アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2024年10月 >>
    1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31    
最新記事
最新コメント

2021年12月02日

マイケル・ファラデー
【1791年生まれ12/2改定】

「ファラデー」の原稿を投稿します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1791年9月22日生まれ 〜 1867年8月25日没】




電磁気学の基礎を築いたファラデー


イギリスのファラデーは電磁力学の礎を築きました。


近接作用を考えていって導体の周りの空間


における磁界の様子を想像しました。


そして、それが変動した時の作用などを


一つ一つ実験で明らかにしていきます。


磁束の磁界変化が起電力を生む事実を


定式化しました。優れた実験家でした。


画像ではオックスフォードを使っていますがこの時代にはイングランド内戦に伴い多くの人がロンドンで研究をします。ファラデーはロンドンの王立協会に所属していました。そして、ファラデーが考えた法則はファラデーの電磁誘導の法則と呼ばれます。また別途、ファラデーの電気分解の法則という考え方が存在して、それは電気分解での精製質量を記述します。そうしたファラデーの伝記を読んでいて思うのは、ファラデーはとても庶民的な感覚を持っていたということです。人々がどう思っているか、というより感じているかを他の科学者よりも共感できる点が多いかと思います。一緒にお酒でも飲めたら色々語れるでしょう。



ファラデーの人となりと評価


ファラデーは子供向けにクリスマスレクチャー


をしたり、ろうそくの科学を解説しててみたり、


一人で考えを極めていく他に


社会全体の意識を高めていこう


としていたと感じられます。


私もこの点は見習いたいです。


ただ、当時は階級社会であり、公の場の食事での扱いや馬車の乗り方等でファラデーは差別的な扱いを受けていていたようです。色々な発見をして科学で名を成した彼は晩年、ナイトの称号を何度も 辞退しました。また、ファラデーはクリミア戦争時に兵器開発の依頼に対して言葉を残していますので引用致します。私はファラデーの感性が好きです。


(兵器を)「作ることは容易だ。しかし絶対に手を貸さない!」
(引用・Wikipedia)


科学技術の平和利用を考えると現代でも個々の科学者は判断をする時があります。実際に日本は敗戦国なので出来る事が限られていまが、例えば中東で紛争があった際に、地雷探知ロボットを投入したりしています。日本ならではの役割を果たして欲しいと願います。ファラデーはそんな事も考えさせてくれました。そして、死後、何年もたってファラデーはオックスフォード大学から名誉博士号を受けています。



〆最後に〆





以上、間違いやご意見があれば
以下アドレスまでお願いします。
問題点には適時、
返信・改定を致します。


nowkouji226@gmail.com


2020/09/03_初回投稿
2021/12/02_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
電磁気関係


【このサイトはAmazonアソシエイトに参加しています】


詳しくはコチラへ→【テキストポン】


【2021年8月時点での対応英訳】



Faraday made the basis of electronics


Faraday in England laid the foundation for electrodynamics. He considered proximity and he imagined the appearance of a magnetic field in the space around a conductor. Then, we will clarify the action when it fluctuates one by one by experiment. He formulated the fact that changes in the magnetic field of magnetic flux produce electromotive force. He was an excellent experimenter.


Oxford is used in the image, but many people study in London during the English Civil War. Faraday belonged to the Royal Society of London. And Faraday's law is called Faraday's law of electromagnetic induction. Separately, there is the idea of ​​Faraday's laws of electrolysis, which describes the purified mass in electrolysis. Reading those Faraday biographies, I think Faraday had a very common sense. I think he has more sympathy than other scientists for what people think, rather than what they feel. If you can drink alcohol together, you can talk a lot.


It seems that Faraday was trying to raise the awareness of society as a whole, in addition to giving Christmas lectures for children and explaining the science of candles, thinking extremely alone.


I also want to emulate this point.



Faraday and later evaluation in class society


However, at that time, it was a class society, and it seems that Faraday was treated discriminatory in terms of how to treat it in public meals and how to ride a horse-drawn carriage. He made many discoveries and made a name for himself in science, and in his later years he declined his knight title many times. He also quotes Faraday as he left a word for his request to develop weapons during the Crimean War. I like Faraday's sensibility.


He said (weapons) "easy to make, but never help!"
(Quote / Wikipedia)


Even today, individual scientists sometimes make decisions when considering the peaceful use of science and technology. Actually, Japan is a defeated country, so there are limits to what we can do, but for example, when there is a conflict in the Middle East, we are introducing landmine detection robots. I hope you will play a role unique to Japan. Faraday made me think about that too. And years after his death, Faraday received an honorary doctorate from Oxford University.



