アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2024年11月 >>
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
最新記事
最新コメント

2024年07月22日

石原純
 (あつし・じゅん)7/22改訂【アインシュタイン来日時の通訳|俳人|結晶学者】

こんにちは。コウジです。
石原純の原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)


【1881年1月15日生まれ ~ 1947年1月19日没】


評伝石原純
【スポンサーリンク】
【1881年1月15日生まれ】


日本の物理学史の中から一人ご紹介します。


2024年の時点で同性同名の方が現存されますが、


これは19世紀の物理学者の記事です。



石原さんの業績


物理学者として石原さんには
大きな二つの業績があります。


先ず、黎明期の日本において外国で進んでいた
最新の物理学を成果を
いち早く紹介して広めたことです。


そして、2つ目は結晶解析に対する考察です。
この後者の業績は国内に留まらずに
最先端の学者達に色々な刺激を与えたことでしょう。
日本でもそうした「共感」が始まりだしたのです。



多彩な活躍をした石原さん


山川健次郎田中館愛橘長岡半太郎


本多光太郎寺田寅彦、、、、


と続く黎明期の中で異色の人生を歩みました。
アインシュタイン来日時に
通訳を務め、
西田幾多郎に不確定関係
を伝えたパイオニアです。
日本物理学界に多大な貢献を残しつつ、
女性関係で帝大を去ります。あーぁあ。


そもそも石原さん、歌人の伊藤左千夫の弟子なので
斉藤茂吉に「家庭を
大事にするよう」に説得されたり
していますが、
聞く耳を持たずに
女にのめり込んでいたようです。
アララギの発刊に携わったメンバーでしたが、
この事件でアララギ脱会に至ります。
と、ここまでは
wikipedia等に載っている
範疇の話です。


 

語り継がれた石原さん


私的な思い出としては、大学の恩師が彼を評価


していて、講義の中で情熱を込めて語ってくれて


いた時間です。日本の科学の為に多大な功績を


残しながらも学会と距離を置き、交通事故による


不慮の最後を遂げた人生を思いを込めて暖かい


語り口で講じていました。


|コスパ最強・タイパ最強・テックジム|
プログラミング教室の無料カウンセリング
【スポンサーリンク】



〆最後に〆


以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。、


nowkouji226@gmail.com


2020/11/11_初回投稿
2024/07/22_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


 (2021年10月時点での対応英訳)


I would like to introduce one person from the history of physics in Japan. As of 2021, the same-sex name still exists, but this is an article by a 19th-century physicist.



Mr. Ishihara who played a variety of roles


I lived a unique life in the early days of Kenjiro Yamakawa, Aikitsu Tanakadate, Hantaro Nagaoka, Kotaro Honda, Torahiko Terada, and so on.


He was a pioneer who acted as an interpreter when he came to Einstein and conveyed the uncertain relationship to Kitaro Nishida. He leaves the imperial university in relation to women, leaving a great contribution to the Japanese physics world. Ahhhh.


In the first place, Mr. Ishihara, a disciple of the poet Sachio Ito, was persuaded by Mokichi Saito to take good care of his family, but he seemed to be absorbed in it without listening. She was a member involved in the publication of Araragi, but this incident led to her withdrawal from Araragi. So far, it is a story of the category listed in wikipedia etc.


Mr. Ishihara's achievements


As a physicist, I think Mr. Ishihara has two major achievements. First of all, I was the first to introduce and disseminate the latest physics that was advancing abroad in Japan in the early days. And the second is consideration for crystal analysis. This latter achievement would have inspired cutting-edge scholars not only in Japan. Such sympathy began in Japan as well.



Mr. Ishihara handed down


My personal memory is the time when my college teacher was praising him and talking passionately in his lectures. Although he made great achievements for Japanese science, he kept a distance from the academic society and gave a warm talk about his life, which had ended unexpectedly due to a traffic accident.

2024年07月21日

ポール・エーレンフェスト
7/21改訂【波動関数を統計的な手法で解釈・定理化し|後進を多数輩出】

こんにちは。コウジです。
エーレンフェストの原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)

【←ローレンツとアインシュタイン_
エーレンフェストの自宅前で
Crediit;:_ pinterest.com_】


量子論の基礎講座
【スポンサーリンク】


【1880年1月18日生まれ ~ 1933年9月25日没】



エーレンファストと期待値と波動関数
【現象をつなげたエーレンファスト】


ポール・エーレンフェストは


統計力学量子力学


洗練された形で結びつけたと言えるでしょう。


それぞれの分野での2つの指標である


期待値波動関数を結びつけたのです。


また、本稿の中で使っている写真も意義深いです。アインシュタインローレンツという2人の偉人をより強く結びつけているのがエーレンフェストだからです。エーレンフェストの家で沢山の考え方(議論)が進んでいったのです 。

オーストリアに生まれウィーンで育ったエーレンフェストは
研究生活において
非常に恵まれていたと思います。


まず、ボルツマンの講義を受ける環境をもち、
熱力学の考えや気体分子の運動論に大変、感銘を受けます。
柔らか頭の時期にボルツマンの熱意に触れることが出来たのです。


ミクロの世界と可視下で想像できる質点モデルの世界を
繋げる事が出来たのです。更に小旅行でローレンツに出合い、
互いに刺激を受け、その後、
アインシュタインと交友関係を結びます。
アインシュタインとエーレンフェストは共に
ユダヤ系でしたので多くの
「思想」・「話題」を共有したことでしょう。



より詳細な期待値の解説


冒頭に、エーレンフェストは2つの指標、期待値と波動関数を
関連付けたと記載しましたが
「期待値」とは簡単に言えば
「平均値」の事です。


例えば、距離(長さ)で考えてみると
精度を上げるほど実測値には幅が出てきます。
長さをノギスで測定してみたら
4.155oだったり4.154oだったりします。


そこで数回の測定の平均値をとって確からしい
と思われる数値を決めます。期待値です。
【測長の例ではより細かくレーザー測長器
によって計測が進める事が出来ます。しかし
それでも、光学的限界に突き当たります。】


期待値という言葉を使う時には分散値とか誤差とか併記され
統計的な処理がなされていると思って下さい。
【より細かい話としては離散値だけでなく連続値
に対して
期待値・分散値を考えていきます。】



より詳細な波動関数の解説


また、エーレンフェストが考えていたもう一つの概念である波動関数は、
細かい世界を表現するにあたり、当時は観測にかからない、とも
考えられたミクロな対象に対する物理量を表現する数学的手段です。


ヒルベルト空間で議論される関数で、無限次元の基底をとります。
ミクロの物質には粒子性と波動性が混在する事情もあり、
双方を具現化する波動関数が登場します。


エーレンフェストの定式化した定理によると
波動性が顕著に表れていると思える現象でも
その運動量や速度が求まり粒子と比較して
議論する事が可能です。2つの手法が繋がるのです。



