アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2025年02月 >>
            1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28  
最新記事
最新コメント

2022年05月03日

N・L・S・カルノー
【1796年6月1日生まれ-5/3改訂】

こんにちはコウジです。「カルノー」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1796年6月1日生まれ ~ 1832年8月24日没】



【スポンサーリンク】



カルノーの業績


その名は正確にはニコラ・レオナール・サディ・カルノー


: Nicolas Léonard Sadi Carnot。


カルノーは理論的な熱機関であるカルノーサイクル


を提唱して熱が関与する物理学を考え続けました。


父は革命時のフランス軍の中で尊敬を集めていて


軍制改革を主導したと言われています。そして、


カルノーは正義感の強い感受性豊かな青年に育ちます。


 

そんなカルノーの関心は蒸気機関にありました。


当時の産業界では蒸気機関を


理論的に説明出来ていなかったのです。


蒸気が急激に膨張することは分かりますが


蒸気を構成する個別の粒子の挙動、とりわけ


集団的運動のもたらす「温度上昇(低下)」や


「圧力」、「体積」といった量との関係が


明確ではありませんでした。


 



カルノーの考え方


経験的な知見として「水を熱した時に発生する蒸気が


液体状態から気体状態に移る中で


膨張して圧力を発生させます」。


その時に発生した圧力で摺動機関を動かして


力を得る議論の中で、カルノーの時代には定量的な


議論を踏まえて論じられる理論環境が無かったのです。


 

カルノーはニュートン力学で出てくる力の他に、その力を


加え続けた距離を考えて「仕事量」の概念を作ります。


重い荷物を「数cm引きずる」現象と「数km引きずる」現象


とでは大きな差がありますので、


「仕事量」の概念は感覚的に理解出来ます。


 

例えば、物体を動かす力と動いたときに発生する摩擦熱


の間には関係があり、それらを結びつけるのにカルノーは


仕事量の概念を使いました。他、比熱、熱容量、


といった概念が出来て様々な現象が繋がっていったのです。


 

ただ残念な事にカルノーは、


非常に短い人生を送っていて


36歳の時に病死してしまいます。


カルノーが評価を受けたのは死後でした。


クライペロンとトムソン卿が評価し、


その後にマッハが評価をしています。


カルノーが作り上げた「仕事」に関する


概念が後の時代に、のちの時代に評価されたのです。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com


2020/11/01_初回投稿
2022/05/03_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】


【以下は2021年8月時点での対応英訳です】



Job of Carnot 


Its name is Nicolas Léonard Sadi Carnot.


Carnot advocated the Carnot cycle, a theoretical heat engine, and continued to think about heat-related physics.


His father is said to have been respected in the French army during the Revolution and led the military reforms. And Carnot grows up to be a sensitive young man with a strong sense of justice.


Carnot's interest was in the steam engine. The industry at that time could not explain the steam engine theoretically.


It is understood in the Carnot era that steam expands rapidly, but the behavior of individual particles that make up steam, especially the "temperature rise (decrease)", "pressure", and "volume" brought about by collective motion, etc. The relationship with quantity was not clear.


As an empirical knowledge of Carnot's time, "the steam generated when water is heated expands and generates pressure as it moves from the liquid state to the gaseous state."


In the discussion of gaining power by moving the sliding engine with the pressure generated at that time, there was no theoretical environment in the era of Carnot that was discussed based on quantitative discussions.



Carnot way of thinking 


Carnot creates the concept of "work load" by considering the distance that the force is continuously applied in addition to the force that appears in Newtonian mechanics. There is a big difference between the phenomenon of "dragging a few centimeters" and the phenomenon of "dragging a few kilometers" of heavy luggage, so the concept of "work load" can be understood sensuously.


For example, there is a relationship between the force that moves an object and the frictional heat that is generated when it moves, and Carnot used the concept of work to connect them. In addition, the concept of specific heat and heat capacity was created, and various phenomena were connected.


Unfortunately, Carnot lives a very short life and died of illness at the age of 36.


Carnot was evaluated after his death. Clapeyron and Sir Thomson evaluate it, followed by Mach. Carnot's concept of "work" was finally appreciated in his later years.


2022年05月02日

【シェアオフィス向けBIZconfort】コロナ対策
全国107拠点(池袋・駒込など)_低価格

↑Credit:ToaHeftiba↑



シェアオフィスのBIZconfort(池袋とか渋谷とか)







コロナ下の生活でシェアオフィス


の需要は高まっています。





遠距離を通勤している人は特に通勤時の電車で感染するリスクを感じます。電車通勤時に雨が降っていたので窓を閉めて欲しい旨の車内アナウンスが流れていました。当然の措置なのですが、必然的に3密の度合いは高まります。どうしようもないです。かといって自宅では仕事に集中できない方も多いので、出来るだけ自宅の近く(私の場合は池袋とか駒込とか)で作業する環境を考えていきたいです。コロナなので通勤は自転車を使いたいですね。









またなにより、自宅作業で家族に

気を使いたくないです。

そこでシェアオフィスの活用です。



BIZconfortは低価格








コロナに怯える反面、

重症者数は増えてきていて、

勤務せざる得ない会社員はとても辛い所です。



ドウシヨウモナイ。そんな長時間の通勤を避けて近場で仕事が出来たら本当に嬉しいです。「柔軟なはたらき方」です。皆さんで働きかけてこういったシェアオフィスをどんどん活用しましょう。自宅にテレワーク環境が無い場合は当然利用しますし、気分を変える為に月に何日かシェアオフィスを使うと良いかもしれません。コロナ下でも仕事の効率を上げることは重要です。拠点の数は月毎に増えていて、本ブログでの数字も更新中です。









