アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2024年11月 >>
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
最新記事
最新コメント

2023年12月08日

W・C・レントゲン
12/08改訂【第一回のノーベル賞受賞者・電子の蛍光現象を実用化】

こんにちはコウジです!
「レントゲン」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
レントゲンが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】



レントゲンの発明者レントゲン


レントゲンと言えば、その人の名よりも


その名を使った装置が思い浮かぶでしょう。


以下ではレントゲンという言葉は


人の名前として使っていきます。


 

レントゲンはドイツ生まれの偉人です。
彼の時代にはハインリヒ・R・ヘルツ
によって真空放電や陰極線の議論が
なされていました。


今風に考えたら
対象は単なる粒子とか波ではなく、
2面性をもった「波動関数で記述される
電子の一団である」と言えますが。
レントゲンの時代には電子の実在は不明確でした。
数キロボルトの電圧を加えた真空管において
蛍光現象が見受けられるのが陰極線です。


一般の電流の知識からは+方向からー方向
(プラス方向からマイナス方向)へ電流が流れますが
陰極線は―方向から+方向に現象が
確認出来るのです。+と−の間に遮蔽物
を置くと遮蔽物から+方向で現象が見られません。
つまり電子はマイナス方向から出ていたのです。



レントゲンの業績


そして、レントゲンは遮蔽物の画像を研究します。


まずレントゲンは実験結果を重視してます。


X線が人体を透過した後の写真を


大衆に見せました。ネーチャやサイエンス


といった有名雑誌に投稿し、議論して


事実を明らかにしていきました。


その方法は先ず磁場に作用する


陰極線の実験を積み重ねます。


陰極、陽極、検出対象として
色々な物資を試し、X線の特性を極めて
鉛は通さずガラスは透過する
といった事実を明確にします。


説明が細かくなり恐縮ですが、
陰極線の陰極・陽極間に検出対象があり、
検出対象から放射されるのがX線です。


検出対象に蛍光物資を使った所が
レントゲンのオリジナリティですね。


また波長に着目すると波長が1pm ~ 10nm程度の
電磁波であるという事実も重要です。
そうした仕組みで磁場から力を殆ど受けない
X線を発見して、突き詰めていったのです。


 

レントゲンの人となり


その後の成果で原子が崩壊・融合する過程で


放射線が出てくる知見が集約されてくる訳ですが、


後の素粒子での議論につながる種が、


レントゲンによって沢山まかれていた訳です。


また、レントゲンを偲ばせるエピソード
を3つ、ご紹介します。


まず、レントゲンは自らの独自技術に
対して特許を申請しなかったと言われ
ています。科学の成果は万人が享受すべき
だというレントゲン独特の考えです。


また、レントゲンは第一回目の
ノーベル賞を受けていますが、
賞金に手を付けず、
全て大学に寄付しています。


そして愛妻家だったと思われます。
レントゲン自身はガンで亡くなりますが
年上だった奥様に先立たれてから
数年後の事でした。今でもよく
紹介されている写真は奥様の手を
X線が透過した姿でした。
皮膚を透過したX線が骨の形を
リアルに映し出し、その薬指には
はっきりと結婚指輪が見えます。





コスパ最強・テックジム|プログラミング教室の無料カウンセリング【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/15_初版投稿
2023/12/08_改定投稿


纏めサイトTOPへ/
ドイツ関連のご紹介
熱統計関連のご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】



X-ray inventor,Roentgen


Speaking of Roentgen in Japan, the device of that name comes to mind rather than the person's name. In the following, Roentgen will be used as a person's name.


In the Roentgen era, vacuum discharge and cathode rays were discussed by Heinrich R. Hertz and others. If you think about it in a modern way, it can be said that the object is not just a particle or a wave, but an electron described by a wave function with two sides. It was unclear in the X-ray era. It is the cathode ray that shows the fluorescence phenomenon in a vacuum tube to which a voltage of several kilovolts is applied. From general current knowledge, from + direction to-direction


The current flows in the (plus direction to minus direction), but the phenomenon can be confirmed in the cathode ray from the-direction to the + direction. If a shield is placed between + and-, the phenomenon will not be seen in the + direction from the shield. In other words, the electrons were coming out from the minus direction.



Roentgen’s achievements


And X-rays study images of obstructions. First of all, Roentgen attaches great importance to his experimental results. He showed the public a picture of what X-rays had passed through the human body. He posted to well-known magazines such as Nature and Science, discussed and revealed the facts. The method first accumulates experiments on cathode rays that act on a magnetic field.


He experimented with various materials such as cathodes, anodes, and objects to detect, clarifying the fact that lead does not pass and glass does.


Excuse me for the detailed explanation, but there is a detection target between the cathode and anode of the cathode ray, and X-rays are emitted from the detection target. The place where fluorescent materials are used as the detection target is the originality of X-rays.


Focusing on the wavelength, the fact that the wavelength is an electromagnetic wave of about 1pm-10nm is also important. With such a mechanism, I discovered X-rays that do not receive force from the magnetic field and pursued them.



Roentgen's portrait


Subsequent results will bring together the knowledge that radiation is emitted in the process of atom decay and fusion, but many species that will lead to discussions on elementary particles later were sown by Roentgen.


We will also introduce some episodes that are reminiscent of X-rays. First, Roentgen is said to have not applied for a patent on his proprietary technology. It is an X-ray peculiar idea that the results of science should be enjoyed by everyone.


Roentgen has also received his first Nobel Prize, but he hasn't touched the prize money and donated everything to the university.


And he seems to have been a beloved wife. Roentgen himself died of cancer, a few years after his older wife. The photo that is still often introduced is the X-ray transmission of his wife's hand. X-rays that penetrate his skin realistically reflect the shape of the bone, and his ring finger clearly shows the wedding ring.