 エーレンファストの定理の時代背景
【人々をつなげたエーレンファスト】


フランスのド・ブロイが提唱した物質波という概念は
論文審査の時点で独逸のアインシュタインが高く評価して、
オランダのエーレンフェストが定量的な議論を深めたのです。


その概念形成の達成は国を超えて人々が求め続けた疑問の解決でした。
そして今では大学生であっても共有できている人類の知識なのです。


また、ボルツマンの没後にエーレンフェストは
その大きな業績をいくつも纏めて発表しました。


そうした活動を知った人々は当然、
エー
レンフェストに期待を寄せます。
ボルツマンが執筆中だった未完の仕事に
エーレンフェストは着手します。


数学者が統計力学を考える仕事だったそうですが、
形になっていないモデルの検証に対して鋭い考察がありました。


また、棚上げになっていた問題を洗い出して整理していました。
その作業には数学者であったエーレンフェストの
奥様が協力していて、
共に数学モデルを駆使して未解決の物理での
問題に挑んでいました。


また、
エーレンフェストは優れた教育者でした。
1912年にドイツ語圏の大学訪問の中で
プランクに会い、
ゾンマーフェルトに会い、
アインシュタインに会います。

そしてオランダのライデン大学での
ローレンツの地位を引き継ぎます。


ライデン大学の教授を務めた彼のもとには
多彩な人材が集まり育っていきました。
彼は弟子達をヨーロッパの研究機関で修行
する事を勧め、海外の違った環境で研究を
する事を奨励しました。
ヘンリク・クラマース、
ジェラルド・カイパー
などが学生として所属、
グンナー・ノルドシュトルム、
エンリコ・フェルミ
イーゴリ・タム、オスカル・クライン、
ロバート・オッペンハイマー
ハイゼンベルク
ポール・ディラック
_が外国人研究者として

長期間研究をしました。


たとえばエーレンフェストはパウリと手紙をやりとり
する中で
オッペンハイマーの育て方を語り合っています。
詳細は
藤永茂著「ロバート・オッペンハイマー」を参照願います


ボルツマンを思い返すとエーレンフェストという人が点であって、
その点がオーストリアという糸で
ボルツマンと結ばれていったような気がします。
そして、
ボルツマンの考えを受け継いだエーレンフェストが
他国の糸と絡み合っていく気がします。


た、


ボルツマンの考えを受け継いだシュレディンガー
エーレンフェストの研究室で議論したディラックと同時に
1933年のノーベル物理学賞を受賞します。


人を育てるという大変さと重要さを感じます。大きな仕事です。



そして晩年


そして晩年なのですが、エーレンフェストは
重度のうつ病に苦しんでいたようです。
アインシュタインが仕事量を減らすように職場に
働きかけたたようです。しかし友情も空しく終わり、
最後はダウン症だった末っ子Wassikを
打ち殺し自らも命を絶ちます。
ご冥福をお祈りするしか出来ません。
彼が考え抜いた末の結論だったのです。


そして、エーレンフェストが始めた
ライデン大学での夜間・物理学コロキウムは、
今でも「Colloquium Ehrenfestii」と呼ばれ、
続いているそうです。
今晩も議論しているかも知れません。




|コスパ最強・タイパ最強・テックジム|
プログラミング教室の無料カウンセリング
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/21_初版投稿
2024/07/21_改定投稿


舞台別のご紹介
時代別(順)のご紹介

オーストリア関連のご紹介
ウィーン大関連のご紹介
オランダ関係の紹介へ
ライデン大学のご紹介

熱統計関連のご紹介へ
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Ehrenfast, expected value and wavefunction


Paul Ehrenfest can be said to be a sophisticated combination of statistical mechanics and quantum mechanics. He combined two indicators in each field, the expected value and the wave function.


The photos used in this article are also significant. It is Ehrenfest that more strongly connects the two great men, Einstein and Lorenz. A lot of thoughts should have gone on at Ehrenfest's house. Born in Austria and raised in Vienna, Ehrenfest in his research life


I think he was very fortunate.


First of all, he has an environment where he receives Boltzmann's lectures, and he is very impressed with the idea of ​​thermodynamics and the kinetic theory of gas molecules. He was able to connect the micro world with the world of mass model that can be imagined under the visible. He also met Lorenz on a short trip, inspired each other, and then made friends with Einstein. Since Einstein and Ehrenfest were both Jewish, they probably shared many "thoughts" and "topics."



More detailed explanation of expected value


At the beginning, Ehrenfest stated that he associated two indicators, the expected value and the wave function, but the "expected value" is simply the "average value". For example, when considering the distance, the higher the accuracy, the wider the measured value. It can be 4.155 mm or 4.154 mm. So he takes the average of several measurements to determine what he thinks is likely. Expected value. When you use the word expected value, please think that the variance value and the error are written together and statistically processed.
[As a more detailed story, not only discrete values ​​but continuous values
We will consider the expected value and variance value for. ]



More detailed wave function explanation


In addition, Ehrenfest's other concept, the wave function, is a mathematical means for expressing physical quantities for microscopic objects that were thought to be unobservable at the time when expressing the fine world. A function discussed in Hilbert space, which takes an infinite dimensional definition. There is also a situation where microscopic substances have both particle and wave properties, and a wave function that embodies both will appear.


According to Ehrenfest's formalized theorem, it is possible to find the momentum and velocity of a phenomenon in which wave nature appears prominently and to discuss it in comparison with particles. The two methods are connected.


 

Background of the era of Ehrenfast's theorem


The concept of matter waves advocated by France's de Broglie was highly evaluated by Einstein, who was unique at the time of the dissertation review, and Ehrenfest of the Netherlands deepened the quantitative discussion. Achieving that concept formation was the solution to the questions that people continued to seek across countries. And now it is the knowledge of humankind that even university students can share.


Also, after Boltzmann's death, Ehrenfest summarized and announced a number of his great achievements. People who know about such activities naturally have high expectations for Ehrenfest. Ehrenfest embarks on an unfinished work that Boltzmann was writing. He was said to have been a mathematician's job of thinking about statistical mechanics, but he had a keen eye for the verification of unformed models. In addition, the problems that had been shelved were identified and sorted out. Ehrenfest's wife, who was a mathematician, cooperated in the work, and both worked on unsolved physics problems by making full use of mathematical models.



Ehrenfest was also an excellent educator.


He met Planck, Sommerfeld, and Einstein during a visit to a German-speaking university in 1912. And he will take over Lorenz's position at Leiden University. He was a professor at Leiden University, and a diverse group of human resources grew up under him. He encouraged his disciples to practice at European research institutes and to study in different environments abroad.
Hans Kramers,
Gerard Kuiper
Etc. belong as a student,
Gunnar Nordström,
Enrico Fermi,
Igor Tamm, Oskar Klein,
Robert Oppenheimer,
Heisenberg,
Paul Dirac
_ Has studied for a long time as a foreign researcher.