全国107拠点展開中です。



【BIZcomfort】



〆最後に〆


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。


nowkouji226@gmail.com





[popular_list days="all" rank="0" pv="0" count="5" type="default" cats="all"]

マイケル・ファラデー
【1791年9月22日生まれ5/2改訂】

こんにちはコウジです。「ファラデー」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1791年9月22日生まれ ~ 1867年8月25日没】



【スポンサーリンク】



電磁気学の基礎を築いたファラデー


イギリスのファラデーは電磁力学の礎を築きました。


近接作用を考えていって導体の周りの空間


における磁界の様子を想像しました。


そして、それが変動した時の作用などを


一つ一つ実験で明らかにしていきます。


磁束の磁界変化が起電力を生む事実を


定式化しました。優れた実験家でした。


画像ではオックスフォードを使っていますが実際にファラデーは高等教育を受けていません。ファラデーの時代にはイングランド内戦に伴い多くの人がロンドンで研究をします。ファラデーはロンドンの王立協会に所属していました。そして、ファラデーが考えた法則はファラデーの電磁誘導の法則と呼ばれます。また別途、ファラデーの電気分解の法則という考え方が存在して、それは電気分解での精製質量を記述します。そうしたファラデーの伝記を読んでいて思うのは、ファラデーはとても庶民的な感覚を持っていたということです。人々がどう思っているか、というより感じているかを他の科学者よりも共感できる点が多いかと思います。一緒にお酒でも飲めたら色々語れるでしょう。



ファラデーの人となりと評価


ファラデーは子供向けにクリスマスレクチャー


をしたり、ろうそくの科学を解説しててみたり、


一人で考えを極めていく他に


社会全体の意識を高めていこう


としていたと感じられます。


私もこの点は見習いたいです。


ただ、当時は階級社会であり、公の場の食事での扱いや馬車の乗り方等でファラデーは差別的な扱いを受けていていたようです。色々な発見をして科学で名を成した彼は晩年、ナイトの称号を何度も 辞退しました。また、ファラデーはクリミア戦争時に兵器開発の依頼に対して言葉を残していますので引用致します。私はファラデーの感性が好きです。


(兵器を)「作ることは容易だ。しかし絶対に手を貸さない!」
(引用・Wikipedia)


科学技術の平和利用を考えると現代でも個々の科学者は判断をする時があります。実際に日本は敗戦国なので出来る事が限られていまが、例えば中東で紛争があった際に、地雷探知ロボットを投入したりしています。日本ならではの役割を果たして欲しいと願います。ファラデーはそんな事も考えさせてくれました。そして、死後、何年もたってファラデーはオックスフォード大学から名誉博士号を受けています。



〆最後に〆


【スポンサーリンク】


以上、間違いやご意見があれば
以下アドレスまでお願いします。
問題点には適時、
返信・改定を致します。


nowkouji226@gmail.com


2020/09/03_初回投稿
2022/05/02_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
電磁気関係


【このサイトはAmazonアソシエイトに参加しています】


【2021年8月時点での対応英訳】



Faraday made the basis of electronics


Faraday in England laid the foundation for electrodynamics. He considered proximity and he imagined the appearance of a magnetic field in the space around a conductor. Then, we will clarify the action when it fluctuates one by one by experiment. He formulated the fact that changes in the magnetic field of magnetic flux produce electromotive force. He was an excellent experimenter.


Oxford is used in the image, but many people study in London during the English Civil War. Faraday belonged to the Royal Society of London. And Faraday's law is called Faraday's law of electromagnetic induction. Separately, there is the idea of ​​Faraday's laws of electrolysis, which describes the purified mass in electrolysis. Reading those Faraday biographies, I think Faraday had a very common sense. I think he has more sympathy than other scientists for what people think, rather than what they feel. If you can drink alcohol together, you can talk a lot.


It seems that Faraday was trying to raise the awareness of society as a whole, in addition to giving Christmas lectures for children and explaining the science of candles, thinking extremely alone.


I also want to emulate this point.



Faraday and later evaluation in class society


However, at that time, it was a class society, and it seems that Faraday was treated discriminatory in terms of how to treat it in public meals and how to ride a horse-drawn carriage. He made many discoveries and made a name for himself in science, and in his later years he declined his knight title many times. He also quotes Faraday as he left a word for his request to develop weapons during the Crimean War. I like Faraday's sensibility.


He said (weapons) "easy to make, but never help!"
(Quote / Wikipedia)


Even today, individual scientists sometimes make decisions when considering the peaceful use of science and technology. Actually, Japan is a defeated country, so there are limits to what we can do, but for example, when there is a conflict in the Middle East, we are introducing landmine detection robots. I hope you will play a role unique to Japan. Faraday made me think about that too. And years after his death, Faraday received an honorary doctorate from Oxford University.



