アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2024年12月 >>
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        
最新記事
最新コメント

2023年03月10日

R・ペンローズ
3/10改訂【ブラックホールにおける特異性を示しノーベル賞を受賞】

こんにちはコウジです!
「ペンローズ」の原稿を改定します。


投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。
今後もご覧下さい。また、ブログ宣伝でツイッター使いません。
2021/7/11(日)から始めていてSNSの感じが分かりました。
流入はありますが労力がかかります。
今後はSEO中心に考えてSNSはブログと常時関連させません。
SNSは戦略的に使っていきます。


何より紹介の内容を吟味します。日本語として読みやすい文章になっているか、
なおかつ論理が追いかけやすいか、そして記述に誤解を生む表現がないかをチェックし続けます。
【以下改訂した原稿です】




【スポンサーリンク】
【1931年8月8日生まれ ~ (ご存命中)】


 芸術家肌のペンローズ


 
その名はロジャー・ペンローズ

;Sir Roger Penrose OM FRS。


英国の物理学者ですが、




まだご存命の方なので

簡単に取り上げたいと

思います。有名人の

ブライアンとは少し

系統が違う気がするのです。


(芸能系ではない


純理論の学者さんです。

ムツゴロウさんとも

雰囲気が違いますね)

ロジャー・ペンローズは精神科医にして遺伝学者の父を持ち、父方母方共に沢山の学者、芸術家がいる家庭に生まれました。ロジャー自身も学者としてケンブリッジに進みます。

ホーキングと共にブラックホールにおける特異点を示し、
後に2020年のノーベル賞を受賞します。授賞理由は
「ブラックホールと相対論の関係」に対しての評価でした。

 ペンローズの研究業績


研究業績で気になってしまうのは認識に関する仮説に関してです。脳内での活動については個人的に昔から気になっている部分ではあるのですが、ロジャー・ベンローズの話の展開に、ほんの少しの違和感を覚えるのです。

ロジャーの主張は著書:皇帝の新しい心_で示されているのそうですが脳内の情報処理には量子力学が関わる。即ちユニタリー発展(U)と波束の収束(R)が含まれている仮定のもとに、片方のRに対する議論が欠けているという立場で話を進めているのです。

無論、脳内の活動は大きさスケールで考えた時に量子力学の対象となると思えます。脳内の伝達物質の一つは情報を与える電子であったりするからです。

その系統の話をきちんと読み通してはじめて分かる話なのか、考え落としを含んでいる危うい話なのか、失礼ながら気になってしまうのです。

本稿の中で私が使っている「違和感」が本物の違和感なのか取り越し苦労の違和感なのか確かめたいと思います。その意味で非常に興味深いです。




【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2021/07/02_初回投稿
2023/03/10_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリスのご紹介へ
ケンブリッジのご紹介へ
力学関係のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)

Artist skin pen rose


Its name is Roger Penrose OM FRS.

He's a British physicist, but he's still alive, so I'd like to take a quick look. He feels a little different from the celebrity Brian.

(I'm a non-entertainment scholar of pure theory. The atmosphere is different from that of Mr. Mutsugoro.)

Roger Penrose was born into a family with a psychiatrist and geneticist father, and many scholars and artists on both his paternal and maternal sides. Roger himself goes to Cambridge. He, along with Hawking, showed his singularity in black holes and later won the 2020 Nobel Prize. The reason for his award was his appreciation for the relationship between black holes and relativity.

Penrose research achievements


What is worrisome about his research achievements is the cognitive hypothesis. I've always been concerned about activities in the brain, but I feel a little uncomfortable with the development of Roger Ben Rhodes' story. The claim is shown in Roger's book: The Emperor's New Heart, but quantum mechanics is involved in information processing in the brain. That is, under the assumption that unitary development (U) and wave packet convergence (R) are included, we are proceeding from the standpoint that there is a lack of discussion on one R. I'm rude and worried whether it's a story that can only be understood by reading through the story of that system properly, or a dangerous story that includes oversight. I would like to confirm whether the "uncomfortable feeling" I use in this article is a genuine uncomfortable feeling or a discomfort of having a hard time moving. In that sense, it's very interesting.



2023年03月09日

ロバート・シュリーファー
3/9改訂【超電導を理論化したBCS理論を提唱】

こんにちはコウジです!
「シュリーファー 」の原稿を改定します。


投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。
今後もご覧下さい。また、ブログ宣伝でツイッター使いません。
2021/7/11(日)から始めていてSNSの感じが分かりました。
流入はありますが労力がかかります。
今後はSEO中心に考えてSNSはブログと常時関連させません。
SNSは戦略的に使っていきます。


何より紹介の内容を吟味します。日本語として読みやすい文章になっているか、
なおかつ論理が追いかけやすいか、そして記述に誤解を生む表現がないかをチェックし続けます。
【以下改訂した原稿です】



【スポンサーリンク】
【1931年5月31日 ~ 2019年7月27日】



 BCS理論を構築したシュリーファー


BCS理論を作った3人の中の一人が


シュリーファーであって、


BCS理論でのSはシュリーファのSです。


BCS理論自体の説明は他のメンバーである
バーディーンクーパーのご紹介の中で
解説していますので繰り返しません。
超伝導を微視的に解説した理論です。



 シュリーファーと超電導の研究


シュリーファは少年時代は手作りロケットを制作したり、アマチュア無線が好きだったりする電子工学好きな少年でした。そんなシュリーファはMIT(マサチューセッツ工科大学)で半導体の研究を当初進めていました。特に半導体表面での電子の振る舞いを研究していたのです。そして後に超伝導現象の研究に移ります。


シュリーファ達がBCS理論をまとめた後、世界での研究は常温での超伝導実現に向けた研究が進んでいます。常温高圧環境下で現象を起こしたりする試みがなされていて、マイナス百数十ケルビンまで転移温度は近づいてきています。