Looking back on Boltzmann, I think that the point was Ehrenfest, and that point was tied to Boltzmann with a thread called Austria. And I feel that Ehrenfest, who inherited Boltzmann's ideas, is intertwined with threads from other countries. In addition, Schrodinger, who inherited Boltzmann's ideas, won the 1933 Nobel Prize in Physics at the same time as Dirac discussed in Ehrenfest's laboratory. He feels the difficulty and importance of raising people. It's a big job.



And his later years


And in his later years, Ehrenfest seems to have suffered from severe depression. Einstein seems to have worked on the workplace to reduce his workload. In the end, he kills his youngest child, Wassik, who had Down Syndrome, and kills himself. You can only pray for your soul. It was the final conclusion he had thought out.


And the night and physics colloquium at Leiden University, which Ehrenfest started, is still called "Colloquium Ehrenfestii" and it seems to continue. I may be discussing it tonight as well.

2024年07月20日

A・アインシュタイン
7/20改訂【物理を考え続けた人|光電効果・ブラウン運動・相対性理論|EPS論文】

こんにちは。コウジです。
アインシュタインの原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)


WhoWasAlbertEinstein
【スポンサーリンク】
【1879年3月14日生まれ 〜 1955年4月18日没】



現時点で最も有名な物理学者でしょう。


このアインシュタイン(Albert Einstein)は


様々なパラダイムシフトを起こし


20世紀初頭に


物理学に大きな変化をもたらしました。


本稿でご紹介している集合写真はソルベー会議
の時の写真とローレンツとのツーショットです。
アインシュタインはド・ブロイディラックボーアらと
語りあい、議論を続け共通認識を形成していきました。



26歳のアインシュタイン


1905年に26歳のアインシュタイン


は3つの歴史的な論文を発します。


「光量子仮説」


「ブラウン運動の理論」


「特殊相対性理論」


です。


光量子化説は光の性質を考え量子化している論文、


ブラウン運動は花粉の挙動から分子運動を
解析した論文、


特殊相対性理論は光速度に近い移動体の考察。


こういった考察から空間・時間の概念を変えていき、ミクロの物質の考察を進めています。光量子仮説で物質の二面性を明確にしています。その一方で顕微鏡でしか観察できないサイズの花粉がビリヤードの球と同様に弾性衝突しているモデルを示し、
微小サイズの領域でモデル化が可能だと示します。


色々な学者と討議を重ねて、現実に対しての理解を深めていきます。具体的にマリ・キューリーと親交を深めていて、チューリッヒ大学教職に推薦をしてもらっています。



少年時代のアインシュタイン


アインシュタインは少年時代から物理学者として
「考える」土壌を育んでいました。そういった話をする際に
よく語られるのは、居眠りから目覚めた後に
考え続けたと言われている思考実験です。


それはすなわち、「光の速さで光を追いかけたらどうなるか」
という思考実験です。子供が大人から「光は速い」
という事実と「光を使って物が見える」
という2つの事実を学んだとしたら、
その後に子供ならではの素朴な考えで、
「それならば・・・・」と考え続けていったのです。


考えること自体は誰でも出来る事ではありますが、
そこから先、解決出来ない疑問を覚えていて、
大事だと思い、解決した結果が
人類共通の知の財産となったのです。
そこには必ず苦労と乗り越えた時の喜びがあります。



苦労人のアインシュタイン


時代的な話としてもアインシュタインは
ユダヤ系であるので彼は大変苦労しています。
当時のドイツはナチスの時代ですから
ホロコーストが実際にあったのです。
また、アインシュタインはドイツの為に
原爆の製造をすることに貢献出来た筈です。


実際には崩壊していくドイツ帝国を去り、
アメリカでマンハッタン計画に参加します。
個人の物理学者として多少の無力感を
感じていたのではないでしょうか。


またいつかアルバート・アインシュタイン
の子供であるハンス・アインシュタイン について
記述することが出来ればと思っています。


そして物理に対して考え続けました。ソルベー会議で
議論を重ね、量子の実態そのもの(観測問題)
に疑問を抱きました。アインシュタインの思考は、
いわゆるEPS論文での隠れた変数の議論へと繋がりました。
更には現在で言う「エンタングルメント」、
ひいては「量子コンピューター」へと繋がっています。


また因みに、「神はサイコロを振りたまわん(ふりません)」
という有名な言葉をアインシュタインが残した
とされていますが、正確にはこの言葉は
「アインシュタインがボルンへの手紙の中で残した言葉」
です。「アインシュタインが(よく?)使った言葉」
というのが真実でしょう。
確率概念の問題を端的に表現しています。



アインシュタインの言葉 


苦労人のアインシュタインは数々の名言を残していますが、


私が好きな言葉を最後に残します。


アインシュタインの意志の強さを感じます。


「think and think for months and years.


Ninety-nine times, the conclusion is false.


The hundredth time I am right.」


私は、数ヶ月も何年も考え続けます。


99回まで、その結論は正しくないですが、


100回目に正しい答えを出すことができるのです。




|コスパ最強・テックジム|
プログラミング教室の無料カウンセリング
【【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来ていませんが
問題点には必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/06_初稿投稿
2024/07/20_改定投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
ドイツ関係のご紹介
オランダ関係の紹介へ
ライデン大学のご紹介へ

熱統計関連のご紹介
量子力学関係


AIでの考察(参考)



【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



 famous physicist  Einstein 


Isn't it the most famous physicist at the moment? Introducing Albert Einstein, a paradigm shift that brought about major changes in physics in the early 20th century. In particular, in 1905, 26-year-old Einstein published three historical treatises. "Photon hypothesis," "Brownian motion theory," and "special relativity."



Three paper's


The photonunization theory is a paper that quantizes light properties, the Brownian motion is a paper that analyzes molecular motion from pollen behavior, and the special relativity is a study of moving objects that are close to light velocity.


From these considerations, we are changing the concept of space and time, and are proceeding with the consideration of microscopic matter. He discusses with various scholars and deepens his understanding of reality. He specifically has a close relationship with Mari Curie and has been recommended by the University of Zurich teaching profession.



Einstein in childfood 


Einstein has cultivated a "thinking" soil as a physicist since his childhood. When talking about such things, a thought experiment that is said to have continued to think after waking up from a doze is often talked about. In other words, it is a thought experiment of "what happens if you chase light at the speed of light". If a child learns from an adult the fact that "light is fast" and "you can see things using light", then the simple idea of ​​a child is "If so ..." I kept thinking.

Anyone can think about it, but from that point onward, I remembered the questions that I couldn't solve, thought it was important, and the results of the solutions became a common property of humankind. There is always the hardship and the joy of overcoming it.

Germany at that time


Einstein is of Jewish descent, so he is having a hard time. Germany at that time was in the Nazi era, so the Holocaust actually existed. Einstein could also have contributed to the production of the atomic bomb for Germany. He actually leaves the collapsing German Empire and joins the Manhattan Project in the United States. Perhaps he felt a little helpless as an individual physicist. I also hope to be able to describe Hans Einstein, a child of Albert Einstein, someday.


Einstein, a hard worker, has left a number of quotes, but the last one I like. I feel the strength of Einstein's will.


