が、実はオイラーの仕事の焼き直しだったりした事が多々あったそうです。後に出てくるガウスと合わせて数学界の二大巨人であると言われているのです。加えて、


オイラーは右目を失明していたので


「単眼の巨人(サイクロプス)」


と数学界で呼ばれていたそうです。


まさに怪人ですね。同時に


天文物理学でも業績を残しています。物理学で使う数学手法も残しました。オイラーが定式化した自然対数と三角関数の関係は私自身も何度も何度も、繰り返し使いました。



オイラーの人生 


さて、オイラーの人生における転機は大学時代に師となるベルヌーイがその才能を見出したタイミングでした。神学の道を目指していたオイラーの両親をベルヌーイが説得してオイラーは数学の道を選びます。


 

オイラーは招かれて外国で数年過ごしたりしながら研究を続けましたが、視力が低下していき遂には失明してしまいます。それでもオイラーは精力的に論文執筆の活動を続けました。頭の中で計算式を操り、口頭で協力者に内容を伝え、文章に起こしてもらい、論文を次々と完成させたのです。


そんな困難の中、


オイラーは晩年の研究を続けていました。


まさに人生をかけた研究だったのです。



〆最後に〆




テックアカデミー無料メンター相談
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/26_初稿投稿
2024/05/09_改定投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
スイス関係のご紹介

量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】



【2021年8月時点での対応英訳】


L. Euler's L is Leonhard's L.



Job of Euler


Euler in Switzerland became the center of the 18th century mathematics world at the time, laying the foundation for mastering sophisticated models while mathematics became more rigorous in later generations. The range of activities is wide-ranging. In many cases, the achievement that others thought they had found was actually a rehash of Euler's work. He is said to be one of the two giants in mathematics, along with Gauss, who will appear later. father,


Euler was blind in his right eye, so he was called "monocular giant (cyclopes)" in the mathematical world. It's just a monster. He also has a track record in astrophysics.


Euler also left behind the mathematical techniques used in physics. I myself used the relationship between the natural logarithm and trigonometric functions formulated by Euler over and over again.



LIFE of  Euler


Now, the turning point in Euler's life was when his teacher Bernoulli discovered his talent during his college days.

Bernoulli convinces Euler's parents who were aiming for the theological path, and Euler chooses the path of mathematics.


Euler was invited to spend several years abroad and continued his research, but his eyesight deteriorated and he eventually lost his eyesight.


Still Euler is energetically


He continued his treatise writing activities.


Euler manipulated the formulas in his head, verbally communicated to his collaborators, had them transcribed, and completed his treatises one after another.


In the midst of such difficulties, Euler continued his studies in his later years. I think it was a study that took his life.


2024年05月08日

ベンジャミン・フランクリン
5/8投稿【米国建国の父|外交官|物理学者|天文学者】

こんにちは。コウジです。
ベンジャミン・フランクリンの原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)


フランクリン自伝
【スポンサーリンク】
【1706年1月17日生れ-1790年4月17日没】



 米国建国の父ベンジャミン


その名はベンジャミンフランクリン


:Benjamin Franklin,_


グレゴリオ暦1706年1月17日の生まれですが、


ユリウス暦では1705年1月6日にあたります。


そんな両方の暦を使う時代に生まれた人でした。


フランクリンは政治家として、外交官として、著述家として、物理学者として、また気象学者として活躍します。後述する13徳を実践する謙虚な人であって努力家です。それに加えて実務家です。フランクリンの残した「フランクリン自伝」はアメリカのロング・ベストセラーの一つとなっていて今でも100ドル札には肖像人物としてベンジャミンフランクリンが使われています。(2021年3月調べ)広くアメリカ人に愛され続けています。



 フランクリンの業績の例


フランクリンの業績として有名な物は凧を使った雷の実験です。フランクリンはライデン瓶の実験がされていると聞き電気に興味を持ちました。1752年に雷鳴り響く嵐の日に凧をあげました。その時、地上側の凧糸の先にワイヤーで接続したライデン瓶を連動させることでその時の上空の帯電状態を示す作業をしました。