2023年12月07日

L・E・ボルツマン
【エントロピー(S=k LogW)を考えていった男の葛藤と業績】

こんにちはコウジです!
「ボルツマン」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
ボルツマンが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。
SNSは戦略的に使っていきます。そして記述に誤解を生む
表現がないかをチェックし続けます。ご意見・ご質問は大歓迎です。


L・E・ボルツマン【1844年2月20日 〜 1906年9月5日】



【スポンサーリンク】



ボルツマンの生い立ち


その名はLudwig Eduard Boltzmann。


ボルツマンはオーストリア・ウィーン出身の


物理学者にして哲学者です。


カノニカルな(統計的な)議論の他に


電磁気学や熱力学、それらを扱う


数学の研究でボルツマンは業績を残しました。


ボルツマンは芸術の都ウィーンに生まれ、


子供時代にピアニストである


A・ブルックナーからピアノを学んでいます。


 

指導者としてのボルツマンの業績としては


エーレンフェストが博士論文を書く時の


指導が挙げられます。後程もう少し言及しますが


エーレンフェストの定理にはボルツマンの


信念が込められていると言えるでしょう。また、


科学史から見てもボルツマンの原子認識の流れ


は大きな一歩だったと言えます。ここでの一歩が無ければ


素粒子やブラウン運動のイメージは


湧かなかったでしょう。


 

ボルツマンの研究業績


そんなボルツマンの墓には


S=k LogWと書かれています。


そこでいうSとはエントロピーというパラメターで


対象系の乱雑さを表します。


k(またはkBと記載します)という


パラメターを定めて


ボルツマンが定量化した概念です。


クラウジウスが使ったエントロピーを


ボルツマンが再定義した、とも言えます


「乱雑さ」は統計力学において


温度T、容積V、圧力P等と関連して


ボルツマンの関係式として定式化されました。


 

ボルツマンの研究業績の中で特に


私が関心をもつのは


原子論に関しての現象把握です。


観測に直接かからない


「原子」は色々な見方をされていました。


そんな原子に対して


ボルツマンは「乱雑さ」または


「無秩序」の度合いという


新しい物理量である「エントロピー」を使い


原子の実在に近づいていったのです。


結果として


対立する考えが物理学会で生じていて


原子モデルを使うボルツマンと、


実証主義で理論を進める


エルンスト・マッハの間で論争が続きます。


原子論モデルを大きく進めるプランクの登場まで
その後、何年間も必要なのです。
もやもやした状態は続きます。 


そして、エーレンファストの定理で
「原子」と「量子」は見事に関連が示されます。


しかし、残念なことに、、こうした全体像を
ボルツマンが見ることは出来ませんでした。


ボルツマンは晩年に精神障害に悩み


自ら命を絶つという悲しい最期を遂げています。


ここで、暫し物理学は大きな


壁に突き当たっていたように思えます。


沢山の天才達が問題の大きさに畏怖したのでしょう。


 

ボルツマンはピアノが好きでした。


花を手向ける場所がありますよね。



〆最後に〆


コスパ最強・テックジム|プログラミング教室の無料カウンセリング【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に関しては適時、
返信・改定をします。


nowkouji226@gmail.com


2020/09/05_初回投稿
2023/12/07_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
オーストリア関連のご紹介
ウィーン大関連のご紹介
熱統計関連のご紹介


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年9月時点での対応英訳)



Boltzmann's upbringing


Its name is Ludwig Eduard Boltzmann.


Boltzmann is a physicist and philosopher from Vienna, Austria. In addition to canonical (statistical) discussions, he has made significant contributions to the study of electromagnetism, thermodynamics, and the mathematics that deals with them. He was born in Vienna. As a child, he learned the piano from pianist A. Bruckner.


Boltzmann's achievements as a mentor include teaching Ehrenfest when writing his dissertation. It can be said that Ehrenfest's theorem contains Boltzmann's belief. Also, from the history of science, it can be said that Boltzmann's flow of atomic recognition was a big step. Without one step here, the image of elementary particles and Brownian motion would not have come out.



Boltzmann's research achievements


S = k Log W is written on Boltzmann's tomb.


S here is a parameter called entropy, which represents the disorder of the target system. It is a concept quantified by Boltzmann by defining a parameter called k (or described as kB).


It can be said that Boltzmann redefined the entropy used by Clausius. "Randomness" was formulated as Boltzmann's relational expression in relation to temperature T, volume V, pressure P, etc. in statistical mechanics.


Among Boltzmann's research achievements, I am particularly interested in understanding phenomena related to atomism. Atoms that are not directly observed have been viewed in various ways.


For such an atom, Boltzmann approached the existence of the atom by using "entropy", which is a new physical quantity of "randomness" or "disorder".


As a result, conflicting ideas have arisen at the Physical Society of Japan, and controversy continues between Boltzmann, who uses atomic models, and Ernst Mach, who pursues positivist theory. It will take many years after the advent of Planck, which greatly advances the atomist model.


And, unfortunately, Boltzmann had a sad end in his later years, suffering from a mental illness and dying himself.


Here, for a while, physics seems to have hit a big wall. Many geniuses would have been afraid of the magnitude of the problem.


Boltzmann liked the piano. He has a place to turn flowers.

2023年12月06日

レイリー男爵
12/6改訂【「空は何で青いの?」という子供の疑問に答える理論を確立】

こんにちはコウジです!
「レイリー」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
レイリーが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】


レイリー男爵 ; J・W・ストラット【1842年11月12日~1919年6月30日】



 レイリー卿について


この原稿ではURLに爵位である


”Baron Rayleigh”を使っています。


その名を改めて書下すと、第3代レイリー男爵


ジョン・ウィリアム・ストラット


John William Strutt, 3rd Baron Rayleigh


 

分かり易い業績で紹介していくと、レイリー卿は


晴れた日の空の青さを説明しました。


子供が、「空はなぜ青いの?」って聞いた時に、


どうこたえるか考えてみて下さい。。



その業績


専門的に言えば散乱光の研究をしていた訳です。


そんなレイリー卿は入射波と反射側の散乱波を考え、


それらの波長と空気中の分子の性質を考えたのです。


結果、昼間の空は青く、夕方は赤いのです。


レイリー散乱と呼ばれる考え方です。


別途、ご紹介している


クィーンのブライアンの研究とも関連しています。


そもそも、光を波長の観点から考え直して「赤く見える光の波長」や「青く見える光の波長」を明確にして議論していった事実と、地上との温度差の事実を関連付けて考えています。その関連を考えた時点で自然現象が物理的議論の枠組みで説明できたのです。