"Think and think for months and years. Ninety-nine times, the conclusion is false. The hundredth time I am right."


2024年07月19日

オットー・ハーン‗
7/18改訂【1879年3月8日 - 1968年7月28日】

こんにちは。コウジです。
オットー・ハーンの原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)


原子爆弾
【スポンサーリンク】
オットー・ハーン(Otto Hahn)は20世紀初頭のドイツの化学者で、
核化学の分野で重要な業績を残しました。


彼は核分裂の現象を解明する上で重要な役割を果たしました。
また、リーゼ・マイトナー(Lise Meitner)との共同研究は、
核分裂の理解に大きく貢献しました。


1938年、オットー・ハーンとリーゼ・マイトナーは
ウラニウムの核を中性子で照射する実験を行い、
その結果としてバリウムとクリプトンが生成されることを発見しました。
この現象は、ウラニウム核が中性子を吸収し、
重い核と軽い核に分裂することを示しており、
これが後に核分裂として知られるようになりました。


しかし、1938年当時、ハーンはこの現象を
完全に理解することができず、その解釈に関する
理論的な考察を行うことができませんでした。


更に、この話の中で重要なのはマイトナーがユダヤ系だという事情です。
マイトナーはナチスの台頭に伴ってドイツ内での研究活動が
難しくなってきます。その後、リーゼ・マイトナーはスウェーデンに亡命し、
オットー・ロベルト・フリッシュ(Otto Robert Frisch)と共同で
核分裂の理論的な解釈を提案しました。その後、
ハーンとマイトナーの共同研究成果が、マイトナーの名前が
冠された形で広く知られるようになりました。


オットー・ハーンとリーゼ・マイトナーの業績は、
20世紀の物理学と化学における最も重要な発見の一つ
である核分裂の理解につながりました。
彼らの実験的結果と理論的解釈は、核物理学と核化学の分野
における革命的な進歩をもたらしました。


ハーンとマイトナーが行ったウラニウムの核を中性子で照射する実験は、当時の核物理学において画期的なものでした。彼らが発見した核分裂の現象は、核が中性子を吸収して分裂することを示唆し、その際に新たな元素が生成されることを示しました。この発見は、後に原子爆弾や核エネルギーの開発につながる重要な基盤となりました。


しかしながら、ナチスの政権によるユダヤ人に対する迫害の影響により、マイトナーの研究環境は悪化しました。彼女はスウェーデンに亡命し、そこでオットー・ロベルト・フリッシュと協力して核分裂の理論的解釈を提案しました。その後、マイトナーの名前が冠された形で、彼らの共同研究成果が広く知られるようになりました。


このように、ハーンとマイトナーの業績は、科学史上永遠に残る重要な貢献であり、彼らの協力関係は科学的発展における模範的な例として賞賛されています。



|コスパ最強・テックジム|
プログラミング教室の無料カウンセリング
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


2024/04/02_初回投稿
2024/07/19‗改訂投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
ドイツ関連のご紹介
熱統計関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


₍2024年4月時点での対応英訳)


Otto Hahn was a German chemist in the early 20th century.
He made important achievements in the field of nuclear chemistry.


He played an important role in elucidating the phenomenon of nuclear fission.
In addition, joint research with Lise Meitner
He made a major contribution to the understanding of nuclear fission.


In 1938, Otto Hahn and Lise Meitner
An experiment was conducted in which uranium nuclei were irradiated with neutrons.
They discovered that barium and krypton were produced as a result.
This phenomenon occurs when uranium nuclei absorb neutrons,
This shows that the nucleus splits into a heavy nucleus and a light nucleus.
This later became known as nuclear fission.


However, in 1938, Hahn recognized this phenomenon.
cannot be fully understood and is concerned with its interpretation.
He was unable to make theoretical considerations.


Furthermore, what is important in this story is that Meitner is Jewish.
Meitner's research activities in Germany began with the rise of the Nazis.
It's getting difficult. After that, Lise Meitner went into exile in Sweden.
She collaborated with Otto Robert Frisch
He proposed a theoretical interpretation of nuclear fission. after that,
The results of Hahn and Meitner's joint research will be recognized by Meitner's name.
It became widely known by its crowned form.


The achievements of Otto Hahn and Lise Meitner are
One of the most important discoveries in physics and chemistry of the 20th century
This led to an understanding of nuclear fission.
Their experimental results and theoretical interpretations are important in the fields of nuclear physics and nuclear chemistry.
brought about revolutionary advances in


Hahn and Meitner's experiment in irradiating uranium nuclei with neutrons was a breakthrough in nuclear physics at the time. The phenomenon of nuclear fission that they discovered suggested that nuclei absorb neutrons and split, and new elements were created during this process. This discovery was an important foundation that later led to the development of the atomic bomb and nuclear energy.


However, Meitner's research environment deteriorated due to the persecution of Jews by the Nazi regime. She fled to Sweden, where she collaborated with Otto Robert Frisch to propose a theoretical interpretation of nuclear fission. Since then, the results of their joint research have become widely known, bearing Meitner's name.


The work of Hahn and Meitner is thus a timeless and important contribution to the history of science, and their collaboration is hailed as an exemplary example of scientific development.

2024年07月18日

大河内正敏
7/18改訂【リケンや日本ピストンリングの創設期に尽力した御曹司|政界でも活躍】

こんにちは。コウジです。
大河内正敏の原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)

理化学研究所100年目
【スポンサーリンク】
【1878年12月6日生まれ ~ 1952年8月29日没】



大河内家の御曹司


大河内正敏は旧上総大多喜藩主にして子爵の


大河内正質の息子として生まれました。


正敏は学習院初等科に進み、大正天皇と共に学びます。


また大河内とは珍しい名字だなと思っていたら


奥様も大河内家から娶っていたりして、なんだか


皇族みたいな感じがしました。平民とは違う華麗なる一族


って感じです。鹿鳴館で踊っていても違和感ありません。


ちなみに、寺田寅彦とは誕生日が物凄く近いのですが
交流はあったのでしょうか?当時から象牙の塔の中は
風通しが悪そうですね。互いに孤高を極めてた筈です。


大河内正敏は政界で子爵議員として貴族院議員を2期務めます。
そして若かりし無名の田中角栄を可愛がっていた言われます。


そんな人なので理化学研究所の3代目所長に就任
した時は理研研究員にして、貴族院議員で子爵、
そして東京帝大教授でした。そんな偉人を今回はご紹介します。


大河内正敏の業績


大河内正敏は東大で物理学を学んでましたが時節柄、
寺田寅彦と飛行弾丸の研究をしていたようです。
物理学を駆使すれば流体力学や表面の解析が出来ます。


大河内正敏が進めた具体的な別の活用事例としては、
ピストンの開発があります。ここでもシリンダー内の
熱流体解析や、摂動面の摩擦特性を解析出来ます。


この研究は後の株式会社リケンにつながります。
戦後にリケンのグループは、GHQより
十五大財閥の
一つとして指定を受けます。



そして、眠りに


こうした業績を残して今、
大河内正敏は埼玉県にある
平林寺で永眠しています。


その近くには理化学研究所の研究室があり、
今でも研究者たちが世界に冠たる研究を続けています。
量子の根源を考え続けています。



|コスパ最強・テックジム|
プログラミング教室の無料カウンセリング
【スポンサーリンク】



〆最後に〆


以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。


nowkouji226@gmail.com


2020/12/17_初版投稿
2024/07/18_改訂投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Okochi family sergeant


Masatoshi Okochi was born as the son of Masatoshi Okochi, the former lord and viscount of the Otaki feudal lord of Kazusa. Masatoshi goes to Gakushuin Elementary School and studies with Emperor Taisho. Also, when I thought that Okochi was a rare surname, my wife was also a kid from the Okochi family, and I felt like a royal family. It feels like a splendid clan different from the commoners. I'm sure they were dancing at Rokumeikan.