現実には実現が難しい様な高圧をかけた時に、常温で超電導現象が実現した報告もあります。私が研究していた時代には青学の秋光先生や東工大の細野先生が挑んでいました。


それぞれご存命かと思われますので詳細は控えます。


科学史と言うより最前線に近いかと思えますので。


ご本人達にしてみれば


「今でも研究してますよ!」って気持ちも


あるのではないかとと思えるのです。



 シュリーファーの晩年


話し戻って、シュリーファは1957年から米国代表の立場で英国バーミンガム大学とコペンハーゲンのボーア研究所で超電導の研究を続けています。そして残念な事に、晩年に自動車事故を起こし人を殺めてしまい、懲役を課されています。カリフォルニア州サンディエゴにある刑務所で懲役に服しました。素晴らしい研究のセンスとうっかりミスを犯してしまう性格は共にシュリーファの人生に影響を与えました。出来れば緊張感を持って生活を送って頂きたかったです。こんな話をするのは事故当時シュリーファは免許停止中だったからです。立場のある人間であれば尚更、責任を持った行動が求められます。


それだから、この話を知ってとても残念です。バーディン教授の人を集める性格とシュリーファー教授の人を遠ざけてしまう性格は対象的に思えてしまうのです。バーディンは仲間とトランジスタを開発して、別途BCS理論をつくりあげて仲間の輪を広げました。その過程で出会った日本人、中嶋貞雄をアメリカに呼んでもてなしていたりします。朗らかなアメリカ人のイメージです。反面、シュリーファーは立派な立場をいくつも受けた後に人を殺めてしまいました。朗らかなアメリカ人として単純に語れない人生です。こんな話を我々は大きな教訓として考えるべきだと思います。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/17_初稿
2023/03/09_改定


舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ
イギリス関係のご紹介へ
オランダ関係のご紹介へ
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Schrieffer of BCS theory


One of the three who created the BCS theory is Schrieffer, and the S in BCS theory is Schrieffer's S.



Research on Schrieffer and superconductivity


When he was a boy, Shrifa was a boy who loved electronics, making handmade rockets and ham radio. Such Schrifa was initially conducting research on semiconductors at MIT (Massachusetts Institute of Technology). He was especially studying the behavior of electrons on the surface of semiconductors. And he later moved on to study superconducting phenomena.


After Schrifa et al. Summarized the BCS theory, research in the world is progressing toward the realization of superconductivity at room temperature. Attempts have been made to cause phenomena in a normal temperature and high pressure environment, and the transition temperature is approaching to minus one hundred and several tens of Kelvin.


There is also a report that the superconducting phenomenon was realized at room temperature when a high voltage that was difficult to realize in reality was applied. When I was studying, Professor Akimitsu of Seigaku and Professor Hosono of Tokyo Institute of Technology were challenging. I will refrain from detailing each of them as they may be alive. I think it's closer to the front line than the history of science. For the people themselves, I think they may have the feeling that they are still researching!



Schrieffer's later years


Returning to the story, Schrifa has been studying superconductivity at the University of Birmingham in the United Kingdom and the Bohr Institute in Copenhagen since 1957. And unfortunately, in his later years he had a car accident, killed a person and was sentenced to imprisonment. He was sentenced to jail in San Diego, California. Both his great sense of research and his inadvertent mistaken personality have influenced Shrifa's life. He wanted him to live a life with a sense of tension if possible. I tell this story because Shrifa was out of license at the time of the accident. If you are a person in a position, you are even more required to act responsibly.
So I'm very sorry to know this story. The character of gathering Professor Bardeen and the character of keeping Professor Schrieffer away seem to be symmetrical. Bardeen developed a transistor with his companions and created a separate BCS theory to expand the circle of his companions. I invite Sadao Nakajima, a Japanese who I met in the process, to the United States for hospitality. It is an image of a cheerful American. On the other hand, Schrieffer killed a person after receiving several good positions. It's a life I can't talk about as a cheerful American. I think we should consider this story as a big lesson.


2023年03月08日

有馬朗人_
3/8改訂【複雑な原子核の状態を簡易に数式化】

こんにちはコウジです! 「有馬朗人」の原稿を改定します。


投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。 今後もご覧下さい。また、ブログ宣伝でツイッター使いません。 2021/7/11(日)から始めていてSNSの感じが分かりました。 流入はありますが労力がかかります。 今後はSEO中心に考えてSNSはブログと常時関連させません。 SNSは戦略的に使っていきます。


何より紹介の内容を吟味します。日本語として読みやすい文章になっているか、 なおかつ論理が追いかけやすいか、そして記述に誤解を生む表現がないかをチェックし続けます。 【以下改訂した原稿です】


【スポンサーリンク】 【1930年9月13日 ~ 2020年12月6日】


 有馬氏へお悔やみ


東大学長を務めた有馬朗人氏が


2020/12/8に亡くなりました。享年90歳。


謹んでお悔やみを申し上げます。



有馬朗人は原子核物理学の世界で業績をあげ、特に 有馬・堀江理論(配位混合の理論)、 相互作用するボゾン模型の提唱、 クラスター模型への貢献、 の3つの業績が大きな業績です。


有馬朗人の業績


特に相互作用するボゾン模型は有馬朗人が オランダの研究機関に居た1974年に発表していて、別名で


「相互作用(する)ボソン近似」の名で


ご存知の方も多いのではないでしょうか。 粒子の入れ替えに対して波動関数の符号が 反転しない対象に対して、いわゆる 「第二量子化」された時の議論で 有馬朗人の考えた近似は使われます。


以上の説明は一般の人には分かりづらいかもしれませんが 原子核の状態を記述するには古典的な(ニュートン的な)記載 では不十分で、波動関数を使うだけではなくて群論や 電磁気的な側面を考慮して議論を進めていきます。


そして、有馬さんは現象を嚙砕いて数式化して 難しい原子の世界を簡単な数式で表現したのです。 



また、政界においても活躍され、 特にゆとり教育の推奨が知られています。 有馬朗人が勧めたかった当初の教育は 世界史と日本史を共に学ぶ事で 知識をより豊かに身に着けていく様な 試みであって、現場に話が伝わった時点では 全く別の解釈として伝わっていました。 有馬朗人はその解釈を非常に 遺憾に感じて居たようです。