2021年12月01日

ロバート・シュリーファー
【1931年生まれ-12/1改定】

「シュリーファー」の原稿を投稿します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1931年5月31日 ~ 2019年7月27日】




 BCS理論のシュリーファー


BCS理論を作った3人の中の一人が


シュリーファーであって、


BCS理論でのSはシュリーファのSです。



 シュリーファーと超電導の研究


シュリーファは少年時代は手作りロケットを作ったりアマチュア無線が好きだったりする電子工学好きな少年でした。そんなシュリーファはMIT(マサチューセッツ工科大学)で半導体の研究を当初進めていました。特に半導体表面での電子の振る舞いを研究していたのです。そして、後に超伝導現象の研究に移ります。


シュリーファ達がBCS理論をまとめた後、世界での研究は常温での超伝導実現に向けた研究が進んでいます。常温高圧環境下で現象を起こしたりする試みがなされていて、マイナス百数十ケルビンまで転移温度は近づいてきています。


現実に実現が難しい様な高圧をかけた時に、常温で超電導現象が実現した報告もあります。私が研究していた時代には青学の秋光先生や東工大の細野先生が挑んでいました。それぞれご存命かと思われますので詳細は控えます。


科学史と言うより最前線に近いかと思えますので。


ご本人達にしてみれば


「今でも研究してますよ!」って気持ちも


あるのではないかとと思えるのです。



 シュリーファーの晩年


話し戻って、シュリーファは1957年から米国代表の立場で英国バーミンガム大学とコペンハーゲンのボーア研究所で超電導の研究を続けています。そして残念な事に、晩年に自動車事故を起こし人を殺めてしまい、懲役を課されています。カリフォルニア州サンディエゴにある刑務所で懲役に服しました。素晴らしい研究のセンスとうっかりミスを犯してしまう性格は共にシュリーファの人生に影響を与えました。出来れば緊張感を持って生活を送って頂きたかったです。こんな話をするのは事故当時シュリーファは免許停止中だったからです。立場のある人間であれば尚更、責任を持った行動が求められます。
それだから、この話を知ってとても残念です。バーディン教授の人を集める性格とシュリーファー教授の人を遠ざけてしまう性格は対象的に思えてしまうのです。バーディンは仲間とトランジスタを開発して、別途BCS理論をつくりあげて仲間の輪を広げました。その過程で出会った日本人、中嶋貞雄をアメリカに呼んでもてなしていたりします。朗らかなアメリカ人のイメージです。反面、シュリーファーは立派な立場をいくつも受けた後に人を殺めてしまいました。朗らかなアメリカ人として語れない人生です。こんな話を我々は大きな教訓として考えるべきだと思います。




英語が話せるようになる「アクエス」


以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/17_初稿
2021/12/01_改定


舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ
イギリス関係のご紹介へ
オランダ関係のご紹介へ
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】




(2021年11月時点での対応英訳)



Schrieffer of BCS theory


One of the three who created the BCS theory is Schrieffer, and the S in BCS theory is Schrieffer's S.



Research on Schrieffer and superconductivity


When he was a boy, Shrifa was a boy who loved electronics, making handmade rockets and ham radio. Such Schrifa was initially conducting research on semiconductors at MIT (Massachusetts Institute of Technology). He was especially studying the behavior of electrons on the surface of semiconductors. And he later moved on to study superconducting phenomena.


After Schrifa et al. Summarized the BCS theory, research in the world is progressing toward the realization of superconductivity at room temperature. Attempts have been made to cause phenomena in a normal temperature and high pressure environment, and the transition temperature is approaching to minus one hundred and several tens of Kelvin.


There is also a report that the superconducting phenomenon was realized at room temperature when a high voltage that was difficult to realize in reality was applied. When I was studying, Professor Akimitsu of Seigaku and Professor Hosono of Tokyo Institute of Technology were challenging. I will refrain from detailing each of them as they may be alive. I think it's closer to the front line than the history of science. For the people themselves, I think they may have the feeling that they are still researching!



Schrieffer's later years


Returning to the story, Schrifa has been studying superconductivity at the University of Birmingham in the United Kingdom and the Bohr Institute in Copenhagen since 1957. And unfortunately, in his later years he had a car accident, killed a person and was sentenced to imprisonment. He was sentenced to jail in San Diego, California. Both his great sense of research and his inadvertent mistaken personality have influenced Shrifa's life. He wanted him to live a life with a sense of tension if possible. I tell this story because Shrifa was out of license at the time of the accident. If you are a person in a position, you are even more required to act responsibly.
So I'm very sorry to know this story. The character of gathering Professor Bardeen and the character of keeping Professor Schrieffer away seem to be symmetrical. Bardeen developed a transistor with his companions and created a separate BCS theory to expand the circle of his companions. I invite Sadao Nakajima, a Japanese who I met in the process, to the United States for hospitality. It is an image of a cheerful American. On the other hand, Schrieffer killed a person after receiving several good positions. It's a life I can't talk about as a cheerful American. I think we should consider this story as a big lesson.


ルイ・コーシー
【1789年生まれ-12/1改定】

「コーシー」の原稿を投稿します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1789年8月21日生まれ ~ 1857年5月23日没】





コーシーと当時の社会環境


その名は正確には、

オーギュスタン=ルイ・コーシー


(フランス人)Augustin Louis Cauchyです。


コーシーは数学者で、天文学、光学、流体力学に


大きく貢献しています。


 

コーシーの生まれた時代に


フランスでは革命が起きていて


それを避ける為に家族は郊外に居を移します。


彼の生まれた時期でした。


コーシーの一家がパリ郊外に移り住んだ時に


近くにラプラスが住んでいました。


コーシーの父とラプラスが交流を進める中で


ラプラスはコーシーのセンスに気づきます。


それは素晴らしい出会いだったのです。


 