2022年05月01日

田中館 愛橘(たなかだて あいきつ)
【1856年10月16日生まれ‐6/1改訂】

こんにちはコウジです。「田中館」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1856年10月16日生まれ ~ 1952年5月21日没】



【スポンサーリンク】



日本物理学創設期の人、
田中館愛橘


その名は田中館・愛橘と書いて


たなかだて・あいきつ、と読ませます。


生まれた年は旧暦の時代で安政3年9月18日です。


【新暦で1856年10月16日です】


没年は新暦での昭和27年です。


先祖に南部藩の赤穂浪士


と呼ばれた方が居たそうですから、


そうしたイメージから語り出したいと思います。


時代の変革期に若き日々を過ごしました。


 

田中館愛橘の生い立ち


ご紹介する田中館愛橘の父方は


兵法師範の家系であり、


愛橘は藩校である作人館に学びます。


作人館での同窓生には原敬がいて後輩には


新渡戸稲造がいました。存じませんでしたが


立派な学校ですね。東京に出て慶應義塾に通い


ますが学費が高額なので東京開成高校に進みます。


今で言えば東大教養学部のイメージでしょうか。


そこで愛橘は山川健次郎から物理学を学びます。


政治にも関心を持っていたようですが、山川から諭され、
日本での理学の遅れを挽回せんと愛橘は物理学を志しました。


1879年に東大で外国人教師であるメンデンホールが(ユーイングと共に)トーマス・A・エジソンの発明したフォノグラフを日本に紹介しましたが、田中館愛橘は早速試作を行いました。その音響や振動の解析を行っています。


音を音質と音量に分けて考えたり、
フィルター処理をする作業が日本で始まったのです。
1880年にはメンデンホールによる重力観測に参加し、
東京と富士山で観測作業を行いました。
当時の世界一の性能を持っと言われたた
電磁方位計を研究開発しました。


そんな時期に、、


突然、福岡に帰っていた父・稲蔵が割腹自殺したとの
知らせを受けて田中館愛橘は明治16年12月に帰郷します。
土地や家などを売り払い東京三田に愛橘の教育の為に
一家総出で引っ越しをしたようなお父様でした。
そのお父様がなくなったのです。


そしてその年に東京大学助教授となりました。
詳細は追って調べます。この時期気になる動きです。
時代の変革期に各人が考え抜いていたはずです。



田中館愛橘とケルビン卿


その後、田中館愛橘はイギリスでケルビン卿に師事し、


大きな影響を受け、生涯を通じてケルビンを敬愛しました。


その後1890年にヘルムホルツのいた


ベルリン大学へ転学、電気学などを修めます。


この時代の電気に対する理解は、項を改めて


マクスウェルらと関連して語っています。


電磁気学は力学と異なり色々な人々の多様な知見が


次々重なり形成されていった歴史があるのです。


力学のように第一法則、第二法則、


として電磁気学では出来ていません。


 

愛橘は東京帝大理科大学教授となり後にに理学博士の学位を受けます。更にデンマークのコペンハーゲンで開かれた万国測地学協会 第14回総会で
地磁気脈動や磁気嵐の発表をします。


 

田中館愛橘の業績


時代柄もあって、田中館愛橘は陸軍や海軍に対して貢献します。地磁気測量では指導の中心的な役割を果たしています。旅順での戦闘の際には敵情視察用の繋留気球の制作を依頼されています。それが愛橘と航空研究のきっかけ
となりました。


田中館愛橘は中野の陸軍電信隊内での気球班で気球研究を始め、制作および運用法を指導しています。試行錯誤の末に気球を完成させ、旅順戦で戦闘に使用しています。


そして田中館愛橘が60歳になり、教授在職25周年のパーティで愛橘は辞職する旨を伝えました。後の東大での定年退職制度に繫がっていきます。


また、田中館愛橘は数多くの人材を育てました。教え子としては長岡半太郎、中村清二、本多光太郎、木村栄、田丸卓郎、寺田寅彦などが居ます。それ故、愛橘は「種まき翁」、「花咲かの翁」と呼ばれたそうです。
95歳7か月の天寿を全うしました。




以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。


nowkouji226@gmail.com


ハイブリット英会話スタイルで伸ばす「アクエス」
【スポンサーリンク】


2020/12/16_初版投稿
2022/6/01_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
日本関連のご紹介
東大関連のご紹介


【このサイトはAmazonアソシエイトに参加しています】


 

(2021年9月時点での対応英訳)



Tanakadate Aikitsu,


whose name is Aikitsu, is written as Aikitsu.


Born on September 18, Ansei 3 in the lunar calendar. [October 16, 1856 in the new calendar] The year of death is 1952 in the new calendar. It seems that his ancestor was called Ako Ronin of the Southern Clan, so I would like to start with that image. He spent his youth in a period of change.


By the way, Tanakadate Aikitsu's father is a family of military art masters, and Aikitsu learns from the clan school, Sakujinkan. The alumni at the Sakujinkan was Takashi Hara, and his junior was Inazo Nitobe. I didn't know about it, but it's suary a good school. He went to Tokyo and go to Keio University, but the tuition fee is high, so he went to Tokyo Kaisei High School. Is it the image of the Faculty of Liberal Arts at the University of Tokyo now? There, Aitachibana learns physics from Kenjiro Yamakawa.



Yonger days of Tanakadate


In his younger days,Aikitsu have been interested in politics, but Yamakawa advised him to make up for the delay in Japanese science, and Aitachiya decided to pursue physics. He introduced Edison's invented phonograph to Japan in 1879 with Mendenhall, a foreign teacher at the University of Tokyo, but Tanakadate Aikitsu made a prototype immediately. He is analyzing the sound and vibration.


He started working in Japan to divide sound into sound quality and volume, and to filter it. In 1880, he participated in gravity observation at Menden Hall and carried out observation work in Tokyo and Mt. Fuji. Aitachi made an electromagnetic directional meter, which was said to be the world's number one high-precision directional meter at that time.