またその他のレイリー卿の業績は、


地震の表面波の解析(レイリー波)、


ラムゼーと研究したアルゴンの発見、


初期段階の熱放射理論である


レイリー・ジーンズの法則等があります。


 

その人柄


別の一面としてレイリー卿は量子論や相対論に厳しい立場をとっていたと言われています。実際の所レイリー卿は長い事、エーテルを考え続けていた様です。当時の考えでは否定する事は出来ない物だったとも言えるでしょう。実際にその何年後も実験的にエーテルを実証しようとしています。私はレイリー卿の肩を持ってしまいますが、実験事実の蓄積が無い状態で軽はずみに決断を求めるのは危険です。精査した考えを納得のいく説明で語っていかなければいけません。それだから、考えを育む時間も大切なのです。


またレイリー卿の素晴らしい栄誉を連ねていくと


コプリメダル受賞、ノーベル賞受賞、


第2代キャンデビッシュ研究所所長、


標準局(イギリス国立物理学研究所)の運営理事会議長


と続きます。何より


人材を育てた業績は大きく、ジョセフ・ジョン・トムソン


ジャガディッシュ、チャンドラ、ボースを育てました。


爵位としてのレイリーは彼の長男で物理学者だったロバート・ジョン・ストラが受け継いでいます。物理学者が受け継いでいる事実が好印象でした。きっと息子さんと御弟子さんが議論したりもしたんでしょうね。そう考えたいです。



以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/28_初回投稿
2023/12/06_改定投稿


【スポンサーリンク】


 

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係
ケンブリッジ関連
力学関係
熱統計力学関係
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


[2021年9月時点での対応英訳]



About Sir Rayleigh


In this manuscript, the URL "Baron Rayleigh" is used.


To rewrite the name, John William Strutt, 3rd Baron Rayleigh.


Introducing his easy-to-understand achievements,


This Sir Rayleigh explained the blueness of the sky on a sunny day.


Think about how your child will respond when asked, "Why is the sky blue?" ..



 


Achievements made by Sir Rayleigh's 


Technically speaking, he  had studyed scattered light." Sir Rayleigh" considered the incident waves and the scattered waves on the reflecting side, their wavelengths, and the properties of the molecules in the air. As a result, the daytime sky is blue and the evening is red. This is a concept called Rayleigh scattering. It is also related to Queen's Brian's research, which is introduced separately.


Other achievements of Sir Rayleigh include analysis of surface waves of earthquakes (Rayleigh wave), discovery of argon studied with Ramsey, and Rayleigh-Jeans' law, which is an early stage thermal radiation theory.



 Personality of Sir Rayleigh


It is said that Sir Rayleigh took a strict position on quantum theory and relativity. Everybody knows Sir Rayleigh  had been thinking about ether for a long time. It can be said that he was an undeniable thing at that time. He is actually trying to experimentally demonstrate ether years later. He will carry Sir Rayleigh's shoulders, but it is dangerous to lightly seek a decision without the accumulation of his experimental facts. He must explain his scrutinized ideas with a convincing explanation. That's why time to nurture his ideas is also important.


In addition, "Sir Rayleigh's wonderful honors will be followed by the Copley Medal, the Nobel Prize, the 2nd Director of the Candevis Institute, and the Chairman of the Steering Board of the Standards Bureau (National Institute of Physics, England)". He has cultivated talent above all, and his achievements have been great, and he has cultivated Joseph John Thomson and Jagdish Chandra Bose. And Rayleigh's title is inherited by his eldest son and physicist Robert John Stra. I was impressed by the fact that physicists have inherited it. I'm sure his son and his disciples had a discussion. I want to think so.

2023年12月05日

お雇い外人のトマス・メンデンホール
12/5改訂【明治時代の創設期に東京大学で若者を育てました】

こんにちはコウジです!
「メンデンホール」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
メンデンホールが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


トマス・メンデンホール【1841年10月4日〜1924年3月23日】



【スポンサーリンク】


メンデンホールはいわゆる「お雇い外国人」さんです。
工部省の475人に次ぐ296人を文部省が招へいしていました。
その中の一人です。
名前の綴りはThomas Corwin Mendenhallです。
アメリカのオハイオ州生まれです。


アメリカから先だって来日していた動物学者、
E・S・モースの推薦でメンデンホールは1878年に
東京帝大の物理教師となります。
黎明期の日本教育に先鞭をつけたのです。


メンデンホールは設立されたばかり東大理学部観象台の観測主任となり気候を観測しました。実際に1879年1月から2年間にわたり東京本郷で気象観測に従事したのです。メンデンホールは直接気象に関わるのみではなく日本で地震が頻発する環境に着目し、そうした事情を考慮して、観象台に地震計を設置を導入していきました。


当時の日本では一般にそうした観測環境に対しての知見が乏しかったかったのです。結果として地震観測に関する業績を残し、日本地震学会の設立につながっていきます。メンデンホールはこの側面でも日本の教育に貢献をしています。


こうしてメンデンホールは日本物理学の黎明期において 気象学。地震学を確立していきました。一方で単位系の確立をしていった人です。 また富士山頂で重力測定や天文気象の観測を行い、日本に地球物理学を広げていきました。


日本の物理学者では特に、田中舘愛橘がメンデンホールから力学、熱力学を学んでいます。師ともいえるメンデンホールとの出会いは田中館愛橘に多大な影響を与えたと言われています。


例えば、1879年(明治時代)にメンデンホールを通じてエジソンのフォノグラフの情報を得て、実際に田中舘は試作をしています。音響や振動の解析を試みてい定量的な解析が日本で始まったのです。また、田中舘はメンデンホールによる重力測定に参加し、東京と富士山で作業しました。


メイデンホールは2年の赴任の後にアメリカへ帰国をしましたが、海岸陸地測量局長時代にアメリカの州境と国境のを測定して定めました。緯度、経度で州境が引かれている現在のアメリカの州の形を作ったのです。


メイデンホールの業績は評価されていて、アラスカの氷河のひとつに今でもメンデンホール氷河という名前が残っています。メイデンホールの局長時代の仕事に関連して命名されています。



〆最後に〆


【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2022/04/03_初回投稿
2023/12/05‗改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
力学関係のご紹介


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】




(対応英訳)


Mendenhall is a so-called "hired foreigner" and the spelling of the name is Thomas Corwin Mendenhall. He was born in Ohio, USA. At the recommendation of E.S. Morse, a zoologist who had come to Japan earlier than the United States, Menden Hall became a physics teacher at the University of Tokyo in 1878. He pioneered Japanese education in the early days.