やがてコーシーの一家はパリに戻ってサロンでの


交流をしたりします。コーシーはそんな中で


土木学校を卒業して港を作る仕事をしていたようです。


思想的には両親の影響を受け保守的なところがあり、


シャルル10世の国外退去に伴い、


共に流浪の時代を送ります。そこでコーシーは


ボルドー公の家庭教師などをしていました。


 

コーシーの研究業績 


研究においては置換方法にコーシーは工夫を凝らし


群論に繋がる研究成果を纏めています。


また解析学の面では、その厳密な性格から


ε・∂(イプシロン・デルタ)論法の


原型となる考えを作り出しました。


結果として、


解析学では厳密な定式化を進め、


現代の数学の礎を作ったのです。


級数の置換をスマートに進めていたと思います。


連続・非連続をつないでいったと言えないでしょうか。


私も複素平面・留数定理…と学んでいった事を思い出します。


現代で使っている解析学ではコーシーが作り上げたもの


が多いです。コーシー・リーマンの方程式・コーシー列・


コーシーの平均値の定理・コーシーの積分定理等、


枚挙にいとまがありません。


その業績は広くたたえられ、


エッフェル塔にその名を残しています。



ハイブリット英会話スタイルで伸ばす「アクエス」


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/31_初回投稿
2021/12/01_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介


【このサイトはAmazonアソシエイトに参加しています】



【2021年8月時点での対応英訳】


The name is exactly Augustin-Louis Cauchy (French).


Cauchy is a mathematician and a major contributor to astronomy, optics and fluid mechanics.


There was a revolution in France when Cauchy was born, and Cauchy's family moved to the suburbs to avoid it. It was the time he was born.


Laplace lived nearby when Cauchy's family moved to the suburbs of Paris.


Laplace notices Cauchy's sense as Cauchy's father and Laplace interact. It was a wonderful encounter.


Eventually, Cauchy's family returns to Paris to interact at the salon. Cauchy seems to have graduated from civil engineering school and worked to build a harbor.


His ideology is conservative, influenced by his parents, and together with Charles X's deportation, he spends an era of exile. There, Cauchy was a tutor of the Duke of Bordeaux.


In his research, Cauchy devised a replacement method and summarized the research results that led to group theory.


In terms of his analysis, his strict nature created the idea that became the prototype of the ε ・ ∂ (epsilon delta) reasoning.


As a result, he proceeded with rigorous formulation in analysis and laid the foundation for modern mathematics.


I think he was smart about replacing series. Can't you say that he connected continuous and discontinuous? I also remember learning about the complex plane and the residue theorem.


Many of the analytical studies used in modern times have been created by Cauchy. Cauchy-Riemann's equation, Cauchy sequence, Cauchy's mean value theorem, Cauchy's integral theorem, etc. are numerous.


His work has been widely praised and has left its name on the Eiffel Tower.



2021年11月30日

有馬朗人_
【1930年生まれ-11/30投稿】

「有馬朗人」の原稿を投稿します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1930年9月13日 ~ 2020年12月6日】



 有馬氏へお悔やみ


東大学長を務めた有馬朗人氏が


2020/12/8に亡くなりました。享年90歳。


謹んでお悔やみを申し上げます。





有馬朗人は原子核物理学の世界で業績をあげ


特に


有馬・堀江理論(配位混合の理論)、


相互作用するボゾン模型の提唱、


クラスター模型への貢献、


の3つの業績が有名です。



有馬朗人の業績


特に相互作用するボゾン模型は


有馬朗人がオランダの研究機関に居た


1974年に発表していて、別名で


「相互作用(する)ボソン近似」の名で


ご存知の方も多いのではないでしょうか。


粒子の入れ替えに対して波動関数の


符号が反転しない対象に対して、


いわゆる「第二量子化」された時の議論で


有馬朗人の考えた近似は使われます。 





また、政界においても活躍され、 特にゆとり教育の推奨が知られています。 有馬朗人が勧めたかった当初の教育は 世界史と日本史を共に学ぶ事で 知識をより豊かに身に着けていく様な 試みであって、現場に話が伝わった時点では 全く別の解釈として伝わっていました。 有馬朗人はその解釈を非常に 遺憾に感じて居たようです。





他にも色々と語りたかったでしょう。 ご冥福をお祈りします。











以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には適時、
返信・改定をします。





nowkouji226@gmail.com





2020/12/07_初稿投稿
2021/11/30_改定投稿



英語が話せるようになる「アクエス」


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介


(2021年11月時点での対応英訳)



Condolences to Mr. Arima


Akito Arima, the president of the University of Tokyo, died on December 8, 2020. He is 90 years old. We would like to express our deepest condolences. Akito Arima has made great achievements in the world of nuclear physics, and is particularly famous for his three achievements: Arima-Horie theory (theory of mixed coordination), proposal of interacting boson models, and contribution to cluster models.



Achievements of Akito Arima


In particular, the interacting boson model was announced by Akito Arima in 1974 when he was at a research institute in the Netherlands, and many of you may know it under the alias of "interacting boson approximation". ..