 

Tanakadate Aikitsu returns home after being informed that his father, Inazo, who had returned to Fukuoka in December 1884, committed suicide by seppuku. And that year he became an assistant professor at the University of Tokyo. Details will be investigated later. Because it is a movement that is worrisome at this time.



Tanakadate and Baron Kelvin


After that, Tanakadate Aikitsu studied under Sir Kelvin in England and was greatly admired Kelvin throughout his life. After that, he transferred to the University of Berlin, where Helmholtz was, in 1890 and studied electrical engineering. His understanding of electricity in this era will be discussed later in the context of Maxwell et al.


Unlike mechanics, electromagnetism has a history of  accumulating diverse knowledge of various people one after another made electromagnetism. It has not made as the first law or the second law of mechanics.


Aitkitsu became a professor at the University of Tokyo Science University and later received a doctorate in science. He will also present geomagnetic pulsations and geomagnetic storms at the 14th General Assembly of the International Association of Geodesy Sciences in Copenhagen, Denmark.


 

Job of Tanakadate


Also, due to his time, Tanakadate Aikitsu contributes to the Army and Navy. He plays a central role in his guidance in geomagnetic surveying. During the battle in Lushun, he made a mooring balloon for hostility inspection. That was the catalyst for Aikitsu and his aviation research.


Tanakadate Aikitsu started balloon research in the balloon team within Nakano's Army Telegraph Corps, and is instructing production and operation methods. After a lot of trial and error, the balloon was completed and used in battle in Lushunkou.


 

When Tanakadate Aikitsu turned age 60, he announced that he would resign at the party of his 25th anniversary as a professor. He will be involved in the retirement age system at the University of Tokyo later. In addition, Tanakadate Aikitsu has nurtured a large number of human resources.


His students include Hantaro Nagaoka, Seiji Nakamura, Kotaro Honda, Hisashi Kimura, Takuro Tamaru, and Torahiko Terada. Therefore, They called Aitkitsu"Seeding old man" and "Hanasakika old man". He completed his life of 95 years and 7 months.


(NOTE)Transition Words,
"In the same time,on the other handsin addition for exanple" is Important.


 

ルイ・コーシー
【1789年8月21日生まれ -5/1改訂】

こんにちはコウジです。「コーシー」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1789年8月21日生まれ ~ 1857年5月23日没】




【スポンサーリンク】


コーシーと当時の社会環境


その名は正確には、

オーギュスタン=ルイ・コーシー


(フランス人)Augustin Louis Cauchyです。


コーシーは数学者で、天文学、光学、流体力学に


大きく貢献しています。


 

コーシーの生まれた時代に


フランスでは革命が起きていて


それを避ける為に家族は郊外に居を移します。


コーシーの生まれた時期は動乱の時代でした。


そして、


コーシーの一家がパリ郊外に移り住んだ時に


近くにラプラスが住んでいました。


コーシーの父とラプラスが交流を進める中で


ラプラスはコーシーのセンスに気づきます。


それは素晴らしい出会いだったのです。


 

やがてコーシーの一家はパリに戻ってサロンでの


交流をしたりします。コーシーはそんな中で


土木学校を卒業して港を作る仕事をしていたようです。


思想的には両親の影響を受け保守的なところがあり、


シャルル10世の国外退去に伴い、


共に流浪の時代を送ります。そこでコーシーは


ボルドー公の家庭教師などをしていました。


 

コーシーの研究業績 


研究においては置換方法にコーシーは工夫を凝らし


群論に繋がる研究成果を纏めています。


また解析学の面では、その厳密な性格から


ε・∂(イプシロン・デルタ)論法の


原型となる考えを作り出しました。


結果として、


解析学では厳密な定式化を進め、


現代の数学の礎を作ったのです。


級数の置換をスマートに進めていたと思います。


連続・非連続をつないでいったと言えないでしょうか。


私も複素平面・留数定理…と学んでいった事を思い出します。


現代で使っている解析学ではコーシーが作り上げたもの


が多いです。コーシー・リーマンの方程式・コーシー列・


コーシーの平均値の定理・コーシーの積分定理等、


枚挙にいとまがありません。


その業績は広くたたえられ、


エッフェル塔にその名を残しています。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/31_初回投稿
2022/05/01_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介


【このサイトはAmazonアソシエイトに参加しています】



【2021年8月時点での対応英訳】


The name is exactly Augustin-Louis Cauchy (French).


Cauchy is a mathematician and a major contributor to astronomy, optics and fluid mechanics.


There was a revolution in France when Cauchy was born, and Cauchy's family moved to the suburbs to avoid it. It was the time he was born.


Laplace lived nearby when Cauchy's family moved to the suburbs of Paris.


Laplace notices Cauchy's sense as Cauchy's father and Laplace interact. It was a wonderful encounter.


Eventually, Cauchy's family returns to Paris to interact at the salon. Cauchy seems to have graduated from civil engineering school and worked to build a harbor.


His ideology is conservative, influenced by his parents, and together with Charles X's deportation, he spends an era of exile. There, Cauchy was a tutor of the Duke of Bordeaux.


In his research, Cauchy devised a replacement method and summarized the research results that led to group theory.


In terms of his analysis, his strict nature created the idea that became the prototype of the ε ・ ∂ (epsilon delta) reasoning.


As a result, he proceeded with rigorous formulation in analysis and laid the foundation for modern mathematics.


I think he was smart about replacing series. Can't you say that he connected continuous and discontinuous? I also remember learning about the complex plane and the residue theorem.