He is a member of the House of Lords for two terms as a Viscount member in politics. Under such circumstances, it is said that he loved the young and unknown Kakuei Tanaka. As such, he was a RIKEN researcher, a member of the House of Lords, a Viscount, and a professor at the University of Tokyo when he became the third director of RIKEN. I would like to introduce such a great man this time.



Achievements of Masatoshi Okouchi


Masatoshi Okouchi studied physics at the University of Tokyo, but he seems to have been studying flying bullets with Torahiko Terada. He can use physics to analyze fluid mechanics and surfaces.


Another specific use case promoted by Masatoshi Okouchi is the development of pistons. Here, too, you can analyze the thermo-fluid inside the cylinder and the friction of the perturbing surface. This research will lead to RIKEN CORPORATION later. After the war, this group was designated by GHQ as one of the 15 major conglomerates.



And to sleep


With these achievements, Masatoshi Okouchi is now sleeping at Heirinji Temple in Saitama Prefecture. There is a branch office of RIKEN nearby, and researchers are still conducting world-class research.


2024年07月17日

寺田 寅彦
7/17改訂【夏目漱石の教えを受けた俳人・作中では寒月さん】

こんにちは。コウジです。
寺田 寅彦の原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)


X線結晶解析
【スポンサーリンク】
【1878年11月28日生まれ ~ 1935年12月31日没】



寺田寅彦について


寺田寅彦は物理学者にして文筆家にして俳人です。
文筆家としては牛頓の名を名乗っていたり。
牛頓と書いてニュートンと読ませてました。
明治の時代の人々に、そんな
洒落っ気が伝わったでしょうか。
科学知識の復旧していない時代ですが
新しい時代の啓蒙(けいもう)を進めました。


そんな寺田寅彦は
熊本の高校で英語教師として赴任していた

夏目漱石と出会います。後に文学に関わった
のはこの出会いが大きかったと言われています。
贅沢な人生ですね。夏目漱石の作品
「吾輩は猫である」の中では寒月君として
登場する人物のモデルとなっていて
作品を通じて寺田寅彦の御人柄に
触れた人も多いのでは
ないでしょうか。
因みに、


2021年春の時点で日経新聞に掲載されていた
連載小説「伊集院静作、ミチクサ先生」
では、その様子が描かれていました。
その作品のなかで、
寒月さんは淡々と話を進めていた人で、
そのお人柄が伝わってきます。
当時の時代背景や文人達との交流も
感じられて面白かったです。


ミチクサ先生
【スポンサーリンク】



寺田寅彦と研究について


研究の点でも時代の枠にとらわれない
視点を持ち実績を残しています。
その中でも評価が高い
研究業績は
ラウエの業績に刺激を受けた研究で

「X線の結晶透過」についての業績です。


先進的な結晶解析に関して考察ををしてます。
そして、
1913年に「X線と結晶」をNatureに発表してます。


寺田寅彦の研究人生をふりかえると、
田中舘愛橘に教えを受け、
原子の長岡モデルを提唱した長岡半太郎
教えを受けて、学生結婚をして、
その奥様に早く先立たれ、
東京帝国大理科大学で教鞭をとった後に
ベルリン大学で地球物理学を研究し、
理化学研究所、 東京帝大地震研究所
で研究を続けました。
57歳で亡くなられています。



〆最後に〆


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/09/09_初稿投稿
2024/07/17_改訂投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係


AIでの考察(参考)


【スポンサーリンク】


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



About Torahiko Terada


Torahiko Terada is a physicist and poet. As a writer, he calls himself Ushiton. He wrote Ushiton and read it as Newton.


He meets Soseki Natsume, who was assigned as an English teacher at a high school in Kumamoto. It is said that it was this encounter that was later involved in literature. It's a luxurious life. In Natsume Soseki's work "I Am a Cat", I think there are many people who have come into contact with their personality through the work as a model of the person who appears as Mr. Kanzuki.


By the way,


The serial novel that was in progress in the Nikkei newspaper as of the spring of 2021 seems to describe the situation. I always read it diagonally, but Mr. Kanzuki is a person who talks in a straightforward manner, and I can feel his personality. It is interesting to feel the historical background of the time and the interaction with the writers.



About Torahiko Terada and research


In terms of his research, he has a track record with a perspective that is not bound by the boundaries of the times. Among them, his research achievement, which is highly evaluated, is a research inspired by Laue's achievement and is an achievement on "X-ray crystal transmission". He considers advanced crystal analysis. Then, in 1913, he published his "X-rays and crystals" in Nature.


Looking back on Torahiko Terada's research life, he was taught by Tanakadate Aikitsu and Hantaro Nagaoka, who advocated the Nagaoka model of atomic atoms. After teaching at, I studied geophysics at the University of Berlin, and continued my research at RIKEN and the Earthquake Research Institute, the University of Tokyo.
He died at the age of 57.


/

2024年07月16日

ヘンリー・ラッセル_
7/16改訂【HR図(Hertzsprung-Russell diagram)】

こんにちは。コウジです。
ラッセルの原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)


天文学入門


【スポンサーリンク】


【1877/10/25 〜 1957/2/18】



はじめに


ヘンリー・ノリス・ラッセルは星の進化を考えていたアメリカの天文学者です。
プリンストン大学で学び研究生活を始めます。


私が初めてラッセルの事を知ったのは多読を心がけていた高校時代に、C.セーガンと共に出てきた学者さんでした。当時はマンハッタン計画に関わっていたアインシュタインなどの学者さん達と天文学者の学者さん達が、私の中でごちゃ混ぜになっていました。


高校時代の「理解の浅さ」が懐かしいくらいです。ラッセルと言えば「哲学者のバートランド・ラッセル(1872-1970)と混同してはいけない」とか真面目に考えていました。



ラッセルとHR図 


ラッセルの研究で有名なものは
HR図(Hertzsprung-Russell diagram)です。


HR図は所謂「星の進化」に関しての理解に


不可欠な研究となっています。


概説すると以下の概念です。


(本稿は星の進化に関しての記述が主です)


宇宙の無数の石ころが万有引力で(自重の為に)