Akito Arima's approximation is used in the discussion of so-called "second quantization" for objects whose wavefunction signs do not invert with respect to particle replacement. It was


It is also active in the political world, and is especially known for recommending Yutori education. The initial education that Akito Arima wanted to recommend was an attempt to acquire more knowledge by studying both world history and Japanese history, and when the story was conveyed to the field, it was a completely different interpretation. It was transmitted as. Akito Arima seems to have felt very regretful about his interpretation.


He would have wanted to talk a lot more. He prays for souls.


S・オーム
【1789年生まれ-11/30改定】

「オーム」の原稿を投稿します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1789年3月16日-1854年7月6日】


 



オームの法則を見出したオーム


その名はGeorg Simon Ohm。


オームの法則で有名です。


オームの法則は定量的に回路を論じるときに不可欠で


非常に明快なので小学生レベルから説明出来ます。


子供に科学を教える時に理解しやすく、


実験的と原理がつながる事例として明快です。


電圧値;Eは電柱値;Iと抵抗値;R


の積なのです。E=RI。


 

ームの法則確立の経緯


オームは独学で数学、特に幾何学を習得してます。


研究生活に入る前に教師として生計を立てて


いる時期がありました。その後、


プロイセン王に幾何学に関する原稿を送り、


その論文で評価を受けました。ケルンの


ギムナジウム(中等教育機関)で


物理学を教える機会を得ます。


そこでの実験室で設備が充実していたことは


その後のオームにとってとても良かったのです。


 

オームの法則は、実の所はイギリスの


キャヴェンディッシュが先に発見している


ようですが彼は存命中に発表しませんでした。


オームはキャヴェンディッシュと意見交換


することなく独自に法則を


確立していて論文にまとめました。


 

オームの電子把握について


また、オーム自身は導体内での電子の挙動に関して


近接作用の側面から論じていたようですが


そんなエピソードからも目に見えないミクロな現象を


組み立てていく為に検証をしていく難しさを感じます。


「静電気」の概念が確立された後に、


電子が溜まっていく認識が出来て、


溜まったものに同位体を近接させると


電気が流れていくのです。


その時に電球(ライト)が付くのです。


相異なった物理量を抽出して結び付けていったのです。


 

そんな作業を一つ一つ進める困難の中、


原理を確立して社会に意義を問いかけた結果として、


現代に多大な功績を遺したオームの名は抵抗値の単位


として今後も使われていきます。


ハイブリット英会話スタイルで伸ばす「アクエス」



以上、間違い・ご意見は
以下アドレスまでお願いします。
最近、返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/09/30_初稿投稿
2021/11/30_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
ドイツ関係

時代別(順)のご紹介
電磁気関係


【このサイトはAmazonアソシエイトに参加しています】


 

【2021年8月時点での対応英訳】



Ohm who found Ohm's law


Its name is Georg Simon Ohm. Famous for Ohm's law.


Ohm's law is indispensable and very clear when discussing circuits quantitatively, so it can be explained from the elementary school level.


It is easy to understand when teaching science to children, and it is clear as an example where experiments and principles are connected.


The voltage value; E is the product of the utility pole value; I and the resistance value; R. E = RI.



Background of the establishment of Ohm's law


Ohm was self-taught in mathematics, especially geometry, and had a time to make a living as a teacher before entering his research life. He then sent a manuscript on geometry to King Prussian, who was evaluated for the treatise and had the opportunity to teach physics at the Gymnasium in Cologne.


It was very good for Ohm after that that the laboratory there was well equipped.


Ohm's law, in fact, seems to have been discovered earlier by Cavendish in England, but he did not announce it during his lifetime.


Ohm established his own law without exchanging opinions with Cavendish and summarized it in his treatise.



About electronic grasp of Ohm


Also, Ohm himself seems to have argued about the behavior of electrons in the conductor as a result of proximity action, but even from such an episode, it is difficult to verify in order to assemble a micro phenomenon that is invisible. I feel it.


After the concept of static electricity is established, it is possible to recognize that electrons are accumulating, and when an isotope is brought close to the accumulated one, electricity flows. At that time, the light bulb arrives.


He extracted and linked the physical quantities that he had struck.


In the midst of the difficulty of proceeding with such work one by one, the name of Ohm, who established the principle and questioned the significance of society and left a great deal of achievement in modern times, will continue to be used as a unit of resistance value.

2021年11月29日

レオン・クーパー
_1930年2月28日 ~(ご存命中)

「クーパー」の原稿を投稿します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】




 クーパと超電導


初めに、本稿は関連用語の解説が


中心となリます。今後も含め、


分かり易い内容にしたいので


超伝導現象を科学史の観点から


改めてまとめ直した方が


有益だろうと感じたからです。


既に内容を
ご承知の方にはしつこく感じるかと。
そうでしたらごめんなさい。


クーパーはジョン・バーディーン等と共に
BCS理論を確立しました。
クーパーはユダヤ系です。
賢い人達ですね。


そもそもBCS理論の大事な考え方
であるクーパー対という考え方を
クーパーは26歳の時に纏めています。


さて、本題です。1911年のK・オンネス
の発見により通常の伝導性とは異なる
超伝導状態が存在すると
明らかになりました。
定量的には絶対零度近くの
マイナス273℃=ゼロ・ケルビン(k)
に近づくと超伝導現象が起きます。
その時は抵抗値ゼロです。
例えばニオブ(Nb)は9.22ケルビンで
超伝導状態になります。超伝導状態への
転移を上手く説明した理論がBCS理論で
あってそこでのCはクーパーの名前に
由来します。