Many of the analytical studies used in modern times have been created by Cauchy. Cauchy-Riemann's equation, Cauchy sequence, Cauchy's mean value theorem, Cauchy's integral theorem, etc. are numerous.


His work has been widely praised and has left its name on the Eiffel Tower.



2022年04月30日

G・S・オーム【1789年3月16日-4/30改訂】

こんにちはコウジです。「ガリレオ」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1789年3月16日-1854年7月6日】



【スポンサーリンク】



オームの法則を見出したオーム


その名はGeorg Simon Ohm。


オームの法則で有名です。


オームの法則は定量的に回路を論じるときに不可欠で


非常に明快なので小学生レベルから説明出来ます。


子供に科学を教える時に理解しやすく、


実験的と原理がつながる事例として明快です。


電圧値;Eは電柱値;Iと抵抗値;R


の積なのです。E=RI。


 

ームの法則確立の経緯


オームは独学で数学、特に幾何学を習得してます。


研究生活に入る前に教師として生計を立てて


いる時期がありました。その後、


プロイセン王に幾何学に関する原稿を送り、


その論文で評価を受けました。ケルンの


ギムナジウム(中等教育機関)で


物理学を教える機会を得ます。


そこでの実験室で設備が充実していたことは


その後のオームにとってとても良かったのです。


 

オームの法則は、実の所はイギリスの


キャヴェンディッシュが先に発見している


ようですが彼は存命中に発表しませんでした。


オームはキャヴェンディッシュと意見交換


することなく独自に法則を


確立していて論文にまとめました。


 

オームの電子把握について


また、オーム自身は導体内での電子の挙動に関して


近接作用の側面から論じていたようですが


そんなエピソードからも目に見えないミクロな現象を


組み立てていく為に検証をしていく難しさを感じます。


「静電気」の概念が確立された後に、


電子が溜まっていく認識が出来て、


溜まったものに同位体を近接させると


電気が流れていくのです。


その時に電球(ライト)が点くのです。


相異なる物理量を抽出して結び付けていったのです。


 

そんな作業を一つ一つ進める困難の中、


原理を確立して社会に意義を問いかけた結果として、


現代に多大な功績を残し、オームの名は抵抗値の


単位として今後も使われていきます。


【スポンサーリンク】



以上、間違い・ご意見は
以下アドレスまでお願いします。
最近、返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/09/30_初稿投稿
2022/04/30_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
ドイツ関係

時代別(順)のご紹介
電磁気関係


【このサイトはAmazonアソシエイトに参加しています】


 

【2021年8月時点での対応英訳】



Ohm who found Ohm's law


Its name is Georg Simon Ohm. Famous for Ohm's law.


Ohm's law is indispensable and very clear when discussing circuits quantitatively, so it can be explained from the elementary school level.


It is easy to understand when teaching science to children, and it is clear as an example where experiments and principles are connected.


The voltage value; E is the product of the utility pole value; I and the resistance value; R. E = RI.



Background of the establishment of Ohm's law


Ohm was self-taught in mathematics, especially geometry, and had a time to make a living as a teacher before entering his research life. He then sent a manuscript on geometry to King Prussian, who was evaluated for the treatise and had the opportunity to teach physics at the Gymnasium in Cologne.


It was very good for Ohm after that that the laboratory there was well equipped.


Ohm's law, in fact, seems to have been discovered earlier by Cavendish in England, but he did not announce it during his lifetime.


Ohm established his own law without exchanging opinions with Cavendish and summarized it in his treatise.



About electronic grasp of Ohm


Also, Ohm himself seems to have argued about the behavior of electrons in the conductor as a result of proximity action, but even from such an episode, it is difficult to verify in order to assemble a micro phenomenon that is invisible. I feel it.


After the concept of static electricity is established, it is possible to recognize that electrons are accumulating, and when an isotope is brought close to the accumulated one, electricity flows. At that time, the light bulb arrives.


He extracted and linked the physical quantities that he had struck.


In the midst of the difficulty of proceeding with such work one by one, the name of Ohm, who established the principle and questioned the significance of society and left a great deal of achievement in modern times, will continue to be used as a unit of resistance value.

2022年04月29日

A・J・フレネル
【1788年5月10日-4/29改訂】

こんにちはコウジです。「フレネル」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1788年5月10日 ~ 1827年7月14日】



【スポンサーリンク】



フレネルとナポレオン


その名はオーギュスタン・ジャン・フレネル;
Augustin Jean Fresnelです。


フランスのノルマンディー地方で
建築家の父のもとに生まれます。
ナポレオン時代に生きた人で、
ナポレオンの運命で人生を大きな影響を受けました。
物理学者としてナポレオンに関わった
ヴォルタとは対照的です。
ヴォルタはナポレオンに好かれていて
伯爵の栄誉を受けています。


それに対してフレネルはナポレオンの
敵方についているのです。先ず、
フレネルは国立土木学校を卒業後に
色々な地方の地方の現場に赴任して
建設の仕事の経験を重ねます。


その傍らで関心のあった
光学関係の知見を得ていきます。
1815年におけるナポレオン・ボナパルトの
エルバ島脱出の際には国王勢の味方
となりましたが、その為にナポレオン施政下では
軟禁生活を余儀なくされます。
私見(しけん:私の考え)では、
この時の時間の過ごし方が少しニュートン
似ている気がしてしまいます。