Menden Hall was just established and he became the chief observer of the Observatory of the Faculty of Science at the University of Tokyo, observing the climate. He actually engaged in meteorological observations in Hongo, Tokyo for two years from January 1879.


Menden Hall focused not only on the weather directly but also on the environment where earthquakes occur frequently in Japan, and in consideration of such circumstances, we introduced seismographs on the observatory. In Japan at that time, I generally wanted to have little knowledge about such an observation environment. As a result, he left behind his achievements in seismic observation and led to the establishment of the Seismological Society of Japan. Menden Hall also contributes to Japanese education in this aspect.


Thus Mendenhall was a meteorologist in the early days of Japanese physics. We have established seismology. He, on the other hand, is the one who established the system of units. He also expanded geophysics to Japan by measuring gravity and astronomical meteorology at the summit of Mt. Fuji.


Among Japanese physicists, Tanakadate Aikitsu is learning mechanics and thermodynamics from Mendenhall. It is said that the encounter with Mendenhall, who can be said to be a teacher, had a great influence on Aitachi.


For example, in 1879 (Meiji era), Tanakadate actually made a prototype after obtaining information on Edison's phonograph through the Mendenhall. He tried to analyze acoustics and vibrations, and quantitative analysis began in Japan. In addition, Tanakadate participated in the gravity measurement by Mendenhall and worked in Tokyo and Mt. Fuji.


Maiden Hall returned to the United States after two years in office, but he measured and determined the borders and borders of the United States when he was Director of the Coastal Land Survey. He created the shape of the current American state, which is bordered by latitude and longitude.


Maidenhall's achievements have been well received, and one of Alaska's glaciers still retains the name Mendenhall Glacier. Named in connection with his work as director of his Maiden Hall.

2023年12月04日

ギブズ
”a physicist must be partially sane”

こんにちはコウジです!
「ギブズ」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
ギブズが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】


ウィラード・ギブズ【1839年2月11日生れ ~ 1903年4月28日没】



その名は


ジョサイア・ウィラード・ギブズ


Josiah Willard Gibbsです。


米国コネチカット州に生まれて


イェール大学で博士号をとります。


その博士号はアメリカ大学での


最初の工学博士だったそうです。ギブズは


米国における先駆者だったのですね。


そして理学博士でなくて工学博士って所が


アメリカっぽいなと思いました。そして、


物理学者ギブスの父は同名で


宗教文学(解説はWikipedia)


の教授です。古き時代のアメリカですね。


その後、


ギブスは修行時代として、


パリ、ベルリン、ハイデルベルクで


一年ずつ滞在します。


今の感覚ではピンとこないのですが、


彼の人生で地元を離れたのは


この三年間だけだったそうです。



ギブズの業績


ギブスの業績として大きいものは物理学への


「統計手法」の導入でしょう。


個々の粒子固有の性質は別に考え、


粒子集団が持つ性質を統計的に


まとめあげていく事でその性質が


熱力学的な特性につながっていくのです。


その考えをまとめた論文を読んだ


マクスウェルは大変感動をして、


自身の思いを伝えるために石膏模型


を作ったと言われています。そして、


その抽象的な模型をギブスへ送ったのですが、


模型は今でもイェール大学で


大切に保管されているそうです。


 

ギブスのスタンス


数理的手法を物理学に取り入れたギブスですが、


その立場(スタンス)を表現している言葉をご紹介します。


A mathematician may say anything he pleases,
but a physicist must be at least partially sane.


【(私の訳)


数学者は望むがままに物事を言えますが、


物理学者は何とかして、しゃっきりと


物事を伝えなくてはいけないですよ。】


数学者と物理学者は社会から


求められている物が違うので


視点を変えていかねばいけないと駄目です。



ギブズの暮らし 


最後に、戸田先生の教科書
【岩波書店から出ていた熱・統計力学の本】
でギブスの人柄を伝えるエピソード
が載っていたので
ご紹介します。
(小さな物語の始まりです)


ギブスは結婚をしないで父の残した家に
妹夫婦と共に住んでいました。
その家は彼の研究室から近い場所、
道を渡ったところにあって、
ギブスは午前の講義を終えた後に、
食事の為に家に戻っていました。


お昼を食べた後にギブスは
研究室に帰ってそこで過ごし、
夕方五時頃に散歩をしながら帰宅
するという、静かな暮らし
を送っていました。何年も。何年も。


そして、
ギブスは妹の家事を手伝い、
一緒に料理もしました。
特に、不均一系の研究をしていたギブスは
サラダを混ぜる仕事がとても得意だったそうです。


うまく作業できた時には大層、
ご機嫌になれたでしょう。
そんな静かで温かい生活を重ねていました。




プログラム学習の体験入学【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/31_初稿投稿
2023/12/04_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関係へ
電磁気関係

イェール大学関連のご紹介へ
熱統計関連のご紹介


【このサイトはAmazonアソシエイトに参加しています】


【2021年9月時点での対応英訳】



His name d Gibbs


Its name is Josiah Willard Gibbs. Born in Connecticut, USA, he holds his PhD from Yale University.


His PhD was the first PhD in engineering at an American university. Gibbs was a pioneer in physics in the United States.


And he thought that the doctor of engineering,


not the doctor of science, was American.


And the father of physicist Gibbs is a professor of


religious literature (to Wikipedia)


with the same name. He's an old American, isn't he?


After that, Gibbs will stay in Paris, Berlin and Heidelberg


for one year each as his training period.


It doesn't seem like it's right now, but he's been away from home


for the last three years in his life.



Gibbs achievements


One of Gibbs' major achievements is the introduction of "statistical methods" into physics. Apart from the unique properties of individual particles, by statistically summarizing the properties of the particle population, those properties lead to thermodynamic properties.


It is said that Maxwell, who read the treatise summarizing his thoughts, was very impressed and made a plaster model to convey his thoughts. He sent the abstract model to Gibbs, who is still kept at Yale University.