超電導の別の側面 


ここで別の側面から超伝導状態を考えます。温度を下げ相転移温度で現象が起きると電流を流した時に抵抗値がゼロになりますが同時に相転移温度で磁界に対して変化が生じます。現時点での応用としてリニアモーターカーがあげられます。細かくは超伝導体の内部で内部磁場がゼロになり、外部からの磁界を遮断します。超伝導状態になった時に磁石が浮かぶ写真は有名な例えですね。更に磁石は極性を持ちますから、ラダーと呼ばれる軌道で極性を切り替えていく事でリニアモーターカーは進むのです。この完全反磁性またはマイスナー効果と呼ばれる現象は超伝導現象での特徴の一つです。


ここで関連して磁力線について整理したいと思います。ご存知の通り磁石はN極とS極からなり磁力を持ちます。一般的に模式図で示される様に磁力線は片方から他方へゆったりした曲線で繋がっていきます。所が超伝導現象では内部へ磁力線が侵入出来ない様な現象が起きます。相転移の前後で形が突然変わります。更には変化の違いで第一種超伝導体 と第二種超伝導体に物質によって分かれます。これらの現象を理解する為にクーパー等が確立したBCS理論が役立つのです。


この考えが発展していき、現代では相転移の温度がどんどん高くなっています。実用上は常温常圧下で相転移を起こすことが大事になっていますので液体ヘリウムよりも安価な液体窒素で冷やせる事が望ましいのです。実際、液体素の沸点は−196℃ですので現在は、液体窒素で冷やす事で相転移を実用出来る素材を中心に研究が行われて居ます。そして、現在では現象発生に対して「ゆらぎ」のメカニズムをより解明していこうという取り組みが進んでいます。さらなる進展に期待しましょう。


英語が話せるようになる「アクエス」




以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/16_初回投稿
2021/11/29_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Cooper and superconductivity


First, this article focuses on explanations of related terms. I wanted to make the content easy to understand, including in the future, so I felt that it would be useful to reorganize the superconducting phenomenon from the perspective of the history of science.


Do you feel persistent to those who already know the contents? If so, I'm sorry.


Cooper established the BCS theory with John Bardeen and others. Cooper is of Jewish descent. He's smart people, aren't he?


In the first place, Cooper summarized the idea of ​​Cooper pair, which is an important idea of ​​BCS theory, at the age of 26.


Well, the main subject. The discovery of K. Onness in 1911 revealed that there is a superconducting state that is different from normal conductivity.
Quantitatively, a superconducting phenomenon occurs when approaching minus 273 ° C = zero Kelvin (k) near absolute zero. At that time, the resistance value is zero. For example, niobium (Nb) becomes superconducting at 9.22 Kelvin. The theory that well explains the transition to the superconducting state is the BCS theory, where C comes from Cooper's name.



Another aspect of superconductivity


Now consider the superconducting state from another aspect. When the temperature is lowered and a phenomenon occurs at the phase transition temperature, the resistance value becomes zero when a current is passed, but at the same time, the phase transition temperature changes with respect to the magnetic field. The current application is a linear motor car. In detail, the internal magnetic field becomes zero inside the superconductor, blocking the external magnetic field. The picture of a magnet floating when it is in a superconducting state is a famous analogy. Furthermore, since magnets have polarity, the linear motor car advances by switching the polarity in a trajectory called a ladder. This phenomenon called the complete antimagnetism or the Meissner effect is one of the characteristics of the superconducting phenomenon.


Here, I would like to organize the lines of magnetic force in relation to this. As you know, a magnet consists of N pole and S pole and has magnetic force. Generally, as shown in the schematic diagram, the lines of magnetic force are connected by a loose curve from one side to the other. However, in the superconducting phenomenon, a phenomenon occurs in which the lines of magnetic force cannot penetrate inside. The shape changes suddenly before and after the phase transition. Furthermore, it is divided into type 1 superconductors and type 2 superconductors depending on the substance due to the difference in change. The BCS theory established by Cooper et al. Is useful for understanding these phenomena.


This idea has evolved, and the temperature of the phase transition is getting higher and higher in modern times. In practice, it is important to cause a phase transition under normal temperature and pressure, so it is desirable to cool it with liquid nitrogen, which is cheaper than liquid helium. In fact, since the boiling point of liquid elements is -196 ° C, research is currently being conducted focusing on materials that can be used for phase transition by cooling with liquid nitrogen. At present, efforts are underway to further elucidate the mechanism of "fluctuation" in response to the occurrence of phenomena. Let's look forward to further progress.