実際にニュートンはペスト流行時に
学術交流できない時間を活用して
プリンキピアに繋がる思索の時間を作り、
まとめ上げました。


フレネルはナポレオン施政時の軟禁生活の
時間を使って光学の研究を進め、
波動性による考え方を確立して
回析現象を示したのです。


ナポレオンの百日天下が終わり、ルイ18世が再び即位すると
フレネルは復職しパリにて技師としての仕事を再開しました。



フレネルと光 


パリでの仕事としてフレネルは生活の為の仕事をし乍ら光学の研究を続けました。クリスティアーン・ホイヘンスやトマス・ヤングらが考えていた光の伝番についての当時の考えは縦波だろうと考えられていました。つまり、光は波動(波)として考えられますが、光は音波と同様に媒質(実は真空でも伝わります)を伝わる時は「縦波」であると考えられていたのです。それに対してフレネルは、偏光の説明を突き詰めて、光の波動説を実証したうえで、光が横波であると考えたのです。
『ここでの「縦波」や「横波」は進行方向に対してそれぞれ「平行」が「垂直」であるかに対応します。』


こうしたフレネルの光学理論は、複屈折現象などを上手く説明しました。またフレネルは、地球のような移動体での光路差について研究していきました。それはマイケルソン・モーレーの実験に繋がり、特殊相対論に示唆を与えたと言われています。


フレネルは光学理論をまとめあげ、1823年に「反射が偏光に与える諸変形の法則に関する論文」として発しました。この功績は広く称えられ、、フランス科学アカデミーの会員に選ばれたほか、物理学の世界で次々と認められました。


最後にフレネルはとても病弱でした。残念な事に結核を患い39歳で若くして亡くなってます。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2021/10/05_初版投稿
2022/04/29_改定投稿


旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
電磁気関係
量子力学関係

力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Fresnel and Napoleon


Its name is Augustin Jean Fresnel. Born to an architect's father in the Normandy region of France. A man who lived during the Napoleonic era, Napoleon's fate greatly influenced his life. First, after graduating from the National Civil Engineering School, Fresnel will be assigned to various local sites to gain experience in construction work. Beside him, he gains optics insights that he was interested in. He became an ally of the royal family when


Napoleon Bonaparte escaped from Elba Island in 1815, which forced him to live under house arrest under Napoleon's administration. In my opinion, the way I spend my time at this time is a bit like Newton. In fact, Newton made use of the time when academic exchange was not possible during the plague epidemic to create and organize a time for thinking that would lead to Principia. Fresnel used his time under house arrest during Napoleon's administration to study optics, establishing a wave-based mindset and showing the phenomenon of diffraction.


When Napoleon's Hundred Days ended and Louis XVIII reigned, Fresnel returned to work and resumed his work as his engineer in Paris.



Fresnel and light


As his work in Paris, Fresnel continued his optics research while working for a living. It was thought that the thoughts of Christiaan Huygens and Thomas Young on the transmission of light at that time would be longitudinal waves. In other words, light can be thought of as a wave, but when it travels through a medium (actually, it can also be transmitted in a vacuum) like sound waves, it was thought to be a "longitudinal wave."


Fresnel, on the other hand, scrutinized the explanation of polarized light, demonstrated the wave theory of light, and thought that light was a transverse wave.
"The" longitudinal wave "and" transverse wave "here correspond to whether" parallel "is" vertical "with respect to the traveling direction. 』\


Fresnel's optical theory explained the birefringence phenomenon well. Fresnel has also studied optical path lengths in mobile objects such as the Earth. It is said that it led to Michelson-Morley's experiment and gave suggestions to special relativity.


Fresnel summarized the theory of optics and published it in 1823 as "A Paper on the Laws of Deformation of Reflection on Polarized Lights". This achievement was widely praised, he was elected a member of the French Academy of Sciences and was recognized one after another in the world of physics.


Finally Fresnel was very sick. He unfortunately suffered from tuberculosis and died at the young age of 39.


ハンス・エルステッド
【1777年8月14日生まれ-4/29改訂】

こんにちはコウジです。「エルステッド」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1777年8月14日生まれ ~ 1851年3月9日没】



【スポンサーリンク】



デンマーク黄金時代の
リーダーエルステッド


ハンス・クリスティアン・エルステッド


; Hans Christian Ørsted


磁場の単位としてその名を残している人です。


ガウスと同じ年に生まれています。


ガウスやエルステッドの時代は電磁気学が


未開の時代だったとも言えます。


得られている知識が未だ断片的で、


全体像が見えていない状態で


手探りの把握を一つ一つ、数学的な


式化を含めて、ぐいぐい進めていたのです。


また、会社名としても名を残しています。


デンマーク黄金時代と呼ばれる時代があり


その時代のリーダーでした。


エルステッドは「思考実験」の概念を


打ち出した人だと言われています。正に


パラダイムシフトを起こした人です。


コペンハーゲンで活躍していました。


其処は後に量子力学が出来ていく上で


重要な議論が交わされる場になります。


また、エルステッドは


童話作家のアンデルセンとは親友です。


また、エルステッドの兄弟はデンマーク


首相を務めています。


こうった「こぼれ話」が豪華な人です。



 エルステッドの業績


物理学者としての業績として大きいのは


電流が磁場を作っていることの発見です。


それは1820年4月の出来事でした。電流近傍の


方位磁針は北でない方向を向いたのです。


そこから数年の内にビオ・サバールの法則、


アンペールの法則に繋がります。


 

エルステッドが物理学と深く関わる


きっかけとなったのはドイツのリッター


という物理学者との出会いでした。


エルステッド独自のカント哲学に


育まれた思想は後の物理学にはっきりした


方向性を与えたと思います。


エルステッドは多才な人物で、


博士論文ではカント哲学を扱っています。


他に美学と物理学でも学生時代に


賞を受けています。電流と磁場の関係も


カント哲学での思想、自然の単一性


が発想の根底にあったと言われています。


晩年は詩集を出版しています。


気球から始まった文章でした。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/04_初稿投稿
2022/04/29_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
デンマーク関係
電磁気学の纏め


【このサイトはAmazonアソシエイトに参加しています】


【2021年8月時点での対応英訳】



 About Oersted


Hans Christian Ørsted


That person is the one who has left its name as a unit of Magnetic field. He was born in the same year as Gauss.


