2022年10月20日
22019 大人のさび落とし ベクトルのおおきさ
大人のさび落とし
ベクトルの大きさ
01
ベクトルの 和の 大きさが
こんな感じの
等式に 成ってることを
証明せよ
なので
左辺を 変形して
右辺に持って行こうと
02
図にすると
こんな感じで
03
大きさの 二乗は
同じ ベクトルの 内積
に成ってるので
分配の法則
交換の法則
04
整理してきますと
赤アンダーライン のとこの
計算を
具体的に
やってみると
05
こんな感じに
06
これも ほぼ 同じ
07
ここんとこは
直角だから
=0
08
これらを
一つ前の式に 代入して
ここまでは
大きさの 二乗で来てるから
09
√すると
左辺
これがさ
=右辺だから
オッケイ
10
問題
11
大きさは 絶対値
絶対値を2乗すれば
同じ ベクトルの 内積
また あとで
√ しましょう
12
こんな感じで
題意から わかってるとこ
具体的に 数値を 入れて
13
整理して
14
元に 戻すと
こうです
15
問題
これはさ
ベクトルの 設定の仕方で
半分 後は 計算
16
こんな感じに ベクトルを
設定できれば
あとは
計算
左辺
17
右辺
18
右辺は こんなだから
さっきの
左辺と同じ
証明終わり
19
昔むかし そのむかし
九州産業大学の入試問題
20
まずさ
条件式を 辺々二乗して
また
あとで √する方法で
左辺から
内積に 持ち込んで
展開してくと
21
左辺二乗は こんなだね
右辺二乗も
22
こんな感じに
23
ところで
与えられてる ベクトルの
絶対値2乗は
24
代入したらば
(1)
a,bの内積が
kで出て来て
25
まず かっこ1は いいと
26
k二乗だけど
分母にも
kがあるんで
2次関数の グラフが使えない
そこで
相加平均は 相乗平均に
等しいか それより 大きい
で
最小値を 求めると
27
最小になるときは k=1
最小値
1/2
その時の なす角は
28
Θ は ゼロ 以上 パイ 以下
60度
お疲れ様です。