他の物体と一緒になっていき段々に


大きな重心を持つ物体になっていきます。


宇宙空間で星の流れを考えた時に流れが速い部分や


渦が出来たりする時には流れの中で


重力が沢山集まる場所や、


その効果が薄い場所が出来てきます。


重力の効果が集まる部分にはより重心の集まっている物体が蓄積してきてお月様のクラスの塊が宇宙で無数に出来ていくと想像されます。


未だお月様の内部構造は正確に観測されていませんが、宇宙を飛び交う岩石クラスの大きさであれば実際にサンプルを持ち帰り内部を調べることが出来ます。


大気圏に入ってきた岩石もまたサンプルとなり研究材料と出来ます。こうした類の大きさスケールが分かりやすい物体が宇宙には無数にあります。その物体自体は暗い寒い宇宙の中で(真空中に)沢山漂っています。


そうした物体が様々な要因で更に集まってくると地球や火星、木星のような内部に地殻を持った衛星になってきます。内部に地殻を持つ事情は万有引力で地球内部の物体が中心方向に集まってくる事情からです。


例えば地球の場合にはすべての物体が地球の重心に落ちていこうとするから重心近くには物凄い圧力がかかってきて地球内部では核反応が起きています。


圧力の大きさに個々の原子核が耐えられないで崩壊するのです。地球表面は比較的冷えていますが地球の内部は物凄い高熱です。


更に重力で重量物が集まってくると重力によって集まってくる物質の表面が冷えている状態が壊れます。地球の表面は人間が暮らせる程度の暖かさに保たれていて冷たい宇宙空間で冷やされている状態と地球内部からマグマで温められている状態に均衡がとれています。


地球が奇跡の星と呼ばれる理由の一つで温度での均衡で水が沸騰せず、かつ凍らない温度域でタンパク質、その他の物質が出来ていて肉体を持つ様々な動植物が存在出来ています。


もしも地球が100度以上の温度下であったら今の生命はほとんど生活が出来ないでしょう。生命の誕生、その後の進化には好ましい条件だったわけです。


近くを構成しているようなバランスが崩れると太陽のようにいつも光り続ける星となります。大きくなり、もはや地殻が維持できなくなって、その上で生き物が生活できる状態ではありません。


内部での核反応が非常に活発になり、外部に絶えず光を放射して輝き続けます。光だけではなく各種素粒子やあらゆる波長の電磁波を放出します。


そうした活動として全体の重量が減っていく恒星(太陽のように光る)もあれば、ほかの星を取り込んで更に重量を増していく恒星もあります。


そうした膨張や減衰を恒星はしていきますが、全体重量がもっともっと大きくなってくると白色矮星、ブラックホールへと変化していくだろうと言われています。


最終的には全体の重力が大きくなり、光の素子である光子さえもブラックホールから脱出できなくなるのです。当然。ブラックホールは見えません。



最後に


1947年に引退するまで30余年の間、プリンストン大学天文台の所長として研究を続けラッセルは余生を過ごしました。今もその研究成果は受け継がれ発展し続けています。



|コスパ最強・テックジム|
プログラミング教室の無料カウンセリング
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com


2022/10/03_初版投稿
2024/07/16_改訂投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介
電磁気関係
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2022年10月の時点の英訳)



Preface


Henry Norris Russel is an American astronomer thinking about the evolution of the star.
I learn in Princeton University and begin study life.


It was the scholar who came out with Carl Sagan in the high school days when I kept a multi-reading in mind that I knew Russel for the first time.


Scholars and the scholars such as Einstein concerned with Manhattan Project of the astronomer became mixed-up among me in those days. I feel nostalgic for "shallowness of the very beginning understanding" at that time. Speaking of raschel, I thought, "you must not confuse it with the raschel of the philosopher" seriously.



Raschel and figure of HR


The thing which is famous for a study of the raschel
It is a figure of HR (Hertzsprung-Russell diagram).


The figure of HR for understanding about so-called "evolution of the star"


It becomes the essential study.


It is the following concepts when I give an outline.


(as for this report, a description about the evolution of the star is important)


Innumerable stones of the space are universal gravitation; (for self-respect)


Meet other objects; to steps


It becomes the object with a big center of gravity.


The part which is fast in a flow when I thought about the flow of the star in outer space


When there is a vortex; in a flow


The place where a lot of gravity gathers,


There is the place where the effect is light.


When the object that a part attracting gravitational effects attracts centers of gravity more accumulates, and there is the lump of the of class innumerably in space in a month, I am imagined.


The internal structure of moon is not yet observed exactly, but I actually take a sample home with me and can check the inside if it is the size of the rock class flying about the space.


The rock which entered the atmosphere also becomes the sample, and there is it with study materials. There are innumerable objects that the size scale of such a kind is plain in the space. Object itself drifts a lot (during a vacuum) in dark cold space.


When such objects gather in various factors more, it becomes the satellite with the earth crust in the earth and Mars, the inside such as the Jupiter. Circumstances having the earth crust are from the circumstances that objects in the earth gather in the central direction by universal gravitation inside.


For example, because all objects are going to fall into the center of gravity of the earth in the case of the earth, it comes under frightful pressure near the center of gravity, and nuclear reaction is taking place in the inside of the earth.


I collapse without individual atomic nucleuses being able to tolerate volume of pressure. The earth surface relatively gets cold, but the inside of the earth is terrible high heat.


Furthermore, the state that the surface of the material which gathers by gravity when heavy goods gather gets cold with gravity is broken. I am balanced in a state warmed with magma from a state and the inside of the earth that the appearance of the earth is kept by the warmth of the degree that a human being can spend, and are cooled in cold outer space.


Various animals and plants which the earth is one of the reasons called the miraculous star, there are protein, other materials in temperature area water does not boil and not to freeze, and have the body can exist. The present life may hardly live a life if there is the earth under the temperature more than 100 degrees. It was a favorable condition for birth of the life, the later evolution.


It becomes the star which continues always shining like the sun when balance constituting neighborhood collapses. It grows big and cannot maintain the earth crust anymore, and, after that, a creature is not in condition to be able to live. Nuclear reaction in the inside becomes very active and it emits light consistently outside and continues shining.


I release the electromagnetic wave of various elementary particles and every wavelength as well as light. If such an activity includes the fixed star (I shine like the sun) where overall weight decreases, there is the fixed star which takes other stars, and adds to weight more.


The fixed star does such expansion and decrement, but it is said that I will change into a white dwarf, a black hole when the whole weight grows big more and yet more. Overall gravity finally grows big, and even the photon that is an element of the light cannot escape from a black hole. Naturally. I do not see the black hole.



Finally


I continued studying it as a director of the Princeton University astronomical observatory,


and, during 30 rest of life, Russel reached the rest of life until I retired in 1947.


The results of research are inherited, and they continue still developing.