A・J・フレネル
【1788年生まれ-11/29改定】

「フレネル」の原稿を投稿します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1788年5月10日 ~ 1827年7月14日】




フレネルとナポレオン


その名はオーギュスタン・ジャン・フレネル;Augustin Jean Fresnelです。フランスのノルマンディー地方で建築家の父のもとに生まれます。ナポレオン時代に生きた人で、ナポレオンの運命で人生を大きな影響を受けました。先ず、フレネルは国立土木学校を卒業後に色々な地方の地方の現場に赴任して建設の仕事の経験を重ねます。その傍らで関心のあった光学関係の知見を得ていきます。1815年におけるナポレオン・ボナパルトのエルバ島脱出の際には国王勢の味方となりましたが、その為にナポレオン施政下では軟禁生活を余儀なくされます。私見(しけん:私の考え)では、この時の時間の過ごし方が少しニュートンと似ている気がしてしまいます。実際にニュートンはペスト流行時に学術交流できない時間を活用してプリンキピアに繋がる思索の時間を作り、まとめ上げました。フレネルはナポレオン施政時の軟禁生活の時間を使って光学の研究を進め、波動性による考え方を確立して回析現象を示したのです。


ナポレオンの百日天下が終わり、ルイ18世が再び即位すると
フレネルは復職しパリにて技師としての仕事を再開しました。



フレネルと光 


パリでの仕事としてフレネルは生活の為の仕事をし乍ら光学の研究を続けました。クリスティアーン・ホイヘンスやトマス・ヤングらが考えていた光の伝番についての当時の考えは縦波だろうと考えられていました。つまり、光は波動(波)として考えられますが、光は音波と同様に媒質(実は真空でも伝わります)を伝わる時は「縦波」であると考えられていたのです。それに対してフレネルは、偏光の説明を突き詰めて、光の波動説を実証したうえで、光が横波であると考えたのです。
『ここでの「縦波」や「横波」は進行方向に対してそれぞれ「平行」が「垂直」であるかに対応します。』


こうしたフレネルの光学理論は、複屈折現象などを上手く説明しました。またフレネルは、地球のような移動体での光路差について研究していきました。それはマイケルソン・モーレーの実験に繋がり、特殊相対論に示唆を与えたと言われています。


フレネルは光学理論をまとめあげ、1823年に「反射が偏光に与える諸変形の法則に関する論文」として発しました。この功績は広く称えられ、、フランス科学アカデミーの会員に選ばれたほか、物理学の世界で次々と認められました。


最後にフレネルはとても病弱でした。残念な事に結核を患い39歳で若くして亡くなってます。




英語が話せるようになる「アクエス」


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2021/10/05_初版投稿
2021/11/29_改定投稿


旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
電磁気関係
量子力学関係

力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Fresnel and Napoleon


Its name is Augustin Jean Fresnel. Born to an architect's father in the Normandy region of France. A man who lived during the Napoleonic era, Napoleon's fate greatly influenced his life. First, after graduating from the National Civil Engineering School, Fresnel will be assigned to various local sites to gain experience in construction work. Beside him, he gains optics insights that he was interested in. He became an ally of the royal family when


Napoleon Bonaparte escaped from Elba Island in 1815, which forced him to live under house arrest under Napoleon's administration. In my opinion, the way I spend my time at this time is a bit like Newton. In fact, Newton made use of the time when academic exchange was not possible during the plague epidemic to create and organize a time for thinking that would lead to Principia. Fresnel used his time under house arrest during Napoleon's administration to study optics, establishing a wave-based mindset and showing the phenomenon of diffraction.


When Napoleon's Hundred Days ended and Louis XVIII reigned, Fresnel returned to work and resumed his work as his engineer in Paris.



Fresnel and light


As his work in Paris, Fresnel continued his optics research while working for a living. It was thought that the thoughts of Christiaan Huygens and Thomas Young on the transmission of light at that time would be longitudinal waves. In other words, light can be thought of as a wave, but when it travels through a medium (actually, it can also be transmitted in a vacuum) like sound waves, it was thought to be a "longitudinal wave."


Fresnel, on the other hand, scrutinized the explanation of polarized light, demonstrated the wave theory of light, and thought that light was a transverse wave.
"The" longitudinal wave "and" transverse wave "here correspond to whether" parallel "is" vertical "with respect to the traveling direction. 』\


Fresnel's optical theory explained the birefringence phenomenon well. Fresnel has also studied optical path lengths in mobile objects such as the Earth. It is said that it led to Michelson-Morley's experiment and gave suggestions to special relativity.


Fresnel summarized the theory of optics and published it in 1823 as "A Paper on the Laws of Deformation of Reflection on Polarized Lights". This achievement was widely praised, he was elected a member of the French Academy of Sciences and was recognized one after another in the world of physics.


Finally Fresnel was very sick. He unfortunately suffered from tuberculosis and died at the young age of 39.


2021年11月28日

マレー・ゲルマン
__【1929年生まれ-11/28改定】

「ゲルマン」の原稿を投稿します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1929年9月15日 ~ 2019年5月24日】

「ボイル」の原稿を投稿します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】



 ニューヨーク生まれのゲルマン


ゲルマンは米ニューヨーク生まれの理論家です。


素粒子論の世界でノーベル賞を受けています。


ゲルマンの名を本来はゲル-マンと書きますが、


【Gell-Mannと書きますが、】


本稿ではゲルマンとしています。


記述が楽で、読みやすいからです。


ゲルマンはイェール大で学士号を受け、MITで博士号を受けました。その後、プリンストン高等研究所、コロンビア大、シカゴ大、カリフォルニア工科大で研究を続けます。サンタフェ研究所の設立者の一人でもあります。ゲルマンの研究実績としてはクォークの提唱が大きかったですね。加速器の開発後には様々な粒子が未整理のまま次々と発見され、それらの関係と性質は未解決な部分が残るままに、問題が蓄積されていきます。それらを整理・理解する手段がクォークだと言えるでしょうか。ゲルマンの理解体系では対象性が使われていて、ストレンジネスやカラーといった概念で素粒子が理解されていきます。
秩序ある奥深い理論だと思います。