他にも色々と語りたかったでしょう。 ご冥福をお祈りします。




以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点には適時、 返信・改定をします。



nowkouji226@gmail.com



2020/12/07_初稿投稿 2023/03/08_改定投稿



【スポンサーリンク】


(旧)舞台別のご紹介 纏めサイトTOP舞台別のご紹介時代別(順)のご紹介 日本関連のご紹介 東大関連のご紹介


(2021年11月時点での対応英訳)


Condolences to Mr. Arima


Akito Arima, the president of the University of Tokyo, died on December 8, 2020. He is 90 years old. We would like to express our deepest condolences. Akito Arima has made great achievements in the world of nuclear physics, and is particularly famous for his three achievements: Arima-Horie theory (theory of mixed coordination), proposal of interacting boson models, and contribution to cluster models.


Achievements of Akito Arima


In particular, the interacting boson model was announced by Akito Arima in 1974 when he was at a research institute in the Netherlands, and many of you may know it under the alias of "interacting boson approximation". ..


Akito Arima's approximation is used in the discussion of so-called "second quantization" for objects whose wavefunction signs do not invert with respect to particle replacement. It was


It is also active in the political world, and is especially known for recommending Yutori education. The initial education that Akito Arima wanted to recommend was an attempt to acquire more knowledge by studying both world history and Japanese history, and when the story was conveyed to the field, it was a completely different interpretation. It was transmitted as. Akito Arima seems to have felt very regretful about his interpretation.


He would have wanted to talk a lot more. He prays for souls.


2023年03月07日

レオン・クーパー
_【超電導理論での電子挙動をモデル化】

こんにちはコウジです!
「クーパー」の原稿を改定します。


投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。
今後もご覧下さい。また、ブログ宣伝でツイッター使いません。
2021/7/11(日)から始めていてSNSの感じが分かりました。
流入はありますが労力がかかります。
今後はSEO中心に考えてSNSはブログと常時関連させません。
SNSは戦略的に使っていきます。


何より紹介の内容を吟味します。日本語として読みやすい文章になっているか、
なおかつ論理が追いかけやすいか、そして記述に誤解を生む表現がないかをチェックし続けます。
【以下改訂した原稿です】



【スポンサーリンク】
【1930年2月28日 ~(ご存命中)】



 クーパと超電導


初めに、本稿は関連用語の解説が中心となリます。
今後も含め
分かり易い内容にしたいので
超伝導現象を科学史の観点から改めて
まとめ直した方が
有益だろうと感じたからです。


既に内容をご承知の方にはしつこく感じるかと。
そうでしたらごめんなさい。


クーパーはジョン・バーディーン等と共にBCS理論を確立しました。
クーパーはユダヤ系です。賢い人達ですね。そもそも
BCS理論の大事な考え方
であるクーパー対という
考え方を
クーパーは26歳の時に纏めています。


さて、本題です。1911年のK・オンネスの発見により
通常の伝導性とは異なる
超伝導状態が存在すると明らかに
なりました。
定量的には絶対零度近くの
273℃=ゼロ・ケルビン(k)
に近づくと超伝導現象が起きます。


その時は抵抗値ゼロです。


例えばニオブ(Nb)は9.22ケルビンで
超伝導状態になります。超伝導状態への
転移を上手く説明した理論がBCS理論で
あって、BCSでのCはクーパーの名前に
由来します。



超電導の別の側面 


ここで別の側面から超伝導状態を考えます。温度を下げ相転移温度で現象が起きると電流を流した時に抵抗値がゼロになりますが同時に相転移温度で磁界に対して変化が生じます。現時点での応用としてリニアモーターカーがあげられます。細かくは超伝導体の内部で内部磁場がゼロになり、外部からの磁界を遮断します。


超伝導状態になった時に磁石が浮かぶ写真は有名な例えですね。更に磁石は極性を持ちますから、ラダーと呼ばれる軌道で極性を切り替えていく事でリニアモーターカーは進むのです。この完全反磁性またはマイスナー効果と呼ばれる現象は超伝導現象での特徴の一つです。


ここで関連して磁力線について整理したいと思います。ご存知の通り磁石はN極とS極からなり磁力を持ちます。一般的に模式図で示される様に磁力線は片方から他方へゆったりした曲線で繋がっていきます。


所が超伝導現象では内部へ磁力線が侵入出来ない様な現象が起きます。相転移の前後で形が突然変わります。更には変化の違いで第一種超伝導体 と第二種超伝導体に物質によって分かれます。これらの現象を理解する為にクーパー等が確立したBCS理論が基礎になっていくつのです。


クーパーのアイディアは電子が対(つい)になるというもので、対になった電子がスピンを打ち消しあって超電導状態を作るというものです。その電子の対は今でも超電導の学者達の間で「クーパ対」と呼ばれています。


この考えが発展していき、現代では相転移の温度がどんどん高くなっています。実用上は常温常圧下で相転移を起こすことが大事になっていますので液体ヘリウムよりも安価な液体窒素で冷やせる事が望ましいのです。


実際、液体窒素の沸点は−196℃ですので現在は、液体窒素で冷やす事で相転移を実用出来る素材を中心に研究が行われて居ます。そして、現在では現象発生に対して「ゆらぎ」のメカニズムをより解明していこうという取り組みが進んでいます。さらなる今後の進展に期待しましょう。


【スポンサーリンク】




以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/16_初回投稿
2023/03/07_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Cooper and superconductivity


First, this article focuses on explanations of related terms. I wanted to make the content easy to understand, including in the future, so I felt that it would be useful to reorganize the superconducting phenomenon from the perspective of the history of science.


Do you feel persistent to those who already know the contents? If so, I'm sorry.


Cooper established the BCS theory with John Bardeen and others. Cooper is of Jewish descent. He's smart people, aren't he?


In the first place, Cooper summarized the idea of ​​Cooper pair, which is an important idea of ​​BCS theory, at the age of 26.