It can be said that the era of Gauss and Oersted was an era when electromagnetics was undeveloped. The knowledge gained was still fragmented, and I was groping for each and every one of them, including mathematical formulation, without seeing the whole picture. In addition, the name remains as the company name. There was an era called the Danish Golden Age, and Oersted was the leader of that era.


Oersted is said to have come up with the concept of a "thought experiment." He is exactly the person who caused the paradigm shift. He was active in Copenhagen.


It will be a place where important discussions will be held later in the development of quantum mechanics.


Oersted is also a close friend of the fairy tale writer Andersen. In addition, Oersted's brother is the Prime Minister of Denmark. Such a "spill story" is a gorgeous person.



 Job of Oersted


A major achievement of his work as a physicist is his discovery that electric current creates a magnetic field. It was an event in April 1820. The compass near the current pointed in a direction other than north. Within a few years, it will lead to Biot-Savart's law and Ampere's law.


It was the encounter with a physicist named Ritter in Germany that inspired Oersted to become deeply involved in physics.
I think that the ideas nurtured by Oersted's original Kant philosophy gave a clear direction to later physics.


Oersted is a versatile person, and his dissertation deals with Kant's philosophy. He has also received awards in his school days in aesthetics and physics. It is said that the relationship between electric current and magnetic field was based on the idea of ​​Kant's philosophy and the unity of nature.


Oersted published a collection of poems in his later years. He was a sentence that started with a balloon.


 

2022年04月28日

ヨハン・C・F・ガウス
【1777年4月30日生まれ‐4/28改訂】

こんにちはコウジです。「ガウス」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1777年4月30日生まれ ~ 1855年2月23日没】



【スポンサーリンク】



ドイツ生まれのガウス


ドイツのガウスは18世紀の数学者にして、物理学者にして、


天文学者です。ガウスの業績として大きいのはガウス分布、


ガウス関数、ガウスの最小自乗法、ガウスの法則等です。


物理というより数学で仕事を残しています。 


物理では磁束密度の単位に名を残しています。


数学で出てくるガウス分布はガウスの考察した関数


で表されていて、現代でも統計データの処理


で多用されます。実際にサンプル数が多くなると


この分布での表現が適していて「データの中心値」


を真ん中にしてグラフが綺麗な左右対称の山型となります。


山の頂上と裾野の「形」がガウス分布特有の形になります。


 

また、地球磁気の研究に関連した話として、


フーリエ級数展開に関しての研究を進め、


高速な計算方法を開発しました。特に、


データ数を2倍し続ける場合についてを議論を構築


していますが、それは後の時代に使われる


高速信号処理器の中での作動原理と本質的に同じものでした。


200年以上前に数学的なデシャブー現象があったのです。



ガウスの法則の導出


電磁気学の世界で出てくる「ガウスの法則とは


電荷量が取り囲む曲面から計算される。


といった有名な法則です。より細かくは


電束を面積分した総和が電荷密度の体積積分の総和と等しいと考えられ、その体積の内側にある電気の源を電荷と定義出来るのです。実際に電気の担い手が電荷だと考えると、地上の電位を基準として特定の等電位の導体を考えてみて、それよれり電荷密度が低い状態を正に帯電した環境、基準より電子密度が濃い状態を負に帯電した環境と考える事が出来るのです。


こういった考え方を進め、ガウスは


電気が流れていく状態を記述しました。


また、よく使われているCGS単位系の中に


ガウス単位系とも呼ばれる単位系があります。


パトロンが生活を支えたりしていたという時代背景


もありガウスは教授となる機会は無かったようですが、


デデキンドとリーマンは彼の弟子だったと言われています。


個人的にはやはり、物理学者というよりも数学者として


沢山の仕事を残してきた人ったと思います。


そして、


独逸人らしい厳密さで現象を極めたのです。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレス迄お願いします。
問題点には適時、
改定・返信をします。


nowkouji226@gmail.com


2020/09/28_初稿投稿
2022/04/28_改定投稿



旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
ドイツ関連のご紹介へ
電磁気学関係


【このサイトはAmazonアソシエイトに参加しています】


 

【2021年8月時点での対応英訳】



Gauss of Germany 


Gauss of Germany is an 18th century mathematician, physicist and astronomer. His major achievements in Gauss are Gaussian distribution, Gaussian function, Gaussian least squares method, Gauss's law, etc. He has left his name in physics as a unit of magnetic flux density.


The Gaussian distribution that appears in mathematics is represented by the function that Gauss considered, and is often used in the processing of statistical data even in modern times. When the number of samples actually increases


The expression in this distribution is suitable, and the graph becomes a beautiful symmetrical mountain shape with the "center value of the data" in the center. The "shape" of the top and bottom of the mountain is unique to the Gaussian distribution.
In addition, as a story related to the study of geomagnetism, Gauss proceeded with research on Fourier series expansion, and Gauss developed a high-speed calculation method. He specifically builds a debate about when he keeps doubling the number of data, which is essentially the same principle of operation in high-speed signal processors used in later times. There was a mathematical deshabu phenomenon over 200 years ago.