Gibbs's stance


He is a Gibbs who has incorporated mathematical methods into physics,
Here are some words that express that position (stance).
A mathematician may say anything he pleases,
but a physicist must be at least partially sane.


[(My translation)
Mathematicians can say things as they wish,
The physicist manages to be crisp
He has to tell things. ]


Mathematicians and physicists have


different perspectives because


the things that society demands are different.



Gibbs life


Lastly, I would like to introduce an episode that conveys Gibbs' personality in Professor Toda's textbook [Book of Thermal and Statistical Mechanics from Iwanami Shoten].
(Beginning of a small story)


Gibbs lived with his sister and his wife in the house left by his father without getting married.
The house was near his lab, across the road,
After Gibbs finished his morning lecture, he returned home for a meal.
After having lunch, Gibbs lived a quiet life, returning to his lab and
spending time there, taking a walk around 5 pm and returning home. For years. For years.


Gibbs then helped his sister with the housework and cooked with her.
In particular, Gibbs, who was studying heterogeneous systems, was very good at mixing salads.


He would have been in a good mood when he was able to work well.
He lived such a quiet and warm life.



2023年12月03日

エルンスト・マッハ
12/3改訂【実証論の立場から認識の問題を議論】

こんにちはコウジです!
「マッハ」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
マッハが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


私感では何となく
マッハの方がベートーベンより年上だと感じてしまいます。


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】


【1838年2月18日 ~ 1916年2月19日】



マッハの人生についての概観


以前ご紹介した石原さんはアインシュタイン直後の時代の一人、今回はご紹介するエルンスト・マッハはアインシュタインに影響を与えた一人です。アインシュタインは晩年67歳の時に「回顧録」の中でマッハの著作に対して「1883年の本「力学史」は若いころの私の心を大いに揺さぶりました。」と記しています。その存在と考え方は当時の物理学会と思想の世界に大きな影響を与え、後の認識論に影響を与えました。ボルツマンプランクがマッハとの議論を土台にして独自の論理を展開していきます。


マッハは最終的には国の政治に参加していたようです。そんな議論を進めたマッハの業績はとても大きいと思います。また、マッハは最初の科学史家だと言われています。昔から正しいと言われてきた科学に関わる方法論を一つ一つ再定義・確認して議論していったのです。



マッハの業績と独自性


エルンスト・マッハはオーストリアに生まれた


物理学者です。その研究範囲は


数学・物理学・感覚分析・心理分析に及びます。


マッハの残した業績はまさにパラダイム
シフトと呼べます。それは時間と空間の
概念に対しての挑戦でした。そもそも、
ニュートン以降の時代に、空間の概念は
絶対空間・絶対時間が主流でした。
背景として神様の概念に端を発する世界観
があったのです。宇宙も自然も神の作り
たもうた産物だと万人が考えていました。


所がマッハの考え方は徹底的に相対的です。
マッハの考え方によると空間は全て相対的で絶対空間という概念は設けません。論理的に考えて絶対空間の意義を感じない所が凄いのです。時間に関しても同様で絶対空間で流れる時間に意義を感じていません。後に議論される双子のパラドックスを知ると、複数の時間系を考える時にもっと我々には設定が必要な筈なのですが、そこまで議論を進めるべきなのです。


アインシュタインはそこを考え抜き相対論
に至ります。新しい考えを哲学的思考
方法で打ち出し、明確なメッセージ
を伝えたマッハの業績は素晴らしかったです。
晩年のマッハをアインシュタイン
表敬訪問しています。


 

マッハの進めた認識改革


またマッハは物理学に於ける認識の変革


にも大きく関わりました。ボルツマン


プランクらの実在論に対してマッハは


実証主義を展開し、自然に対する測定を


通じた認識の問題を議論しました。


観測者の感覚を重視した認識に対して


独自の立場を明確にしています。事物を


認識するのは認識者であって「個人個人の


感覚を通じて認識する過程」を含めて


マッハは議論を進めていったのです。そして、


音速をこえる時の画像は万人に説得力を持ちます。
Photography of bow shock waves around a brass bullet, 1888


 ↑ cf;Wikipedia  パブリック・ドメイン ↑


我々は未だに音速を表現する際に「マッハ」


という単位で彼の名前を使い続けています。


それは後世・我々が出来た小さな評価だった


とも言えるのでは無いいか、と私は思っています。


論敵も多かったマッハでしたが、しっかりと


今に残る確かな足跡を残しています。



〆最後に〆


コスパ最強・テックジム|プログラミング教室の無料カウンセリング【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/08/13_初稿投稿
2023/12/03_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
オーストリア関連のご紹介
ウィーン大関連のご紹介
力学関係
熱統計関連のご紹介


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


【2021年9月時点での対応英訳】



Mach life


Mr. Ishihara, who I introduced earlier, was one of the people immediately after Einstein, and Ernst Mach, who I will introduce this time, was one of the people who influenced Einstein. Its existence and way of thinking had a great influence on the Physical Society of Japan and ideas at that time, and influenced later epistemology. Boltzmann and Planck develop their own logic by referring to the foundation of Mach's argument. It seems that Mach eventually participated in national politics. I think Mach's achievements in promoting such discussions are very large. Mach is also said to be the first historian of science. He redefined, confirmed, and discussed science-related methodologies that have long been said to be correct.



Mach achievements and uniqueness


Ernst Mach is an Austrian-born physicist. His research interests cover mathematics, physics, sensory analysis, and psychological analysis.


The achievements left by Mach are just a paradigm
You can call it a shift. It's time and space
It was a challenge to the concept. in the first place,
In the post-Newton era, the concept of space was
There was only absolute space and time.
A world view that originates from the concept of God as a background
There was. The universe and nature are made by God
Everyone thought it was a product of humanity.


However, Mach's way of thinking is completely relative.
According to Mach's idea, all spaces are relative and do not have the concept of absolute space. It is amazing that I think logically and do not feel the significance of absolute space. The same is true for time, and I don't feel the significance of time flowing in absolute space. Knowing the twin paradox that will be discussed later, we should have more settings when considering multiple systems, but we should proceed to that point.


Einstein thinks about it and comes to the theory of relativity. Mach's achievements in delivering his new ideas in a philosophical way and delivering a clear message were wonderful. Einstein pays a courtesy visit to Mach in his later years.