Well, the main subject. The discovery of K. Onness in 1911 revealed that there is a superconducting state that is different from normal conductivity.
Quantitatively, a superconducting phenomenon occurs when approaching minus 273 ° C = zero Kelvin (k) near absolute zero. At that time, the resistance value is zero. For example, niobium (Nb) becomes superconducting at 9.22 Kelvin. The theory that well explains the transition to the superconducting state is the BCS theory, where C comes from Cooper's name.



Another aspect of superconductivity


Now consider the superconducting state from another aspect. When the temperature is lowered and a phenomenon occurs at the phase transition temperature, the resistance value becomes zero when a current is passed, but at the same time, the phase transition temperature changes with respect to the magnetic field.


The current application is a linear motor car. In detail, the internal magnetic field becomes zero inside the superconductor, blocking the external magnetic field. The picture of a magnet floating when it is in a superconducting state is a famous analogy. Furthermore, since magnets have polarity, the linear motor car advances by switching the polarity in a trajectory called a ladder. This phenomenon called the complete antimagnetism or the Meissner effect is one of the characteristics of the superconducting phenomenon.


Here, I would like to organize the lines of magnetic force in relation to this. As you know, a magnet consists of N pole and S pole and has magnetic force. Generally, as shown in the schematic diagram, the lines of magnetic force are connected by a loose curve from one side to the other.


However, in the superconducting phenomenon, a phenomenon occurs in which the lines of magnetic force cannot penetrate inside. The shape changes suddenly before and after the phase transition. Furthermore, it is divided into type 1 superconductors and type 2 superconductors depending on the substance due to the difference in change. The BCS theory established by Cooper et al. Is useful for understanding these phenomena.


This idea has evolved, and the temperature of the phase transition is getting higher and higher in modern times. In practice, it is important to cause a phase transition under normal temperature and pressure, so it is desirable to cool it with liquid nitrogen, which is cheaper than liquid helium. In fact, since the boiling point of liquid elements is -196 ° C, research is currently being conducted focusing on materials that can be used for phase transition by cooling with liquid nitrogen. At present, efforts are underway to further elucidate the mechanism of "fluctuation" in response to the occurrence of phenomena. Let's look forward to further progress.

2023年03月06日

マレー・ゲルマン
__3/6改訂【クォークの名付け親、ファインマンの論敵】

こんにちはコウジです!
「マレー・ゲルマン」の原稿を改定します。


投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。
今後もご覧下さい。また、ブログ宣伝でツイッター使いません。
2021/7/11(日)から始めていてSNSの感じが分かりました。
流入はありますが労力がかかります。
今後はSEO中心に考えてSNSはブログと常時関連させません。
SNSは戦略的に使っていきます。


何より紹介の内容を吟味します。日本語として読みやすい文章になっているか、
なおかつ論理が追いかけやすいか、そして記述に誤解を生む表現がないかをチェックし続けます。
【以下改訂した原稿です】



【スポンサーリンク】
【1929年9月15日 ~ 2019年5月24日】



 ニューヨーク生まれのゲルマン


ゲルマンは米ニューヨーク生まれの理論家です。
素粒子論の世界でノーベル賞を受けています。


ゲルマンの名を本来はゲル-マンと書きますが、
【Gell-Mannと書きますが、】


本稿ではゲルマンとしています。
記述が楽で、読みやすいからです。


ゲルマンはイェール大で学士号を受け、MITで博士号を受けました。
その後、プリンストン高等研究所、コロンビア大、シカゴ大、
カリフォルニア工科大で研究を続けます。サンタフェ研究所の設立者
の一人でもあります。ゲルマンの研究実績としてはクォークの提唱
が大きかったですね。加速器の開発後には様々な粒子が
未整理のまま次々と発見され、それらの関係と性質は
未解決な部分が残るままに、問題が蓄積されていきます。


それらを整理・理解する手段がクォークだと言えるでしょうか。
ゲルマンの理解体系では対象性が使われていて、
ストレンジネスやカラーといった概念で素粒子が理解されていきます。

秩序ある奥深い理論だと思います。



 ゲルマンとファインマン


さて、ゲルマンの業績として素粒子の分類に関する側面を取り上げてきましたが、ゲルマンの研究での真骨頂は粒子の反応に関しての研究ではないでしょうか。関連してR・P・ファインマンという論敵がいました。あくまで伝えられている内容なのですが、ゲルマンとファイン・マンの論争はまるで子供の喧嘩みたいにも思えます。激怒したファイン・マンが、「貴様の名前綴りからハイフォン消すぞ!」【Gell-Mann改めGellmannとするぞ!の意】と怒鳴りつけたら、「ゲルマンがお前の名前をハイフォン付きで書いてやる!」【Feynman改めFeyn-Manとしてやる!の意】と言い返す有り様だったようです。アメリカ人の感覚なのでしょうか。西部劇の勢いなのでしょうか。ただ少し理解出来るかも、と思ったのは互いの愛する家族を侮辱していたのですね。瞬間的に家祖も汚す発想は、頭の切れる天才同士の喧嘩だったのでしょう。より効果的な屈辱の与え方を考えて。。。
いや、やはり激怒して
子供じみた喧嘩してたのかもしれません。;)


そんなゲルマンとファイン・マンは
それぞれに素晴らしい業績を残しました。


【スポンサーリンク】




以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/11/05_初稿投稿
2023/03/06_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関連のご紹介へ
イェール大学関連のご紹介へ
纏めサイトTOP
電磁気関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)




Germanic born in New York


German is a theorist born in New York, USA.


He has received the Nobel Prize in the world of particle physics.


Originally the name of German is written as Gell-Man,


[I write Gell-Mann, but]


In this paper, it is German.


It's easy to write and easy to read.