 ゲルマンとファインマン


さて、ゲルマンの業績として素粒子の分類に関する側面を取り上げてきましたが、ゲルマンの研究での真骨頂は粒子の反応に関しての研究ではないでしょうか。関連してR・P・ファインマンという論敵がいました。あくまで伝えられている内容なのですが、ゲルマンとファイン・マンの論争はまるで子供の喧嘩みたいにも思えます。激怒したファイン・マンが、「貴様の名前綴りからハイフォン消すぞ!」【Gell-Mann改めGellmannとするぞ!の意】と怒鳴りつけたら、「ゲルマンがお前の名前をハイフォン付きで書いてやる!」【Feynman改めFeyn-Manとしてやる!の意】と言い返す有り様だったようです。アメリカ人の感覚なのでしょうか。西部劇の勢いなのでしょうか。ただ少し理解出来るかも、と思ったのは互いの愛する家族を侮辱していたのですね。瞬間的に家祖も汚す発想は、頭の切れる天才同士の喧嘩だったのでしょう。より効果的な屈辱の与え方を考えて。。。
いや、やはり激怒して
子供じみた喧嘩してたのかもしれません。;)


そんなゲルマンとファイン・マンは
それぞれに素晴らしい業績を残しました。


英語が話せるようになる「アクエス」




以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/11/05_初稿投稿
2021/11/18_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関連のご紹介へ
イェール大学関連のご紹介へ
纏めサイトTOP
電磁気関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)




Germanic born in New York


German is a theorist born in New York, USA.


He has received the Nobel Prize in the world of particle physics.


Originally the name of German is written as Gell-Man,


[I write Gell-Mann, but]


In this paper, it is German.


It's easy to write and easy to read.


German received a bachelor's degree from Yale University and a PhD from MIT. He then continues his research at Princeton Institute for Advanced Study, Columbia University, University of Chicago, and California Institute of Technology. He is also one of the founders of the Santa Fe Institute. Quark's proposal was a big part of his German research achievements. After the development of the accelerator, various particles are discovered one after another without being organized, and problems are accumulated while the unsolved parts of their relationships and properties remain. Can we say that quarks are the means to organize and understand them? In German's understanding system, symmetry is used, and elementary particles are understood by concepts such as strangeness and color.
I think he is an orderly and profound theory.



Germanic and Feynman


Now, as German's achievements, we have taken up the aspect of the classification of elementary particles, but I think the true value of German's research is the research on particle reactions. Relatedly, there was an opponent named R.P. Feynman. It's just been told, but the Germanic and Fineman controversy seems like a quarrel between children. Furious Fine Man said, "I'll erase the haiphong from your name spelling!" [Gell-Mann will be changed to Gellmann! When yelling, "German will write your name with a haiphong!" [Feynman will be changed to Feyn-Man! It seems that it was like saying back. Is it an American feeling? Is it the momentum of the Western drama? I thought it might be understandable, but it was insulting each other's loved ones. The idea of ​​instantly polluting the ancestors was probably a quarrel between smart geniuses. Think about how to give more effective humiliation. .. ..
No, I'm still angry
It may have been a childish quarrel. ;)


Such Germanic and Fine Man
Each has made great achievements.

ハンス・エルステッド
【1777年生まれ-11/28改定】

「ハンスエルステッド」の原稿を投稿します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


 



デンマーク黄金時代の
リーダーエルステッド


ハンス・クリスティアン・エルステッド


; Hans Christian Ørsted


磁場の単位としてその名を残している人です。


ガウスと同じ年に生まれています。


ガウスやエルステッドの時代は電磁気学が


未開の時代だったとも言えます。


得られている知識が未だ断片的で、


全体像が見えていない状態で


手探りの把握を一つ一つ、数学的な


式化を含めて、ぐいぐい進めていたのです。


また、会社名としても名を残しています。


デンマーク黄金時代と呼ばれる時代があり


その時代のリーダーでした。


エルステッドは「思考実験」の概念を


打ち出した人だと言われています。正に


パラダイムシフトを起こした人です。


コペンハーゲンで活躍していました。


其処は後に量子力学が出来ていく上で


重要な議論が交わされる場になります。


また、エルステッドは


童話作家のアンデルセンとは親友です。


また、エルステッドの兄弟はデンマーク


首相を務めています。


こうった「こぼれ話」が豪華な人です。



 エルステッドの業績


物理学者としての業績として大きいのは


電流が磁場を作っていることの発見です。


それは1820年4月の出来事でした。電流近傍の


方位磁針は北でない方向を向いたのです。


そこから数年の内にビオ・サバールの法則、


アンペールの法則に繋がります。


 

エルステッドが物理学と深く関わる


きっかけとなったのはドイツのリッター


という物理学者との出会いでした。


エルステッド独自のカント哲学に


育まれた思想は後の物理学にはっきりした


方向性を与えたと思います。


エルステッドは多才な人物で、


博士論文ではカント哲学を扱っています。


他に美学と物理学でも学生時代に


賞を受けています。電流と磁場の関係も


カント哲学での思想、自然の単一性


が発想の根底にあったと言われています。


晩年は詩集を出版しています。


気球から始まった文章でした。



ハイブリット英会話スタイルで伸ばす「アクエス」


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/04_初稿投稿
2021/11/28_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
デンマーク関係
電磁気学の纏め


【このサイトはAmazonアソシエイトに参加しています】


【2021年8月時点での対応英訳】



 About Oersted


Hans Christian Ørsted


That person is the one who has left its name as a unit of Magnetic field. He was born in the same year as Gauss.