Mach's cognitive reform


Mach was also heavily involved in the transformation of cognition in physics. Mach developed positivism against the realism of Boltzmann, Planck and others, and discussed the problem of cognition through measurement of nature.


He takes a unique position on the observer's sense-oriented perception. It is the recognizer who recognizes things, and Mach proceeded with the discussion, including the process of recognizing things through individual senses. Images when the speed of sound is exceeded are persuasive to everyone.


We still continue to use his name in the unit "Mach" when expressing the speed of sound. I think it can be said that it is a small evaluation that we have made in posterity.


He was Mach, who had a lot of controversy, but he has a solid footstep that remains.


2023年12月02日

E・W・モーリー
12/2改訂【アメリカで稀代の実験家が光速度に関する事実を実験検証】

「E・W・モーリー」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
E・W・モーリーが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。




【スポンサーリンク】

【1838年1月29日 ~ 1923年2月24日】



稀代の実験家E・W・モーレー


その名を書き下すとエドワード・ウィリアムズ・モーリー


(モーレーとも書く時もあります)晩年のオッペンハイマー


とかエジソンと同郷ですね。個人的印象としては


米国4台研究拠点の一つです。他は


カリフォルニア・シカゴ・コネチカット州だと思えます。


其々で最先端の議論が繰り広げられてきました。


何より、モーリーはマイケルソン・モーリーの実験で有名です。
(マイケルソンはファーストネームでなく別人の名前です)


別項でも記述しましたが、この実験ではエーテルの


存在に起因する「光速度の変化」は見てとれませんでした。


その事が結果として「光速度普遍の原理」に


繋がっていったのが歴史的な事実です。




モーレの歴史的な位置付け


更に話を掘り下げていくと、


この話は等速運動をする


慣性系においてローレンツやアインシュタインが


考えていたような系の間の関係式へとつながり、


その関係式が更に考える為の材料となって


相対論の理論体系が構築出来ています。


理論の起点と確認点はあくまで実験で


確かめられた自然界の事実なのです。


こういった理論と実験の両輪を考えていく


ダイナミックさが物理学の醍醐味です。


その議論の中で

モーレの仕事は大きな役割を果たしました。

 

その他。モーレーは、熱拡散に関する研究を行い、


磁場中の光速に関する研究を行い、実績を残しています。


 

〆 


【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
頂いたメールは全て見ています。
必要箇所は適時、改定をします。


nowkouji226@gmail.com


2021/01/25_初稿投稿
2023/12/02_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係へ
電磁気関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

【2021年9月時点での対応英訳】


If you write down the name, Edward Williams Morley,

A physicist born in New Jersey, USA. Speaking of New Jersey, it's the same hometown as Oppenheimer and Edison in his later years. As a personal impression

It is one of the four research bases in the United States. The other seems to be California, Chicago, Connecticut. There must have been discussions in each case. Above all, Morley is famous for Michaelson Moret's experiments.

As described in another section, the "change in speed of light" due to the presence of ether could not be seen in this experiment. It is a historical fact that this led to the "universal principle of the speed of light" as a result.

Further digging into the story, we can derive the relational expression between the systems that Lorenz and Einstein thought in the inertial system that moves at a constant velocity, which becomes the material for further consideration and the theory of relativity. The system has been built.

The starting point and the confirmation point of the theory are the facts of the natural world confirmed by experiments. The dynamic of thinking about these two wheels of theory and experiment is the real thrill of physics.

others. Morley has a track record of conducting research on thermal diffusion and research on the speed of light in a magnetic field.



2023年12月01日

J・C・マクスウェル
12/1改訂【場の理論をまとめ、電磁波が光速となる事を示した】

こんにちはコウジです!
「マクスウェル」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
マクスウェルが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1831年6月13日 ~ 1879年11月5日】



マクスウェルの人物概要


その名を細かく記載すると、J・C・マクスウェル


:James Clerk Maxwell_。


マクスウェルは電磁気学を確立しました。


何より場の理論の基礎を作りあげ、


電場と磁場の関係をマクスゥエル方程式


で関連付けてまとめ上げ、


定式化をしたのです。更には、


直行する電場と磁場からなる「電磁波」


の関係を数式として確かにして、


媒体である光の進行相度が


光速度となる事を理論的に導きました。


物理学の視点で考えたら、
時代が大きく変わる時期です。そして
ベートーベンはもう居ない時代なのです。
(彼の人生は1770年12月16日頃 - 1827年3月26日)



天才肌のマクスウェル


個人的な意見として電磁気学に関わる人物は
何故だか高潔な心持を持っているように思えます。
特にマクスウェルに対してはそう感じます。


大英帝国のエディンバラで生まれたマクスウェルは
文理の面で、それぞれ早熟な才能を示ました。


14歳の時に書いた詩が地元の新聞に掲載されています。
言語学・修辞学の高度な習得を感じさせますね。


また同時期に、焦点を用いて「卵形線」を定義して、
「ピンと糸」を使った工夫で描き出す手法を提案していて、
論文に纏めています。マクスウェルに限らず当時の
物理学者は今よりも多面的に現象を論じ、
考えてていてた傾向はあるようです。
そんな時代を差し引いても天才肌ですね。
マクスウェルも光学・熱力学で業績を残します。


(ノッティングヒルで)マクスウェルは1860年から1866年までこの家に住んだ。
  マクスウェルのもっとも実りある時期で、重要な仕事はここで行われた。電磁気学
  だけでなく、気体分子運動論、三原色の原理、カラー写真の研究もここで
  行われた。」(太田浩一「ほかほかのパン」より引用)


電磁波が光学的に縦波・横波で議論されています。
現代では高校レベルの知識ですが
当時、説明するのは大変だったと思います。



マクスウェルの残した業績


マクスウェルの業績で個人的にもっとも


評価したいのは何よりも「場の考え」の確立です。


静的な意味での場と時系列で変化する


動的な意味での場は大きく違うと思えます。


マクスゥエルは後者の意味での「場」を


定式化して後の理論家達に


進むべき道を示したパイオニアでした。


実際に後のアインシュタインニュートンよりも


マクスウェルを近しく感じています。共に「場」を


考えていった系譜の人々なのではないでしょうか。


ニュートンよ許したまえ」という言葉を使い、


アインシュタイン絶対時間を否定して


相対性理論を構築していくのです.