German received a bachelor's degree from Yale University and a PhD from MIT. He then continues his research at Princeton Institute for Advanced Study, Columbia University, University of Chicago, and California Institute of Technology. He is also one of the founders of the Santa Fe Institute. Quark's proposal was a big part of his German research achievements. After the development of the accelerator, various particles are discovered one after another without being organized, and problems are accumulated while the unsolved parts of their relationships and properties remain. Can we say that quarks are the means to organize and understand them? In German's understanding system, symmetry is used, and elementary particles are understood by concepts such as strangeness and color.
I think he is an orderly and profound theory.



Germanic and Feynman


Now, as German's achievements, we have taken up the aspect of the classification of elementary particles, but I think the true value of German's research is the research on particle reactions. Relatedly, there was an opponent named R.P. Feynman. It's just been told, but the Germanic and Fineman controversy seems like a quarrel between children. Furious Fine Man said, "I'll erase the haiphong from your name spelling!" [Gell-Mann will be changed to Gellmann! When yelling, "German will write your name with a haiphong!" [Feynman will be changed to Feyn-Man! It seems that it was like saying back. Is it an American feeling? Is it the momentum of the Western drama? I thought it might be understandable, but it was insulting each other's loved ones. The idea of ​​instantly polluting the ancestors was probably a quarrel between smart geniuses. Think about how to give more effective humiliation. .. ..
No, I'm still angry
It may have been a childish quarrel. ;)


Such Germanic and Fine Man
Each has made great achievements.

2023年03月05日

大貫 義郎_【群論を取り入れて素粒子を整理】
3/5改訂

こんにちはコウジです!
「大貫 義郎」の原稿を改定します。


投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。
今後もご覧下さい。また、ブログ宣伝でツイッター使いません。
2021/7/11(日)から始めていてSNSの感じが分かりました。
流入はありますが労力がかかります。
今後はSEO中心に考えてSNSはブログと常時関連させません。
SNSは戦略的に使っていきます。


何より紹介の内容を吟味します。日本語として読みやすい文章になっているか、
なおかつ論理が追いかけやすいか、そして記述に誤解を生む表現がないかをチェックし続けます。
【以下改訂した原稿です】


↑Credit:Wikipedia↑


【1928年生まれ ~ ご存命中】




【スポンサーリンク】



大貫義郎の人脈


大貫義郎は名古屋大で坂田昌一に教えを受けました。


群論を使った素粒子論の構築を行いました。
そもそも低温物理学
では名古屋で発展してきた部分
が大きいです。
本ブログの別項で中嶋貞雄バーディン
エピソードをご紹介しましたが、
後にノーベル賞を
受賞する二人、
益川敏英と小林誠は大貫義郎が育てました。


名古屋大学でのつながりが素粒子論で大きな
役割を果たしていたと言えるでしょう。



大貫義郎の研究業績


大貫義郎は素粒子を構成する素子の対象性に着目して、
数学的手法として
群論」を使って整理していきました。


群論の中では「要素と演算」を意識して考えていき、
それらを使って単位元や逆元を考えていくのです。


素粒子の反応過程で関わる現象は多岐にわたり、
個別の要素に拘っているだけでは話が進まないのです。
反応に関わるグループを詳細に分類して個別の反応要素を
考えるよりもまず、一団の性格を見極めたうえで、
グループの性質に応じた個別粒子の役割をしっかり
考えていく作業が群論を使ったアプローチで
可能になっていったのです。
そのアプローチが大貫義郎の業績です。

より詳細には、坂田モデルにおける基本粒子同士の
入れ替えに対して
素粒子としての性質が変わらない
いう考え方を足掛かりに群論を組み立てたのです。


そうした考え方を駆使して議論を組み立てて、
大貫義郎はクォークを明確に分類し、整理していったのです。


【スポンサーリンク】



〆さいごに〆


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には適時、
返信・改定をします。


nowkouji226@gmail.com


2020/12/21_初版投稿
2023/03/05_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Onuki Yoshiro's personal connections


Yoshiro Onuki was taught by Shoichi Sakata at Nagoya University and constructed the theory of elementary particles using group theory. In the first place, in cryogenic physics, there is a big part that has developed in Nagoya. I introduced the episodes of Sadao Nakajima and Bardeen in another section of this blog, but Yoshiro Onuki raised the two Nobel Prize winners, Toshihide Maskawa and Makoto Kobayashi. It can be said that the connection at Nagoya University played a major role in particle physics.



Yoshiro Onuki's research achievements


Yoshiro Onuki focused on the symmetry of the elements that make up elementary particles, and used "group theory" as a mathematical method to organize them.
There are a wide variety of phenomena involved in the reaction process of elementary particles, and it is not possible to proceed just by focusing on individual elements. Rather than classifying the groups involved in the reaction in detail and considering the individual reaction elements, group theory was used to first identify the character of the group and then firmly consider the role of the individual appearance according to the nature of the group. The approach made it possible. That approach is the achievement of Yoshiro Onuki.


More specifically, we constructed a group theory based on the idea that the properties of elementary particles do not change when the basic particles are replaced with each other in the Sakata model.


By making full use of such ideas, Yoshiro Onuki clearly classified and organized quarks.


2023年03月04日

広重 徹
3/4改定【科学史の社会的側面を深掘りしていった先人】

こんにちはコウジです!
「広重 徹」の原稿を改定します。


投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。
今後もご覧下さい。また、ブログ宣伝でツイッター使いません。
2021/7/11(日)から始めていてSNSの感じが分かりました。
流入はありますが労力がかかります。
今後はSEO中心に考えてSNSはブログと常時関連させません。
SNSは戦略的に使っていきます。


何より紹介の内容を吟味します。日本語として読みやすい文章になっているか、
なおかつ論理が追いかけやすいか、そして記述に誤解を生む表現がないかをチェックし続けます。
【以下改訂した原稿です】



【スポンサーリンク】
【1928年8月28日生まれ ~ 1975年1月7日没】



 広重徹の育った時代


広重博士は京都大学の理学部を卒業した後に
大学院をドロップアウトしてます。


戦争の時代に青春時代を過ごし、
占領下で多感な時期を過ごし、
世相として色々あった時代に
研究者としてのスタートをしていたので
大変だったろうかと思います。


広重徹は初め素粒子論を専攻していたそうです。



 広重徹と科学史


広重徹は特に科学史の中で社会的側面に焦点をあてて
研究をしていました。村上陽一郎
本を書いたり
ランダウローレンツの業績を
翻訳して
日本に紹介していたりしました。