非常に直接的な実験ですがその電圧が数億ボルト(流れる電流が数十万アンペア超)とも言われる現象に対してベンジャミンフランクリンが、どの程度の理解をもって納得しながら実験の設定を行ったかについては、大きな問題を感じます。そう言った意味で物凄く怖い実験計画だったのでしょう。


実際に21世紀になってから、アイドルのコンサートでの落雷事故があった事は記憶に新しいでしょう。フランクリンの時代に検証実験を試みて多数の死者が出た事実もある事から「絶対に真似をしてはいけない」実験であると言えます。その実験を行ったフランクリンの勇気は手放しで賞賛出来ない部分がありますが、それを踏まえて考えてみても、人々に尊敬される偉人なのです。



フランクリンのスタンス


フランクリンの偉業は他にも続き、避雷針、燃焼効率の


高いストーブ、遠近両用眼鏡を次々と発明しました。


そして、フランクリンはその発明に対して


特許はとらないで社会に還元しました。


アメリカ独立宣言の起草にも加わっていたと言われます。



フランクリンのストーブ


フランクリンは、
「フランクリンストーブ」または「ペンシルバニア暖炉」

として知られているより効率的な暖房ストーブ
を設計しました。
このストーブは、
火事の危険性を最小にしていて、

それを家庭暖房の空間を温めている際に、
より少ない燃料を使って、
より多くの熱を提供しました。



フランクリンの13徳


自らの自律心でコツコツと独学で事を成し遂げてきた


フランクリンは13徳と呼ばれる戒律を実践していたと言われます。


最後にご紹介させて下さい。


13徳(Wikipedeaより引用)週に一つずつ各徳目に身を捧げました



◆節制 :
飽くほど食うなかれ。
酔うまで飲むなかれ。


◆沈黙 :
自他に益なきことを語るなかれ。

駄弁を弄するなかれ。


◆規律:
物はすべて所を定めて置くべし。

仕事はすべて時を定めてなすべし。


◆決断 :
なすべきをなさんと決心すべし。

決心したることは必ず実行すべし。


◆節約:
自他に益なきことに金銭を費やすなかれ。

すなわち、浪費するなかれ。


◆勤勉:
時間を空費するなかれ。

つねに何か益あることに従うべし。
無用の行いはすべて断つべし。


◆誠実:
詐りを用いて人を害するなかれ。

心事は無邪気に公正に保つべし。
口に出だすこともまた然るべし。


◆正義:
他人の利益を傷つけ、あるいは与うべきを

与えずして人に損害を及ぼすべからず。


◆中庸:
極端を避くべし。たとえ不法を受け、

憤りに値すと思うとも、激怒を慎むべし。


◆清潔:
身体、衣服、住居に不潔を黙認すべからず。


◆平静:
小事、日常茶飯事、

または避けがたき出来事に平静を失うなかれ。


◆純潔:
性交はもっぱら健康ないし子孫のためにのみ行い、

これにふけりて頭脳を鈍らせ、身体を弱め、又は自他の平安
ないし信用を傷つけてはいけない。


◆謙譲:
イエスおよびソクラテスに見習うべし。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2021/04/02_初稿投稿
2024/05/08_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係へ

電磁気関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】



(2021年8月時点での対応英訳)-



American great Franklin


His name is Benjamin Franklin, _ Gregorian was born on January 17, 1706, but in the Julian calendar died on January 6, 1705. He lived in an era when he explained using both calendars. Franklin is active as a politician, diplomat, writer, physicist, and meteorologist. He is a humble and hard worker who practices the 13 virtues described below. He is also a practitioner. Franklin's "Franklin Autobiography" has become one of America's longest-selling books, and Benjamin Franklin is still used as a portrait on the $ 100 bill. (Surveyed in March 2021) He continues to be widely loved by Americans.