Close


 

2024年07月15日

高木 貞治
7/15改訂【ヒルベルトの弟子|長く日本で使われてきた名著である「解析概論」の著者】

こんにちは。コウジです。
高木 貞治原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)


↑Credit:Wikipedia↑


代数幾何学入門
【スポンサーリンク】
【1875年4月21日生まれ ~ 1960年2月28日没】



日本人数学者をご紹介します。


そのお名前は


高木貞治と書いて名前を「ていじ」と読ませます。


高木貞治は岐阜に生まれ現在の京都大学を卒業した後


東京大学に進みます。現在の学校制度と


異なる印象も受けます。今時の表現をすると


京大で学位をとって東大でマスターをとった感じでしょうか。


その後、高木貞治はドイツへ留学してヒルベルト


教え受けます。現代日本での代数幾何学の原型を


体系立てていったのでしょう。当時の日本で使われていた


数学は所謂「和算」の発展形だったと思われます。


数学的には実数が扱われていますが、


少数が一般に使われていた形跡は見受けられません。


もっとも、一円・七銭といった感覚はあるので


「三分の一(1/3)」が
0.33333・・・と考え続けていける筈です。


小数点の概念はあったと考えても切断の概念や


作図を使った証明等には発展していなかったでしょう。


【現代では空間を考えていく際にヒルベルト空間


という概念があり、量子力学で多用されます。】



そもそも、


個人的に高木貞治の名を知ったのはムツゴロウさんの著作でした。たしか「ムツゴロウの青春期」。その中で彼が高校時代に地元九州の先生に紹介された本が高木貞治の「解析概論」でした。


解析概論が明快であると言われ、高校の教科書とは別に数学のエッセンスを学んでいきます。その後、バンカラな青春時代を過ごしたムツゴロウさんは東大の物理学科に進み、最後はどうぶつ王国を作ります。


話戻って解析概論ですが、岩波文庫から出ていた解析概論を私も買って、面白く読んだ思い出があります。色々な本屋さんに置いてました。


尚、2011年の時点で日本国内における著作権の


保護期間満了に伴いネットで著作が公開され始めています。


【Wikisourceや青空文庫を見てみて下さい】


 

以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/11/08_初回投稿
2024/07/15_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



In this time,


I would like to introduce a Japanese mathematician. The name is written as Teiji Takagi and his name is read as "Teiji".


Teiji Takagi was born in Gifu and went on to the University of Tokyo after graduating from the current Kyoto University. He also gets the impression that it is different from the current school system. In terms of today's expression, it seems like I got a bachelor's degree at Kyoto University and a master's degree at the University of Tokyo. After that, Teiji Takagi went to Germany to study abroad and was taught by Hilbert. He would have systematized the prototype of modern algebraic geometry. Mathematics used in Japan at that time seems to have been a development of so-called "Wasan". Mathematically, real numbers are treated, but there is no evidence that a small number were commonly used. However, there is a feeling of 1 yen and 7 coins, so you should be able to keep thinking that 1/3 is 0.33333. Even if you think that there was a concept of a decimal point, it would not have developed into a concept of cutting or a proof using drawing. Also, when thinking about space, there is the concept of Hilbert space, which is often used in quantum mechanics.



In the first place,


it was Mr. Mutsugoro's work that I personally knew the name of Teiji Takagi. Certainly "Mutsugoro's adolescence". Among them, the book he was introduced to by a local teacher in Kyushu when he was in high school was Teiji Takagi's "Introduction to Analysis". It is said that the introduction to analysis is clear, and you will learn the essence of mathematics separately from high school textbooks. After that, Mr. Mutsugoro, who spent his youth in a bunkara, proceeded to the Department of Physics at the University of Tokyo, and finally created the Animal Kingdom. Returning to the story, I would like to give you an introduction to analysis, but I also bought the book from Iwanami Bunko and read it in a fun way.


As of 2011, with the expiration of the copyright protection period in Japan, works have begun to be published online. [Please see Wikisource and Aozora Bunko]


 

2024年07月14日

ハーゼノール
7/14改訂【E=MC^2をアインシュタインと別の考えで導出】

こんにちは。コウジです。
ハーゼノールの原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)



高周波測定
【スポンサーリンク】



【1874年11月30日 - 1915年10月7日】

人脈に恵まれたハゼノール


ウィーンに生まれたハーゼノールは非常に人脈に恵まれていました。

まず、ウィーン大学でボルツマンに理論を学びます。

その後、ライデン大学のローレンツの下で研究をします。

そして、シュレディンガーらに物理学を伝えます。この話を知るまでは、

シュレディンガーは独自に考えるタイプの物理学者だと思っていたのですが、

その前に、理論の土台をハーゼノールが与えていたと知り、

個人的には何となく納得してしまった部分がありました。

定式化の方法で通じる部分があると思えたのです。

特筆すべきハーゼノールの
E=MC^2という業績


ハーゼノールの研究の上で特筆すべきはE=mc2と同じ形の式を1904年に発表していた事です。興味深い話なので後程、とりあげます。第一次世界大戦が始まると、オーストリア・ハンガリー帝国陸軍に志願し、南チロルでイタリア軍と戦って40歳で戦死します。残念な事ですが運命に対峙した結果だったのでしょう。

ハーゼノールは空洞で生じている放射現象の中で「輻射(放射)を担う波」に着目して、その慣性についての論文を1904年と1905年に発表しました。この理論では電磁質量によって物質の慣性が大きくなると論じたのです。 この話を整理して考えた、ラウエはアインシュタインと比較して様々な形態の「エネルギー」に対して「慣性」の確立をアインシュタインに帰し、彼が相対性理論との関連でその等価性の深い意味合いを初めて理解したと考えています。

実際の所は現代の視点で考えてみた時に、質量エネルギーの等価性はハーゼノールのように電磁気学的側面から整理理解していった方が実感できてくるものだと思えます。例えば、ボルツマンも考えています。「熱が伝わる性質をエネルギーが伝わる現象ととらえる事」は万人に分かり易い定式化でしょう。

エネルギーを基軸に考えて「熱」、「電磁波」、「静止質量」、「慣性質量」、、、、といった概念を分かり易くつなげていった結果がE=mC^2という定式化だと考えられるわけです。

科学史の観点から考えて明らかに言い切れることはハーゼノールもアインシュタインも20世紀初頭に同じ頂点(理論的帰結)を乗り越えていたという事実です。全く違う人生を歩んだ二人が同時期に同じ材料を使って考察して其々に結果を出していた事実を知る事はある意味心地よいです。そして、その二人に其々何らかの示唆を与えていたローレンツの力量にも改めて敬意を払います。人を育てる事は素晴らしいですね。



テックアカデミー無料体験
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2022/01/02_初稿投稿
2024/07/14_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介
電磁気関係

熱統計関連のご紹介


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


【2022年時点での対応英訳】



Hazenor blessed with personal connections


Born in Vienna, Hasenöl was very blessed with connections.


He first learns theory from Boltzmann at the University of Vienna.


After that, he does his research under Lorenz at Leiden University.


And he tells Schrodinger and others about physics. Until I knew this story


Schrodinger thought he was the type of physicist he thought of himself,


Before that, he learned that Hazenor had provided the basis for his theory.