それだから文章を読んだ時に、きっと感じます。
広重徹の守っていた立場があるのです。


社会の中で科学史が意味を持ちます。
科学史の大きな役割を感じます。
社会から過度な期待がある半面で、
ある意味で無理解な評価があるのかな、
覚悟しながら冷静に話して一般の人々に
理解してもらう事が大事です。


何よりも、その理解の中で文章を読んでいる人に整理した形でその時々の「全体像」を伝えて、当時の現象理解と問題点を出来るだけ考えられるように出来るようにします。そうすれば、歴史を語りながら、科学技術の発展に繋がっていくのです。


科学の理解には助けがあると非常に有益な場合があります。新しい知見を身に付けていく中で概念の形成過程を詳細に追いかける事で、より深く科学が理解できるのです。私も科学史の文章を作っている一人だと考えると、少し身の引き締まる思いがします。




[caption id="attachment_5003" align="aligncenter" width="300"]名大 名古屋大学[/caption]

話し戻って、広重徹は30代で博士課程を終えて(於、名古屋大学)、40代で早くして亡くなります。もう少し話しが聞きたかったなぁ、って感じですね。その後、斯様な議論はあまり無いかと思うのです。


また、広重徹の奥様が自分史を残していたのでリンクを残します。広重徹のお人柄が偲ばれると同時に終戦後の世相が感じられて興味深いかと思えます。リンクがある間に是非、ご覧下さい。


http://www.asahi-net.or.jp/~fv9h-ab/kamakura/DrMiki.html





以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/10_初稿投稿
2023/03/04_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
京大関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


 (2021年11月時点での対応英訳)



The era when Tetsu Hiroshige grew up


Dr. Hiroshige dropped out of graduate school after graduating from the Faculty of Science at Kyoto University. .. .. I think it was difficult because he spent his youth in the era of war, spent a sensitive time under the occupation, and started as a researcher in various times as a social situation. It seems that Tetsu Hiroshige initially majored in particle physics.



Tetsu Hiroshige and the history of science


Tetsu Hiroshige's research focused on social aspects, especially in the history of science. He wrote books with Yoichiro Murakami and translated the achievements of Landau and Lorenz and introduced them to Japan.


So when he reads the text, he surely feels.


There is a position that Tetsu Hiroshige protected. He feels the great role of the history of science in society. While he has excessive expectations from society, it is important to talk calmly and get the general public to understand, while being prepared to have an incomprehensible evaluation in a sense. Above all, if it is possible to convey an organized "overall picture" to the person reading the text in that understanding so that they can understand the current phenomenon and think about problems as much as possible, while talking about history, It will lead to the development of science.


Considering that I am one of the authors of the history of science, I feel a little tight. Returning to the story, Tetsu Hiroshige finished his doctoral course in his thirties (at Nagoya University) and died early in his forties.


I feel like I wanted to hear a little more. After that, I don't think there are many such discussions. Also, since Tetsu Hiroshige's wife left her own history, I will leave a link. At the same time as the personality of Tetsu Hiroshige is remembered, it seems interesting to feel the social situation after the end of the war. take a look.


http://www.asahi-net.or.jp/~fv9h-ab/kamakura/DrMiki.html

2023年03月03日

小出昭一郎
3/3改訂【金属錯塩の光スペクトルを研究】

こんにちはコウジです!
「小出昭一郎」の原稿を改定します。


投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。
今後もご覧下さい。また、ブログ宣伝でツイッター使いません。
2021/7/11(日)から始めていてSNSの感じが分かりました。
流入はありますが労力がかかります。
今後はSEO中心に考えてSNSはブログと常時関連させません。
SNSは戦略的に使っていきます。


何より紹介の内容を吟味します。日本語として読みやすい文章になっているか、
なおかつ論理が追いかけやすいか、そして記述に誤解を生む表現がないかをチェックし続けます。
【以下改訂した原稿です】



【スポンサーリンク】
【1927年3月25日生まれ ~ 2008年8月30日没】


小出昭一郎は多くの専門書を残した事
で知られています。東京に生まれ
東京帝大で学びました。第5回
ソルベー会議が開かれた年に生まれています。


教育に時間を捧げた人生だったのでしょうか。研究成果としては余り伝わっていません。ただ、金属錯塩の光スペクトルを研究していたようです。そこで手掛かりとして錯体について調べを進めてみます。錯体とは広義には、「配位結合や水素結合によって形成された分子の総称」(Wikipedia)狭義には、「金属と非金属の原子が結合した構造を持つ化合物」(Wikipedia)


何だか亀の甲羅みたいな記号が沢山出てきます。
そこからもう少し考えてみると、
光の吸光や発光に伴い対象物資内の
「状態遷移に関する情報」が得られるのです。
そしてそこから、電磁気特性や、
触媒の効果が理解出来るかと。


具体的に主な錯体としては
アンミン錯体_テトラアンミン銅錯体_[Cu(NH3)4]^2+
シアノ錯体_ヘキサシアニド鉄錯体_[Fe(CN)6]^4-[Fe(CN)6]^3+
ハロゲノ錯体-テトラクロリド鉄錯体_[Fe(CN)6]^4-[FeCl4]-
ヒドロキシ錯体 - アルミン酸_[Al(OH)4]-(または_[Al(OH)4(H2O)2]-
などがあるようです。ただ、当時の日本物理学は
本丸を攻めきれてはいなかったのですね。


プランクの黒体輻射理論発表から数十年がたち、
欧州ではハイゼンベルグが1925年に書いた論文を皮切りに
急速に各国
で議論が交わされていた時代です。


小出昭一郎の暮らした敗戦国日本は
戦前・戦後の混乱の中で情報がどこまで
取れていたのでしょうか。


リアルタイムで議論が進まない環境で、
ソルベー会議の成果をタイムラグのある中で
把握しています。学会誌を見る度に興奮した筈です。


小出昭一郎はそんな中でも量子力学の
理解を進め国内に広めていたのです。
そして、何より後進を育てていたのです。
小出昭一郎は多くの教科書で
物理の世界を紹介していました。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には適時、返信・改定をします。


nowkouji226@gmail.com


2020/11/20_初回投稿
2023/03/03_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)


Shoichiro Koide left behind many specialized books
Is known for. He was born in Tokyo and studied at Tokyo Imperial University. He was born in the year the 5th Solvay Conference was held.