 Job of Franklin


One of Franklin's most famous achievements is the experiment of lightning with a kite. Franklin was interested in electricity when he heard that Leyden jars were being tested. He flew a kite in 1752 on a thunderous stormy day. At that time, he worked to show the state of charge in the sky at that time by interlocking a Leyden jar connected with a wire to the tip of the kite string on the ground side. It is a very direct experiment, but about how Benjamin Franklin convinced him to set up the experiment with respect to the phenomenon that the voltage is said to be hundreds of millions of volts (current flowing over hundreds of thousands of amperes). Feels a big problem. It will be fresh in my memory that there was a lightning strike at an idol concert in the 21st century. It can be said that it is an experiment that "never imitate" because there is a fact that a large number of people died when trying a verification experiment in Franklin's time. Franklin's courage to carry out the experiment has some parts that cannot be praised, but even if you think about it, it is certain that he is a great man who is respected by people.


Franklin's feat continued, and he invented lightning rods, combustion-efficient stoves, and bifocals.


And Franklin gave back to society without his patent for his invention.



Thirteen Virtues


He is said to have been involved in the drafting of the United States Declaration of Independence.


Franklin, who has accomplished things by himself with his own autonomy, is said to have practiced a commandment called 13 virtues.


Let me introduce you at the end.


[13 virtues (quoted from Wikipedea, devoted to each virtue once a week)]




  1. ◆Temperance. Eat not to dullness; drink not to elevation.

  2. ◆Silence. Speak not but what may benefit others or yourself; avoid trifling conversation.

  3. ◆Order. Let all your things have their places; let each part of your business have its time.

  4. ◆Resolution. Resolve to perform what you ought; perform without fail what you resolve.

  5. ◆Frugality. Make no expense but to do good to others or yourself; i.e., waste nothing.

  6. ◆Industry. Lose no time; be always employ'd in something useful; cut off all unnecessary actions.

  7. ◆Sincerity. Use no hurtful deceit; think innocently and justly, and, if you speak, speak accordingly.

  8. ◆Justice. Wrong none by doing injuries, or omitting the benefits that are your duty.

  9. ◆Moderation. Avoid extremes; forbear resenting injuries so much as you think they deserve.

  10. ◆Cleanliness. Tolerate no uncleanliness in body, clothes, or habitation.

  11. ◆Tranquility. Be not disturbed at trifles, or at accidents common or unavoidable.

  12. ◆Chastity. Rarely use venery but for health or offspring, never to dullness,
    weakness, or the injury of your own or another's peace or reputation.

  13. ◆Humility. Imitate Jesus and Socrates.


(I quoted these from Wikiledia.)

2024年05月07日

バールーフ・デ・スピノザ‗
4/26改訂【1632年11月24日 - 1677年2月21日】

こんにちは。コウジです。
ベルヌーイの原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)


ベルヌーイ肖像画
【スポンサーリンク】
【1700年2月8日生まれ ~ 1782年3月17日没】



 ベルヌーイ一族


ダニエル・ベルヌーイ(Daniel Bernoulli)
の名前で
ダニエルって大事です。
科学史に詳しい人ならピンと来るのですが、
ベルヌーイ一族は沢山、
科学史に出てきます。


3世代で8人が著名人です。



先ず、今回取り上げたダニエルはスイスに生まれ3兄弟で、全て物理学者・数学者です。また、ダニエルの父の世代にも何人かの学者が居るようで、ダニエルの叔父の仕事を父が引継ぐ場面もあったようです。


ダニエルは、18世紀のスイスの数学者および物理学者で、ダニエルの業績は流体力学、確率論、統計学、および数学のさまざまな分野にまたがっています。以下に、ベルヌーイに関する主要な業績と貢献について詳しく説明します。



ベルヌーイの定理:


ダニエル・ベルヌーイの最も有名な業績は、流体力学に関するもので、彼の名前を冠した「ベルヌーイの定理」です。この定理は、流体の速度、圧力、高さの変化が密接に関連していることを示しています。ベルヌーイの定理は、流体の運動やエネルギー保存の法則に関する重要な原理の一つとなっており、現代でも航空工学や流体力学の基本的な理論の一部として広く使用され続けています。