先ほど電磁波が「光速で伝わる」と述べましたが、


電磁波を「情報」と置き換えて考えると


より分かりやすいかもしれません。


その時々の「場」の状態を決めている情報が


光速度で伝わっていく表現を


作っていった一人がマクスウェルなのです。


(晩年マクスウェルは)
「ケンブリッジ、アバーディン、ロンドンを通じて労働者
 の為の講義を退職後の1866年まで熱心に続けた。
 学生よりも労働者に学問への熱意を感じたようである。」
(太田浩一「ほかほかのパン」より引用)


そして偶然ですが、マクスウェルの没年に


アインシュタインが生まれています。


マクスウェルが亡くなったのは40代なので


もう少し活躍して欲しかったと思います。


残念至極。 



〆最後に〆


【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/09/04_初稿投稿
2023/11/21_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係
ケンブリッジ関連
電磁気学関連のご紹介
AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


【2021年9月時点での対応英訳】



Maxwell's personal profile


To elaborate on its name, James Clerk Maxwell.


Maxwell established electromagnetics.


There, he laid the foundation for field theory, and formulated the relationship between electric and magnetic fields by associating them with the Maxuel equation. Furthermore, he confirmed the relationship between the orthogonal electric field and the "electromagnetic wave" consisting of the magnetic field as a mathematical formula, and theoretically derived that the progressive phase is the speed of light.



Genius skin Maxwell


Born in Edinburgh, the British Empire, Maxwell showed precocious talent both in literature and in science. A poem he wrote when he was 14 was published in a local newspaper. He makes us feel the advanced acquisition of linguistics and rhetoric.


At the same time, he proposed a method of defining an "oval line" using focus and drawing it with a device using "pins and threads", and summarized it in a treatise. It seems that physicists at that time, not just Maxwell, tended to discuss and think about phenomena from a more multifaceted perspective than they do now. It's a genius skin even if the times are subtracted.


Maxwell also makes a mark in optics and thermodynamics. Electromagnetic waves are optically discussed as longitudinal waves and transverse waves. Today, it's high school level knowledge, but I think it was difficult to explain at that time.



Achievements left by Maxwell


What I personally want to evaluate most about Maxwell's achievements is the establishment of the "electromagnetic field idea". It seems that the electromagnetic field in the static sense and the electromagnetic field in the dynamic sense that change over time are very different.


Maxuel was a pioneer who formulated the "electromagnetic field" in the latter sense and showed the way to later theorists.


In fact, later Einstein feels closer to Maxwell than Newton. I think they are people of genealogy who both thought about "electromagnetic field". Using the phrase "Forgive me, Newton," Einstein denies absolute time and builds the theory of relativity.


And by chance, Einstein was born in the year of Maxwell's death.


Maxwell died in his 40s, so I hope he's a little more active. Twice


2023年11月30日

ウィリアム・トムソン
11/30改訂【B・K OM, GCVO, PC, PRS, PRSE】

「トムソン」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
トムソンがこの頃、ベートーベンは54歳くらいでしょうか。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1824年6月26日 ~ 1907年12月17日】



多くの業績を残したトムソン


始めに、本稿のURLは”Baron Kelvin”を使っています。


名前としてはトムソンなんですが、ケルビン男爵


としての別名も持っていたからです。


その名を詳細に記すと、


初代ケルヴィン男爵ウィリアム・トムソン


William Thomson, 1st Baron Kelvin OM, GCVO, PC, PRS, PRSE


 

トムソンは熱力学や電磁力学で


沢山の研究成果を残してます。


彼は僅か10歳でグラスゴー大学へ入学しました。


トムソンの父がグラスゴー大で教鞭を


とっていた事実はある様ですが、


それを別にしても早熟ぶりに驚かされます。


その後、トムソンはケンブリッジで勉学を進め、


22歳でグラスゴー大学の教授になり、


イギリスの大学で初めての物理学研究室


を立ち上げました。


 

トムソンの広めた諸概念


1845年の論文では、ファラデーの理論を


数学的に整え回路近辺の空間を考えてます。


この発表は後のマクスウェルに示唆を
与えたと言われています。後の電磁場
の考え方に原型を与えたのでしょう。


また、トムソン(ケルビン卿)は数学的表現である
「ベクトル」
を「使い始めた」
人であると言われています。


時代的にはハミルトンがベクトルの概念を使っている


ようですが、ハミルトンは四次元空間の定式化


の中で使っています。これに対してケルビン卿は


ベクトルの概念を使って実際に起きている
磁気現象を
数学上で(ベクトル表現で)
より現実的に対応させているのです。
ケルビン卿はそういった
三次元的な(現実的な)概念を提唱しました。


また、

物理学者としては別にJ・J ・トムソンが居ます。


更に、電磁気学から量子力学への移行する中での
業績としては磁性に関するものがあります。
ファラデーが見つけた常磁性という概念を
説明する為にトムソン卿は感受性・透磁率
といった概念を固有の物質で考えていきました。


後に「スピン」等の概念を考える土台を
トムソンが作っていったと言えないでしょうか。



多くを残したトムソン


そして、トムソン卿は沢山の物理学者と議論しました。
例えば、無名だったピエール・キューリを見出し、
交流し真価を認めました。また、別項でご紹介して
いますが、日本初期の物理学者である田中舘愛橘を育て、
彼がトムソンを敬愛していた事でも広く知られています。





【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/13_初稿投稿
2023/11/30_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係
ケンブリッジ関連
電磁気学関係
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】



Thomsom did many  advanced work


First, the URL for this article uses "Baron Kelvin". He's named Thomson, but he also had an alias as Baron Kelvin.


To elaborate on its name, William Thomson, 1st Baron Kelvin OM, GCVO, PC, PRS, PRSE


Thomson has left a lot of research results in thermodynamics and electrodynamics. He entered the University of Glasgow at the age of only 10.


It seems that Thomson's father was teaching at the University of Glasgow, but apart from that, he is amazed at his precociousness. After that, Thomson studied in Cambridge, became a professor at the University of Glasgow at the age of 22, and set up the first physics laboratory at a university in the United Kingdom.