It is a famous law that appears in the world of electromagnetism, such as "Gauss's law is calculated from the curved surface surrounded by the amount of electric charge."



electrical property of surface


The sum of the surface integrals of the electric flux is considered to be equal to the sum of the volume integrals of the charge density, and the source of electricity inside that volume can be defined as the charge. Considering that the actual bearer of electricity is the electric charge, consider a conductor with a specific equipotential potential based on the electric potential on the ground. You can think of the state as a negatively charged environment. Advancing this way of thinking, Gauss described the state in which electricity is flowing.


In addition, there is a unit system called Gaussian unit system among the commonly used CGS unit systems.


Gauss did not seem to have had the opportunity to become a professor, partly because the patrons supported his life, but it is said that Dedekind and Lehman were his disciples.


Personally, I think Gauss has left a lot of work as a mathematician rather than a physicist.


And Gauss mastered the phenomenon with his unique rigor.

2022年04月27日

A=マリ・アンペール
【1775年1月20日生まれ4/27改訂】

こんにちはコウジです。「アンペール」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1775年1月20日生まれ ~ 1836年6月10日没】



【スポンサーリンク】



 アンペールの生い立ちと足跡


その名は正確にはアンドレ=マリ・アンペール_


André-Marie Ampère。フランス・リヨンに生まれます。


当時、現象整理の進んでいなかった中で


電磁気現象の理解を深め、電磁気学の


創始者の一人として考えられています。アンペールの父は法廷勤務の真面目な人だったようですが、フランス革命時に意見を述べすぎて断頭に処せられてしまいます。そしてアンペールは大変なショックを受けたと言われています。革命は色々な傷跡を残していたのですね。


アンペアはアンペールの名にちなみます。また、


アンペールの名は右ねじの法則で有名です。


(右ねじの法則をアンペールの法則という時があります)


内容としては、一般的な右方向(時計方向)に


回していく事で進むような、ねじを使った例えです。


そのねじを手に取ってみた時にネジ山のイメージ


が磁場をイメージしていて、ネジが進んでいく方向が


電流の進んでいく方向をイメージしてます。


別のイメージで例えると直流電流が流れる時に


ネジの尖った方が電気の流れる方向で


ネジ山方向が磁場の発生するイメージです。


 

 アンペールの業績


アンペールの例えはとても直観的で


分かり易いと思えます。学者が陥りがちな


「独善的」とでも言えるような分かり辛い説明


ではなく、誰に伝えても瞬時に「おおぉ。」


と感動出来る事実の伝え方ですね。


また、アンペールはこの事実を伝えるために


二本の電線を平行に使い、


電気が流れる方向を同じにしたり・反対にしたりして


その時に電線が引き合い・反発する例を示しました。


この事は電気を流した時の磁場の発生する


方向のイメージから明らかです。


電磁気学が発展していない時代に、


大衆を意識して分かり易い実験法が求められる


時代に明確な事実を示したのです。


導線の周りに発生する磁場を想像してみるとよいのです。


今でも電流の仕組みを子供に示す事が出来るような


素晴らしい実験だと思います。


目に見えない「磁場」という実在が


如何に振る舞うかイメージ出来ます。


磁場という実在がはっきり掴めていない時代に


アンペールは目に見える形で磁場を形にしたのです。


それは大きな仕事だったと言えます。後世に


そこからさらに理論は発展していくのです。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/03_初稿投稿
2022/04/27_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
電磁気学の纏め


【このサイトはAmazonアソシエイトに参加しています】


(2001年8月時点での対応英訳)



 Life of Ampere


The name is André-Marie Ampère to be exact. He is born in Lyon, France.


He gained a better understanding of electromagnetic phenomena and is considered one of the founders of electromagnetics, even though he was not well organized at the time. Ampere's father seems to have been a serious court worker, but he was decapitated during the French Revolution by overstated his opinion. Ampere is said to have been very shocked. The revolution left a lot of scars, didn't it?


The unit ampere of electric current is named after Ampere. Also, Ampere's name is famous for the right-handed screw rule. (Sometimes the right-handed screw law is called Ampere's law.) The content is an analogy using a screw that advances by turning it in the general right direction (clockwise direction).



Job of Ampere


When I pick up the screw, the image of the screw thread is the image of a magnetic field, and the direction in which the screw advances is the direction in which the current advances.


Another image is that when a direct current flows, the pointed screw is in the direction of electricity flow and the magnetic field is generated in the screw thread direction.


Ampere's analogy seems very intuitive and straightforward. It's not an incomprehensible explanation that scholars tend to fall into, even if it's "self-righteous," but it's a way of telling the fact that you can instantly be impressed with "Oh."


Ampere also used two wires in parallel to convey this fact, and showed an example in which the wires attracted and repelled when the directions of electricity flow were the same or opposite.


This fact is clear from the image of the direction in which the magnetic field is generated when electricity is applied.


In an era when electromagnetics was not well developed, Ampere showed clear facts in an era when publicly conscious and easy-to-understand experimental methods were required.


Imagine the magnetic field that occurs around a conductor.


I think it's still a wonderful experiment that can show children how the electric current works.


You can imagine how the invisible "magnetic field" actually behaves.


Ampere visibly shaped the magnetic field in an era when the reality of the magnetic field was not clearly understood. It was a big job. The theory develops further from there in posterity.