統計学への貢献:


ダニエル・ベルヌーイは、確率論および統計学の先駆者としても知られています。彼は「ベルヌーイ試行」として知られる試行に関する理論を発展させ、確率論の基本的な概念を研究しました。これは後に統計学の発展に大きな影響を与えました。



複利の発明:


ベルヌーイは金融数学においても重要な貢献をしました。彼は複利に関する数学的な原理を発展させ、これが投資や金融取引における複利計算の基盤となりました。そのため、彼は現代の金融数学においても重要な人物と見なされています。



家族の数学の伝統:


ダニエル・ベルヌーイはベルヌーイ家の一員で、その家族は数学と科学において多くの著名な人物を輩出しました。彼の兄弟や親戚たちも数学や物理学において重要な業績を持ち、ベルヌーイ家は18世紀のヨーロッパにおいて数学と科学の中心的存在となりました。


ダニエルの業績は数学、物理学、統計学、および金融数学の複数の分野にまたがっており、彼の貢献は現代の科学と数学の基盤を築く上で非常に重要です。



 

 ダニエルベルヌーイとその父


また、こんな事もありました。


1734年のパリ・アカデミー大賞で父のヨハンと息子のダニエルが同時に賞を受賞した事が父の名誉を傷つけダニエルはベルヌーイ家から出入り禁止の扱いを受けます。


父は死ぬまでダニエルを恨んでいました。有名なダニエルの流体力学に関する著作でヨハンによる盗用もあったようです。家名が重い故に、ヨハンは名誉で目がくらみ、良識を忘れています。


そんな事もありましたが、ダニエルは研究を続け、パリ・アカデミー大賞の受賞も10回になったようです。何よりニュートン力学と数学を考え合わせ「流体力学」を発展させました。非粘性流体に対する「ベルヌーイの法則」は有益で、変形する物体にニュートン力学の適用範囲を広めています。


そうした仕事は船舶の運航等に大変、役立ちました。


 


 



テックアカデミー無料メンター相談
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/30_初回投稿
2024/05/07_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
スイス関係のご紹介
フランス関連のご紹介
力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】




(2021年8月時点での対応英文)


Daniel is important in the name of Daniel Bernoulli. If you are familiar with the history of science, it will come to you, but there are many Bernoulli families in the history of science. Eight people are celebrities in three generations.


First of all, Daniel, who was born in Switzerland, has three brothers, all of whom are physicists and mathematicians.


Also, it seems that there are some scholars in Daniel's father's generation, and there was a scene where his father took over the work of Daniel's uncle.


Also, there was such a thing.


The simultaneous award of his father Johann and his son Daniel at the 1734 Paris Academy Awards hurts his father's honor and Daniel is banned from the Bernoulli family.


His father had a grudge against Daniel until his death. It seems that there was plagiarism by Johann in the famous work on fluid dynamics of Daniel. Because of his heavy family name, Johann is dazzled by honor and forgets good sense.


However, Daniel continued his research and seems to have won the Paris Academy Awards 10 times. Above all, he developed "fluid mechanics" by considering Newtonian mechanics and mathematics.


"Bernoulli's principle" for non-viscous fluids is useful and extends Newtonian mechanics to deforming objects.


Such work was very useful for the operation of ships.