It can be said that the era of Gauss and Oersted was an era when electromagnetics was undeveloped. The knowledge gained was still fragmented, and I was groping for each and every one of them, including mathematical formulation, without seeing the whole picture. In addition, the name remains as the company name. There was an era called the Danish Golden Age, and Oersted was the leader of that era.


Oersted is said to have come up with the concept of a "thought experiment." He is exactly the person who caused the paradigm shift. He was active in Copenhagen.


It will be a place where important discussions will be held later in the development of quantum mechanics.


Oersted is also a close friend of the fairy tale writer Andersen. In addition, Oersted's brother is the Prime Minister of Denmark. Such a "spill story" is a gorgeous person.



 Job of Oersted


A major achievement of his work as a physicist is his discovery that electric current creates a magnetic field. It was an event in April 1820. The compass near the current pointed in a direction other than north. Within a few years, it will lead to Biot-Savart's law and Ampere's law.


It was the encounter with a physicist named Ritter in Germany that inspired Oersted to become deeply involved in physics.
I think that the ideas nurtured by Oersted's original Kant philosophy gave a clear direction to later physics.


Oersted is a versatile person, and his dissertation deals with Kant's philosophy. He has also received awards in his school days in aesthetics and physics. It is said that the relationship between electric current and magnetic field was based on the idea of ​​Kant's philosophy and the unity of nature.


Oersted published a collection of poems in his later years. He was a sentence that started with a balloon.


 

2021年11月27日

大貫 義郎_1928年 ~ ご存命中
【ご存命中なので研究内容のご紹介】

「大貫氏」の原稿を投稿します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【ご存命中】


↑Credit:Wikipedia↑


【1928年生まれ ~ ご存命中】





大貫義郎の人脈


大貫義郎は名古屋大で坂田昌一に教えを受け、


群論を使った素粒子論の構築を


行いました。そもそも低温物理学


では名古屋で発展してきた部分が大きいです。


本ブログの別項で中嶋貞雄バーディン


のエピソードをご紹介しましたが、


後にノーベル賞を受賞する二人、


益川敏英と小林誠は大貫義郎が育てました。


名古屋大学でのつながりが素粒子論で大きな


役割を果たしていたと言えるでしょう。



大貫義郎の研究業績


大貫義郎は素粒子を構成する素子の
対象性に着目して、数学的手法として
群論」を使って整理していきました。
素粒子の反応過程で関わる現象は多岐にわたり、個別の要素に拘っているだけでは話が進まないのです。反応に関わるグループを詳細に分類して個別の反応要素を考えるよりもまず、一団の性格を見極めたうえで、グループの性質に応じた個別様子の役割をしっかり考えていく作業が群論を使ったアプローチで可能になっていったのです。そのアプローチが大貫義郎の業績です。

より詳細には、坂田モデルにおける
基本粒子同士の入れ替えに対して
素粒子としての性質が変わらないと
いう考え方を足掛かりに群論を組み
立てたのです。


そうした考え方を駆使して議論を組み立てて、


大貫義郎はクォークを明確に分類し、


整理していったのです。


英語が話せるようになる「アクエス」



〆さいごに〆



以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には適時、
返信・改定をします。


nowkouji226@gmail.com


2020/12/21_初版投稿
2021/11/27_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Onuki Yoshiro's personal connections


Yoshiro Onuki was taught by Shoichi Sakata at Nagoya University and constructed the theory of elementary particles using group theory. In the first place, in cryogenic physics, there is a big part that has developed in Nagoya. I introduced the episodes of Sadao Nakajima and Bardeen in another section of this blog, but Yoshiro Onuki raised the two Nobel Prize winners, Toshihide Maskawa and Makoto Kobayashi. It can be said that the connection at Nagoya University played a major role in particle physics.



Yoshiro Onuki's research achievements


Yoshiro Onuki focused on the symmetry of the elements that make up elementary particles, and used "group theory" as a mathematical method to organize them.
There are a wide variety of phenomena involved in the reaction process of elementary particles, and it is not possible to proceed just by focusing on individual elements. Rather than classifying the groups involved in the reaction in detail and considering the individual reaction elements, group theory was used to first identify the character of the group and then firmly consider the role of the individual appearance according to the nature of the group. The approach made it possible. That approach is the achievement of Yoshiro Onuki.


More specifically, we constructed a group theory based on the idea that the properties of elementary particles do not change when the basic particles are replaced with each other in the Sakata model.


By making full use of such ideas, Yoshiro Onuki clearly classified and organized quarks.