Was he a life devoted to education? The results of his research have not been well communicated. However, he seems to have been studying the optical spectrum of metal complex salts. So he goes on to investigate the complex as a clue. In a broad sense, a complex is a "generic term for molecules formed by coordination bonds or hydrogen bonds" (Wikipedia). In a narrow sense, it is a "compound having a structure in which metal and non-metal atoms are bonded" (Wikipedia).


There are many symbols like the shell of a turtle. If you think about it a little more, you can get information about the state transition in the object as the light absorbs and emits light. And from there, can we understand the electromagnetic characteristics and the effect of the catalyst?


Specifically, the main complex
Ammine complex_Tetraamminecopper complex_ [Cu (NH3) 4] ^ 2 +
Cyanide complex_Hexacyanide iron complex_ [Fe (CN) 6] ^ 4- [Fe (CN) 6] ^ 3 +
Halogeno Complex-Tetrachloroauric Acid Complex _ [Fe (CN) 6] ^ 4- [FeCl4]-
It seems that there are hydroxy complexes – aluminate _ [Al (OH) 4]-(or _ [Al (OH) 4 (H2O) 2]-, etc. However, Japanese physics at that time was not able to attack Honmaru. It was.


Decades have passed since the announcement of Planck's theory of blackbody radiation, and in contrast to the times when discussions were taking place in other countries, Japan, the defeated country where Shoichiro Koide lived, was able to obtain information in the prewar and postwar turmoil. Was it?
In an environment where discussions do not proceed in real time, we grasp the results of the Solvay Conference with a time lag. Every time I read an academic journal, I should be excited.


Even so, Shoichiro Koide promoted his understanding of quantum mechanics and spread it throughout the country.
And, above all, he was raising the younger generation.
Shoichiro Koide introduced the world of physics in many textbooks.



2023年03月02日

西島 和彦
3/2改訂【素粒子のパラメターであるストレンジネスを提唱】

こんにちはコウジです!
「西島 和彦」の原稿を改定します。


投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。
今後もご覧下さい。また、ブログ宣伝でツイッター使いません。
2021/7/11(日)から始めていてSNSの感じが分かりました。
流入はありますが労力がかかります。
今後はSEO中心に考えてSNSはブログと常時関連させません。
SNSは戦略的に使っていきます。


何より紹介の内容を吟味します。日本語として読みやすい文章になっているか、
なおかつ論理が追いかけやすいか、そして記述に誤解を生む表現がないかをチェックし続けます。
【以下改訂した原稿です】


【↑_Credit:Wikipedia】



【スポンサーリンク】
【1926年10月4日生まれ ~ 2009年2月15日没】



 西島和彦の生い立ち


西島和彦は茨城県に生まれました。
東大を卒業後に大阪市立大学で教鞭
をとります。その後、イリノイ大学の後に
東京大学、京都大学で教鞭をとります。


そんな経歴の中において、西島和彦の業績として特筆すべきは
ストレンジネスの提唱でしょう。ストレンジネスは
素粒子の性質を吟味していく中で有用な概念です。


西島和彦が活躍した当時は電荷量バリオンといった
値が知られていたようですが、それに加えてストレンジネスといった
パラメターを西島和彦は導入して、素粒子の性質を語る
礎を固めていったのです。



  素粒子と西島和彦


西島和彦が素粒子を考えていく中で、特定の粒子と反粒子が
対になって生成される場合が多く見受けられたりしましたが、
そのメカニズムは説明されていませんでした。生成にかかる時間を
考察して、反応の中間に存在するであろう中間子を考察
していったのです。保存される量として質量の他に別の量を
考えていき、散乱断面積の計算を追従し辻褄(つじつま)
の合う理論を構築します。果てしない思考の作業です。


西島和彦は学生時代に中野董夫、
マレー・ゲルマンとストレンジネスを法則化
しました。強い相互作用や電磁相互作用
において反応の前後でストレンジネスが
保存されるのです。そうした物理量を一つ一つ
生み出していく事がとても大事です。



 西島和彦とストレンジネス


西島和彦らが考え出したストレンジネスは直接観測にかかる
ものでは無く、反応の前後で、ストレンジクォークと
反ストレンジクォークの数を使って定義されます。


そして、ストレンジネスを使った中野西島ゲルマン・モデルは
坂田模型やSU3と呼ばれるモデルへ、クォークモデルと繋がり
素粒子の振る舞いを明らかにしていくのです。


そして、統一的な現象理解へと繋がるのです。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/11/12_初稿投稿
2023/03/02_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
京大関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月現在での対応英訳)



History of Kazuhiko Nishijima


Kazuhiko Nishijima was born in Ibaraki prefecture.
He teaches at Osaka City University after graduating from the University of Tokyo
Take. Then he came after the University of Illinois
He teaches at the University of Tokyo and Kyoto University.


In such a career, the most notable achievement of Kazuhiko Nishijima is the advocacy of strangeness. It seems that values ​​such as charge amount and baryon were known at that time while examining the properties of elementary particles, but in addition to that, Kazuhiko Nishijima introduced parameters such as strangeness and the foundation for talking about the properties of elementary particles. Was solidified.



Elementary particles and Kazuhiko Nishijima


While Kazuhiko Nishijima was thinking about elementary particles, it was often seen that specific particles and antiparticles were formed in pairs, but the mechanism was not explained. He considered the time it took to generate and the mesons that would be in the middle of the reaction. He considers other quantities in addition to mass as the quantity to be conserved, and follows the calculation of the scattering cross section to construct a theory that fits the bill. He is an endless task of thinking.