2024年05月06日

コリン・マクローリン
5/6改訂【ニュートンを紹介|一般関数の級数展開】

こんにちは。コウジです。
マクローリンの原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)


優しく学べる基礎数学
【スポンサーリンク】
【1698年2月 ~ 1746年6月14日】



 マクローリンについて


マクローリンの名を耳にするのは


数学の講義ではないでしょうか。


物理学者というよりも数学者ですが


一昔前の物理学と数学は境目があいまいでした。


その名を全て記すとコリン・マクローリン


(Colin Maclaurin)です。


Wikipedeaで「マクローリン」という言葉だけで検索したら
ロボットアニメが出てきたりしますが(@2023/5)、
「マクローリン展開」で検索すると一発です。
  



マクローリンの業績について


クローリンは特に彼の名にちなんだ展開で有名です。
その内容は「0を中心としたテイラー展開」であって、
とても特別な場合なのですが
その有益性は非常に大きいのです。
その有益性は単純な私達では思い付かなかったでしょう。


込み入った話をすると、マクローリンが定式化した
数学的な定式化は「任意の関数の級数への分解」です。
任意の関数が持つ変化率を、
1次成分の寄与、2次成分の寄与、3時成分の寄与、、、
と分けて表現していくのです。


 



マクローリンと残した仕事 


 マクローリンは英スコットランドに生まれました。
ニュートン_と仕事をする中で彼の信頼を得て、
大学への推薦状を書いてもらう程でした。


マクローリン自身もニュートン_の考えに惚れ込んでいて、
ニュートンの紹介を目的として出版活動をしていました。
こうした仕事を通じてスコットランド啓蒙運動
に勤しんだ【いそしんだ】のです。


多くの人は高校時代以降に数学を使わなくなるでしょうが、
実生活の中で数学の世界はとても役に立っています。
特に、今回ご紹介しているマクローリンの考えは
一般関数の級数展開といった考えにつながり、
その考えは最終的にデジタル回路における近似処理
に繋がるのです。スマホの中とかの回路での処理原理です。
一般の人は意識しませんが恩恵を受けています。


理工学系の過程に進む初学者は出来るだけ
数学と産業のつながりを意識して下さい。
一見関係ないように思える数学の世界も、その概念を
土台として現代の応用技術が成り立っているのです。


無意味無乾燥に思える講義の内容が
貴方の人生で思わぬ成果を生む場合があります。



〆最後に〆


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/11/06_初稿投稿
2024/05/06_改定投稿



【スポンサーリンク】

 

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年8月時点での対応英訳)



About McLaughlin


Isn't it a math lecture that you hear the name of McLaughlin? He is a mathematician rather than a physicist, but a decade ago physics and mathematics had a vague line. The name is Colin Maclaurin.


If you search for "Macroline" in Wikipedea, you will see robot animation, but if you search for "Macroline expansion", it will be one shot.
Twice



About McLaughlin's achievements


McLaughlin is especially famous for his developments. The content is "Taylor development centered on 0", which is a very special case, but its usefulness is very great. Its benefits would not have come to our minds simply.


To put it in a complicated way, the mathematical formulation that McLaughlin formulated is "decomposition of an arbitrary function into a series". The rate of change of an arbitrary function is expressed separately as the contribution of the primary component, the contribution of the secondary component, the contribution of the 3 o'clock component, and so on.



Work left with McLaughlin


McLaughlin was born in Scotland, England.
While working with Newton, he gained his trust and even got a letter of recommendation to the university. McLaughlin himself fell in love with Newton's ideas and was publishing for the purpose of introducing Newton. Through these jobs, I worked for the Scottish Enlightenment Movement.


Many people will stop using math after high school, but the world of math is very useful in real life. In particular, the idea of ​​McLaughlin introduced this time leads to the idea of ​​series expansion of general functions, and that idea eventually leads to the approximation processing in digital circuits. It is a processing principle in a circuit such as in a smartphone. The general public is not aware of it, but they are benefiting from it. Beginners who advance to the science and engineering process should be aware of the connection between mathematics and industry as much as possible.


Even in the world of mathematics, which seems unrelated at first glance, modern applied technology is based on that concept. The content of a lecture that seems meaningless and dry may produce unexpected results in your life.