There was something he was personally convinced of.


He seemed to have many similarities in the formulation method.



Notable Hazenor achievements


Of particular note in Hasenöl's research was the publication of an equation of the same form as E = mc2 in 1904. It's an interesting story, so I'll cover it later. At the beginning of World War I, he volunteered for the Austro-Hungarian Imperial Army, fighting the Italian army in South Tyrol and dying at the age of 40. Unfortunately, it was probably the result of confronting fate.


Hazenol published a paper on its inertia in 1904 and 1905, focusing on "waves responsible for radiation" in the radiation phenomenon occurring in cavities. In this theory, he argued that the electromagnetic mass increases the inertia of matter. Arranging this story, Laue attributed the establishment of "inertia" to various forms of "energy" to Einstein, and for the first time he understood the deep implications of its equivalence in the context of the theory of relativity. I think.


Actually, when thinking from a modern point of view, it seems that the equivalence of mass energy can be realized by organizing and understanding from the electromagnetic aspect like Hasenöl. For example, as Boltzmann clarified, it would be an easy-to-understand formulation for everyone to regard the property of heat transfer as a phenomenon of energy transfer. It is thought that the formulation of E = mC ^ 2 is the result of connecting the concepts such as "heat", "electromagnetic wave", "static mass", "inertial mass", etc. in an easy-to-understand manner with energy as the basis. That's why. From the perspective of the history of science, what can be clearly stated is the fact that both Hasenöl and Einstein overcame the same peak (theoretical consequences) in the early 20th century. It is in a sense comfortable to know the fact that two people who lived completely different lives considered using the same material at the same time and produced results for each. And I would like to pay tribute to Lorenz's ability, which gave some suggestions to each of them. Raising people is wonderful.

2024年07月13日

鈴木 梅太郎
7/13改訂【「理研の三太郎」と呼ばれた中の一人は合成酒を作成商品化販売|ビタミンを発見】

こんにちは。コウジです。
プランクの原稿を改訂します。


今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)


ビタミンB群30日分
【スポンサーリンク】


【1874年4月7日 〜 1943年9月20日】



理研の三太郎


理研の三太郎と言われた鈴木梅太郎をご紹介致します。
他の二人は既にご紹介している長岡半太郎本多光太郎です。



筆者の思い出話


筆者が個人的に親近感を覚えたのは、
鈴木梅太郎が農学部とつながりが強い点です。
東大の工学部と農学部の間の通りがあります。
坂道があって古本屋がある通りを、
私はよく散歩で使います。


地名で言うと文京区弥生町。
弥生式土器の「弥生」だったかと。
(地下鉄の南北線を使う時に登っていく場合が多いです)


私の祖母は農学部からほど近い動坂の辺りで暮らしていて、
そこそこ別嬪さんだったので「動坂小町」と呼ばれていました。
また、私の母は不忍池の方にある東大病院で生まれました。
私の父は農学部の方にある根津神社の池でおぼれたそうです。


そんな街に私は何となく、
親近感を覚えてしまいます。
そんな街での物語。



鈴木梅太郎とビタミン


話戻って鈴木梅太郎ですが大きな業績としてビタミンを発見しました。
具体的には先ず
ビタミンBをみつけてドイツの学会で発表しています。

ただし、時節柄を感じされる話なのか「発見者」としての明記
が無かったので梅太郎の発見だと伝わらなかったようです。


日本人は知っていても外人から見たら「それ何?」って
話なのでしょうね。今ではあり得ない低評価みたいです。



鈴木梅太郎と合成酒


理研のホームページから記載すると、(太字部が引用部)
「鈴木梅太郎(1874-1943)は、米騒動をきっかけに、
原料に米を使わない合成清酒の開発に着手。
独自の製造法を発明し、“理研酒”として
「利久(りきゅう)」などのブランド名で販売した。」
その後、理研の収入で大きな割合を占めていく酒造事業は
理学と生活の大きな繋がりへと発展していくのです。


なお、現在は利休のブランドは別会社が運営しており、
事業売却したのだと思われます。現在の理研関連のお酒は
「仁科誉」と名付けたイオンビーム技術を
活用した銘柄があります。


お酒を楽しく飲める「機会」を鈴木梅太郎は拡げたのですね。
残念ながら鈴木梅太郎の「人となり」は
今日あまり伝わっていませんが
お酒を造ってくれていたお爺さん、なのだと
考えるだけで少し楽し気な気分にさせてくれます。
東大も色々な人物を作り上げてきていますね。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2023/04/01‗初稿投稿
2024/07/13_改訂投稿


旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2023年4月時点での対応英訳)


Santaro in RIKEN


I would like to introduce Umetaro Suzuki, who is said to be the one of Santaro in RIKEN.
The other two are Hantaro Nagaoka and Kotaro Honda, who have already been introduced.


Memories of the writer


I personally felt a sense of closeness to
Umetaro Suzuki has a strong connection with the Faculty of Agriculture.
There is a street between the University of Tokyo's Faculty of Engineering and Faculty of Agriculture.
A street with slopes and used bookstores,
I often use it for walking.


The place name is Yayoi-cho, Bunkyo-ku.
I think it was "Yayoi" of Yayoi-style earthenware.
(It is often climbed when using the subway Namboku Line)


My grandmother lives near Dozaka, which is close to the Faculty of Agriculture.
She was called "Douzaka Komachi" because she was a decent bessama.
Also, my mother was born at the University of Tokyo Hospital near Shinobazu Pond.
I heard that my father drowned in the pond of Nezu Shrine near the Faculty of Agriculture.


In such a town, I somehow
I feel a sense of familiarity.
A story in such a city.


Umetaro Suzuki and vitamins


Going back to the story, Umetaro Suzuki discovered vitamins as a major achievement.
Specifically, I first discovered vitamin B and made a presentation at a German conference.
However, whether it is a story that feels seasonal
It seems that Umetaro's discovery was not conveyed because there was no such thing.
Even if Japanese people know about it, when they look at it from a foreigner's point of view, "What is that?"
I bet it's a story. It seems to be a low evaluation that can not be now.


Umetaro Suzuki and Synthetic Sake


From the RIKEN website, (quoted parts are in bold)
“Suzuki Umetaro (1874-1943), triggered by the rice riot,
He started developing a synthetic sake that does not use rice as an ingredient.
He invented his own production method and called it "Riken Sake".
It was sold under brand names such as Rikyu. ”


After that, the sake brewing business, which accounted for a large proportion of RIKEN's income,
It develops into a great connection between science and life.


In addition, the Rikyu brand is currently operated by a separate company.
I think they sold the business. Current RIKEN-related sake
There is a brand named "Nishina Homare" that utilizes ion beam technology.


Umetaro Suzuki has expanded the “opportunity” to enjoy drinking alcohol.
Unfortunately, Umetaro Suzuki's "personality"
I don't know much about it today
The old man who made the sake
Just thinking about him puts me in a good mood.
The University of Tokyo has also created various characters.