In his 1845 treatise, he mathematically arranged Faraday's theory and considered the space near the circuit.


This announcement suggests to Maxwell later
It is said to have given. Later electromagnetic field
Probably gave a prototype to the idea of.


Also, Thomson is a mathematical expression "vector".
Is said to be the person who "started using".



Works of Thomson 


It seems that Hamilton uses the concept of vector separately, but Hamilton uses it in the formulation of four-dimensional space. Sir Thomson, on the other hand, uses the concept of vectors to mathematically (in vector representation) the phenomena that are actually occurring.


In addition, there is another physicist, JJ Thomson.


In addition, one of the achievements in the transition from electromagnetism to quantum mechanics is related to magnetism. To explain the concept of paramagnetism that Faraday found, Sir Thomson considered the concepts of sensitivity and permeability with unique substances. It can be said that Thomson laid the foundation for thinking about concepts such as "spin" later.


And Sir Thomson discussed with many physicists.
For example, he found the unknown Pierre Cucumber,
He interacted and acknowledged its true value. Also, I will introduce it in another section.
However, it is also widely known that Tanakadate Aikitsu, a physicist in the early days of Japan, was brought up and Tanakadate admired Thomson.


2023年11月28日

R・J・E・クラウジウス
11/28改訂【熱力学の第一法則を定めエントロピーを定義|エントロピー】

こんにちはコウジです!
「クラウジウス」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
クラウジウスがこの頃、ベートーベンは44歳くらいでしょうか。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



【スポンサーリンク】
【1822年1月2日 〜1888年8月24日】


クラウジウスはドイツ系の人で、名前をつづると
Rudolf Julius Emmanuel Clausius, です。


クラウジウスはプロイセン王国領生まれました。今で言う、ポーランド地域の生まれです。お父様は牧師として務める傍ら、小学校の校長を務めていました。そこでクラウジウスは学び始めます。ベルリン大学の時代に熱力学に関心を抱き始め、初の論文をまとめます。


それは、当時の物理学の中心となっていた熱(温度)、圧力、 対象となる物質の体積(占めている空間)、およびその質量に関する関係の考察でした。


ニュートン力学が広く知られ、その質点モデルをもとに人々が分子であるとか、原子であるとかいう概念を想像していくうえで、知見をまとめていっている段階での考察です。


手探りの中で気体分子の(またはその幾つかの合成物の)
性質を突き詰めていった人の一人がクラウジウスなのです。


今で言う化学と熱力学の境界線はどう考えられていたのでしょうか。
概念形成の歴史を考えていく中で一つの転換点となっている
気もします。後に放射線を使って原子を少しでも可視化したりする前の、
関連概念の形成時代があったのです。


斯様な考え方で考えていくと、クラウジウスの諸業績の中で第一に思いつくものは熱力学に対する業績で、特に、エントロピーの概念が最も大きいのではないでしょうか。気体分子を単純化して特定環境下(温度下)での個々の質点の位置と運動量で考えていった時にエントロピーはボルツマンが後程、再定義しています。


熱力学第一法則・第二法則の定式化も定式化しました。クラウジウスによるとエントロピーの定義は次のように示されます。


 dS = {dQ }/ {T}


1824年、カルノーは、「熱量は保存され、熱が高温から低温へと移動するときに仕事が発生する」という理論を組み立てました。この理論は1840年代後半、W・トムソンによって世に広まりました。一方、同じ頃に、熱そのものが仕事に変化し、また仕事も熱に変化するというジュールの測定結果が、おなじくW・トムソンなどによって世に認められるようになりました。


しかし、この2つの理論は互いに矛盾するように思われました。そのため、W・トムソンは初め、ジュールの測定結果のうち、「仕事が熱に変化する」という箇所については否定的な見解を示していました。


これに対しクラウジウスはジュールの理論を受け入れ、熱と仕事は互いに変換可能だと考えました。しかし、カルノーの理論を完全に捨て去ることもしませんでした。クラウジウス独自の考察から、熱に関する2つの原理が生み出されました。 


またクラウジウスの不等式の概念は内部エネルギーや散逸を考えていく上でおおきな足掛かりとなりました。



〆最後に〆




TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2022/04/01_初回投稿
2023/11/28‗改訂投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
ドイツ関連のご紹介へ
時代別(順)のご紹介
力学関係のご紹介
電磁気学のご紹介へ
熱統計力学のご紹介へ


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】





(対応英訳)


Clausius is of German descent, spelling his name
Rudolf Julius Emmanuel Clausius,.


Clausius was born in the Kingdom of Prussia. He was born in Poland in these days. While his father was a minister, he was the principal of an elementary school. There Clausius begins to learn. He began to take an interest in thermodynamics during his time at the University of Berlin and summarized his first treatise.


It was a consideration of the relationship between heat (temperature), pressure, volume of the target substance (occupied space), and its mass, which were the core of physics at that time. Newtonian mechanics is widely known, and it is a consideration at the stage of summarizing the findings in imagining the concept that people are Molecules or Atoms based on the mass model, and it is in the process of groping.


Claudius is one of the people who scrutinized the properties of gas molecules (or some of their compounds). What was the boundary between chemistry and thermodynamics as it is now? I feel that it is a turning point in thinking about the history of concept formation. There was an era of the formation of related concepts before later using radiation to visualize atoms as much as possible.


Considering this way of thinking, the first thing that comes to mind among Clausius's achievements is his Achievements in Thermodynamics, and in particular, the concept of Entropy is probably the largest. When he simplified the gas molecule and thought about the position and momentum of each mass point in a specific environment (under temperature).


Boltzmann later redefined
Formulation of the first law and the second law of thermodynamics.and,


the definition of entropy is


dS = {dQ} / {T}


In 1824, Carnot constructed the theory that heat is conserved and work occurs when heat moves from hot to cold. This theory was popularized by William Thomson in the late 1840s. On the other hand, in the same period, Joule's measurement result that heat itself turns into work and work also turns into heat came to be recognized by the same Thomson and others. However, the two theories seemed to contradict each other. As a result, Thomson initially gave a negative view of Joule's measurements of "work turns into heat."


Clausius, on the other hand, accepted Jules' theory and thought that heat and work could be converted into each other. But he did not completely abandon Carnot's theory. This gives rise to two principles of heat.