2024年05月05日

P・V・ミュッセンブルーク
5/5改訂【ライデン瓶を発明し静電気の基礎を確立】

こんにちは。コウジです。
ミュッセンブルークの原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)



ライデン瓶発電機
【スポンサーリンク】
【1692年3月14日生まれ-1761年9月19日没】


 ライデン瓶を考案したミュッセンブルーク


その名はピーテル・ファン・ミュッセンブルーク

;Pieter van Musschenbroek。

ライデン瓶の発明で知られているオランダの物理学者です。

ポンプや顕微鏡、望遠鏡を作る職人の子として生まれます。

何より、最初の蓄電器であるライデン瓶

を作ったことで知られています。

ラテン語学校でギリシア語・ラテン語・フランス語・英語、ドイツ語などを学んだ後にライデン大学で医学博士となります。当時の学識の付け方は今と大きく異なっていたようですね。そして、ロンドンで当時の大物である物理学者ニュートンの講義を受けています。

その後、ミュッセンブルークは数学、哲学、医学、占星術の教授を歴任します。占星術は当時の教養の中で合理的な学問体系であると考えられていて、少し前の時代には王家に使えていたノストラダムスが天文学と占星術を修めていたという史実もあります。そして、ミュッセンブルークが1726年に刊行した「Elementa Physica」では広くニュートンの理論をヨーロッパに広めています。

 ミュッセンブルークと帯電現象の理解


その後、

静電気の力を中心にミュッセンブルークは関心を深め、ガラス瓶の中に充満した水の中で「帯電した棒」が反発しあう現象を形にします。非常に効果的な装置で水の中で実験を行うことで、重力の効果を浮力の効果を打ち消して微細な反発力をとらえられます。

また、支点を介した二つの棒が重力と直角方向に開いていくので
開いた角度がθの時に重力の分力が


Sinθで考えられるのです。

数学上、θが0の近傍ではSinθが殆ど0なのです。

上記の数学的な仕組みで、@荷電現象で生じた力とAニュートンの明確にした力が釣り合い、平衡を保っています。その様子は少し感動できます。後の時代に動的な電磁気学が発展していきますがミュッセンブルークは静電磁気学の土台を作ったのです。

理論で期待される効果が目視で確認できます。浮力が重力を打ち消す効果と分力でSinθだけ考えればよい事情が相まって電気による微細な反発力が目に見える効果として現れます。開き角度が狭い時点では殆ど重力の効果がない形で帯電に起因する力が可視化出来るのです。

 

それまで帯電棒をこすり続けたりしなければ示せなかった「静電容量に起因する力」をミュッセンブルークによって示しました。後の電磁気学の発展に繋がる成果です。確かな一歩が残されたと言えるでしょう。



テックアカデミー無料メンター相談
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2021/07/01_初回投稿
2024/05/05_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
オランダ関係のご紹介へ
イギリス関係のご紹介

電磁気関係


AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】


(2021年8月時点での対応英訳)

About Musschenbrook 


Its name is Pieter van Musschenbrook

; Pieter van Musschenbroek.

Musschenbruck is a Dutch physicist as we know for the invention of the Leyden jar. He was born as a child of a craftsman who makes pumps, microscopes and telescopes. He had best known for making his first capacitor, the Leyden jar.

He had become a Doctor of Medicine at Leiden University after studying Greek, Latin, French, English, German, etc. at a Latin school. It seems that his way of learning at that time was very different from that of now. And he had taken a lecture in London by the then-big physicist Newton.

After that, Musschenbrook was a professor of mathematics, philosophy, medicine and astrology. Astrology is considered to be a rational academic system in the culture of the time, and there is a historical fact that Nostradamus, who was used for the royal family a while ago, studied astronomy and astrology. And in "Elementa Physica" published by Musschenbrook in 1726, Newton's theory had widely spreaded in Europe.

Method of Musschenbrook


After that, Musschenbrook deepened his interest around the force of static electricity, and formed a phenomenon in which charged rods repel each other in the water filled in a glass bottle. By conducting experiments in water with a very effective device, the effect of gravity can be canceled by buoyancy and with a minute repulsive force, we had be able to  capture.

Also, since the two rods that pass through the fulcrum open in the direction perpendicular to gravity, we had been able to consider the component force of gravity in Sinθ when the opening angle is θ.