Kazuhiko Nishijima made strangeness a law with Tadao Nakano and Murray Gell-Man when he was a student. Strangeness is preserved before and after the reaction in strong and electromagnetic interactions. It is very important to create such physical quantities one by one.



Kazuhiko Nishijima and Strangeness


The strangeness devised by Kazuhiko Nishijima et al. Is not directly related to observation, but is defined using the number of strange quarks and anti-strange quarks before and after the reaction. Then, the Nakano Nishijima German model using strangeness connects with the quark model to the Sakata model and the model called SU3, and clarifies the behavior of elementary particles.


And it leads to a unified understanding of the phenomenon.



2023年03月01日

小柴昌俊
3/1改訂【1926年9月19日生まれ ~ 2020年11月12日没】

こんにちはコウジです!
「小柴昌俊」の原稿を改定します。


投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。
今後もご覧下さい。また、ブログ宣伝でツイッター使いません。
2021/7/11(日)から始めていてSNSの感じが分かりました。
流入はありますが労力がかかります。
今後はSEO中心に考えてSNSはブログと常時関連させません。
SNSは戦略的に使っていきます。


何より紹介の内容を吟味します。日本語として読みやすい文章になっているか、
なおかつ論理が追いかけやすいか、そして記述に誤解を生む表現がないかをチェックし続けます。
【以下改訂した原稿です】



【スポンサーリンク】



小柴昌俊と新しい分野


小柴昌俊は物理学の新しい分野を切り開いた先人でした。


2020/11/12の夜に老衰の為、東京都内の病院で


お亡くなりになりました。大きな仕事を


成し遂げた後での享年94歳の大往生です。


小柴昌俊は物質の基本元素を構成する素粒子の1つであるニュートリノを観測にかける事に成功しました。その結果をもとに今ではニュートリノ天文学という新しい分野を確立しています。



基本粒子ニュートリーノ 


ニュートリーノは星の進化過程で発生する基本粒子です。


驚いたことに、ニュートリーノを観測にかけたのは、小柴昌俊が東京大学を定年退官する一月前の観測でした。強運を指摘された小柴氏は「運はだれにでも等しく降り注ぐが、捕まえる準備をしているのか、していないのかで差がつく」(のですよ)、と反論しました。強運の一言で片づけられないほど沢山の実験をして、議論をして、下準備をしてきたから、
このように語れたのでしょう。
その前に沢山の知恵を巡らしてみたのでしょう。


東京大学宇宙線研究所に所属している梶田隆章は小柴昌俊の弟子にあたりますが、ニュートリーノに質量がある事を示しノーベル賞を受けています。また、戸塚洋二も小柴昌俊の弟子にあたります。小柴昌俊は朝永振一郎から可愛がられた若かりし時代を経て梶田隆章教授、戸塚洋二教授を育てたのです。



小柴昌俊のカミオカンデ


小柴昌俊は岐阜県飛驒市にある鉱山地下、1000メートルに3000トンの水を使った、巨大装置である通称「カミオカンデ」を建設し、天体からのニュートリノを観測することに世界で初めて成功しました。その装置ではニュートリーノが飛来する方向、観測した時刻、エネルギー分布を明確に検出します。その装置を使い小柴昌俊は実際に観測をしました。カミオカンデの主目的はニュートリーノではありませんでしたが、ニュートリーノも観測したい、という2段作戦で成功を得たのです。小柴昌俊はそうした結果を使いニュートリーノ物理学を進めたのです。何より彼は大変な努力家でした。そして情熱家でした。科学に対する限りない愛を感じます。そんな男が大きな仕事を成し遂げた後、静かな眠りに落ちたのですね。大きなお悔やみを申し上げます。合掌。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/11/12_初稿投稿
2023/03/01_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


 

(2021年11月時点での対応英訳)



Masatoshi Koshiba and new fields


Masatoshi Koshiba was a pioneer who pioneered a new field in physics. He died at a hospital in Tokyo on the night of November 12, 2020 due to senility. He is 94 years old after completing a big job.


Masatoshi Koshiba succeeded in observing neutrinos, which are one of the elementary particles that make up the basic elements of matter. Based on the results, we are now establishing a new field called neutrino astronomy.



Elementary particles Nutrino


Nutrino is an elementary particle generated during the evolution of stars.


Surprisingly, it was one month before Masatoshi Koshiba retired from the University of Tokyo that he went to observe Nutrino. Mr. Koshiba, who was pointed out for good luck, argued, "Luck falls equally on everyone, but it makes a difference whether you are preparing to catch it or not." I've done so many experiments, discussions, and preparations that I can't put away with just one word of luck.
I think he said this.
Before that, I think I tried a lot of wisdom.


Takaaki Kajita, who belongs to the Institute for Cosmic Ray Research, the University of Tokyo, is a disciple of Masatoshi Koshiba, but has received the Nobel Prize for showing that Nutrino has mass. Yoji Totsuka is also a disciple of Masatoshi Koshiba. Masatoshi Koshiba raised Professor Takaaki Kajita and Professor Yoji Totsuka after a young age loved by Shinichiro Tomonaga.



Masatoshi Koshiba's Kamiokande


Masatoshi Koshiba was the first in the world to succeed in observing neutrinos from celestial bodies by constructing a huge device known as "Kamiokande", which uses 3000 tons of water at 1000 meters underground in a mine in Hida City, Gifu Prefecture. bottom. The device clearly detects the direction in which the nutrino arrives, the time of observation, and the energy distribution. Masatoshi Koshiba actually made observations using the device. Kamiokande's main purpose was not Nutrino, but he succeeded in a two-stage operation in which he wanted to observe Nutrino as well. Masatoshi Koshiba used these results to advance Nutrino physics. Above all, he was a hard worker. And he was a passionate person. He feels an endless love for science. After such a man did a big job, he fell asleep quietly, didn't he? He has great condolences. Gassho.