Mathematically, Sin θ is almost 0 near θ of 0.

You can visually confirm the effect expected in theory.

The effect of buoyancy canceling gravity and the fact that only Sinθ needs to be considered as a component force combine to make a minute repulsive force due to electricity appear as a visible effect. When the opening angle is narrow, the force caused by charging can be visualized with almost no effect of gravity.

Work of Musschenbrook


Musschenbrook showed the "force due to capacitance" that could only be shown by rubbing the charging rod until then. It will lead to the later development of electromagnetism.

It can be said that Musschenbrook has left a solid step.

2024年05月04日

建部賢弘(たけべ かたひろ)_
5/4改訂【江戸時代に生まれ和算を大成した数学者】

こんにちは。コウジです。
建部賢弘の原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)


建部堅弘の数学
【スポンサーリンク】
【1664年(寛文4年)6月 〜 1739/8/24】



和算の大成者である健部賢弘


建部賢弘は日本の数学者で、和算を大成した人物です。
江戸時代1664年生まれです。


関ヶ原の合戦が1600年で江戸太平の世が200年ほど
だったことを思い返せば建部はまさに江戸時代の中期
に活躍したと言えますね。


時は享保の時代で8代将軍の暴れん坊将軍「徳川吉宗」
の信頼を得ます。そして享保四年(1719年)「日本総図」
を作成します。また、
師である関孝和の業績に関する著作を多数残しました。


その内容は歴史的な記述というよりも内容に深く入り込んでいます。
いわば
数学の側面からの解説書であったようです。



関孝弘の考察を建部が補う 


そもそも、関孝和は沢口一之が残した『古今算法記』での
未解決問題を関さん独自の点竄術を使って解決していました。


そこで「関さんの悪い所」なのですが、
省略し過ぎで難しい本だったのです。


面白いのは関西系の数学者からツッコミ食らっていた訳です。


「頑固な江戸のおじいちゃん」が関西人から
ツッコまれていたのですが、建部さんは
丁寧な解説で「正しいでしょう?」
って感じの話し方が出来たのです。


きっと関西人たちも納得したはずです。
関西人であれ関東人であれスッキリした瞬間です。


そして、師匠の関孝和と建部賢弘と建部賢明の三人で
全20巻の「大成算経」をまとめました。


「大成算経」は当時の和算をまとめ上げた
秀作として評価され続けています。



円に対しての建部の業績


建部賢弘の大きな業績として円に対しての
定量的な追及があります。物凄い精度で
円について考えていったのです。


そもそも、精度の高い真円が描けたとしても
その円での半径とこの長さの関係は自明ではありません。


今でこそ、子供たちも3.14…と記憶していけるのですが
理論的に真円が描けたと考えた時の弧の長さは
「三角関数を使って級数を作り極限」
を求めていくしかありません。


三角関数、級数、極限といった概念を和算の中で
正確に使っていくデリケートさが求められるのです。


建部賢弘は丁寧に言葉を選んで誰でもわかる
表現をして未知の世界に挑んでいったのです。


建部以前の時代から使われていた正多角形を
円が囲む近似から考えていきました。


建部は逆に正多角形に円が囲まれた部分を想像して、
円の面積がA以上B以下であると証明していくのです。


そして円弧の長さがα以上β以下であると証明していったのです。


そして建部賢弘は円周率を41桁まで正確に出したのです。
世界的に考えても数値的な解法として優れた業績でした。



その他の建部の業績


その他にも建部賢弘は多くの業績を日本に残しましたが、
以下備忘録的に羅列します。


・指数1/2の二項級数の近似解法を紹介
・ディオファントス方程式の近似解法を紹介
・帰納法に基づいた数値解析の方法論を紹介
・無限の概念を「不尽」として導入
・三角関数の内容を表の形で明示


そして今、
日本数学会では建部賢弘特別賞や建部賢弘奨励賞
という形で若手数学者を奨励する賞を設けています。
建部賢弘のように若かりし人が
新しい分野を開いていく姿を数学会は期待しています。






エンジニア転職保証コース
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2022/10/06_初稿投稿
2024/05/04_ 改訂投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介


AIでの考察(参考)


(2022年10月時点での対応英訳)


Katahiro Tatebe was a Japanese mathematician and a great exponent of Japanese arithmetic.
He was born in 1664 during the Edo period.


The Battle of Sekigahara took place in 1600, and the Edo period lasted about 200 years.
If we recall that the Battle of Sekigahara took place in 1600,we underground the peaceful Edo period lasted for about 200 years
The time was the Kyoho period, and he was active in the MiddleEdo generation.


The time was in the Kyoho period, and Takebe gained the trust of the 8th shogun, "Tokugawa Yoshimune," the ruffian and tyrant shogun.
And Tatebe produced the "General Map of Japan" in 1719.


In addition
Tatebe also wrote many works on the achievements of his mentor, Seki Takakazu.
The contents of these works are not so much historical descriptions as commentaries .
The contents of these works seem to have been commentaries from a mathematical point of view rather than historical descriptions.



Seki and Takebe


To begin with, Seki Takakazu solved the unsolved problems in Sawaguchi Kazuyuki's "Kokin Keiken" by using Seki's original point-falsification technique. However, the book was difficult to read because of the excessive "omissions" as "Seki's bad point.


What is interesting here is the fact that Kansai mathematical persons had criticized Takebe . The stubborn old man from Edo was getting flack from the Kansai people, but


Mr. Tatebe was able to give a polite explanation and say, "Isn't that right? He was able to speak in a way that made the Kansai people understand.


I am sure the Kansai people must convinced. It was a moment of great clarity, even for Kansai people.


And then, his master Seki Takakazu, Tatebe Masahiro, and Tatebe Tatebe Kenmei together produced a 20-volume book, "The Great Calculation Sutra," which they had published in 1949.
The "Taisei Keikyo",Everybody had highly regarded as an excellent work that summarized the Japanese mathematics of those time.


One of Tatebe's major achievements was his quantitative pursuit of the circle. He thought about the circle with tremendous precision. Even if a highly accurate circle could be drawn, the relationship between the radius and the length of the circle would not be self-evident.


Nowadays, children can memorize the rate,3.14..., but theoretically, when a perfect circle is drawn, the length of the arc can only be obtained by using trigonometric functions to create a series and finding the limit.



Rate of circle


The concepts of trigonometric functions, series, and limits must be used with delicacy and precision in Japanese arithmetic.


Kenhiro Tatebe carefully chose his words to express them in a way that anyone could understand, challenging the unknown.


Tatebe began by considering the approximation of a circle enclosing a regular polygon, which had been used since the pre-Tatebe era, and then, conversely, imagined the area of a circle enclosed by a regular polygon, proving that the area of the circle is greater than A and less than or equal to B.


Takebe then used a circle with an arc length of at least α and less than or equal to B. He then proved that the length of the arc is greater than or equal to α and less than or equal to β.



How many obtained


Then, Kenhiro Tatebe obtained pi to exactly 41 digits. This was an outstanding achievement in numerical solving, even when considered on a global scale.



Other wiorks of Takebe


Kenhiro Tatebe also left many other achievements in Japan, which are listed below as a reminder.


Introduced a forbidden solution method for binomial series with exponent 1/2.
Introduced an approximate solution method for Diophantine equation.
Introduction of a methodology for numerical analysis based on induction
Introduces the concept of infinity as "inexhaustibility
・Contents of trigonometric functions are clearly stated in the form of tables.



Kenhiro Tatebe Encouragement Award.


The Mathematical Society of Japan now offers prizes to encourage young mathematicians in the form of the  Katahiro Tatebe Special Prize and the Katahiro Tatebe Encouragement Prize.
We hope to see young people like Katahiro Tatebe
to open up new fields of study.


Translated with www.DeepL.com/Translator (free version)


の原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)