アフィリエイト広告を利用しています
ファン
検索
<< 2023年12月 >>
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31            
最新記事
写真ギャラリー
最新コメント
タグクラウド
カテゴリアーカイブ
プロフィール

広告

この広告は30日以上更新がないブログに表示されております。
新規記事の投稿を行うことで、非表示にすることが可能です。
posted by fanblog

2023年12月17日

コラッツ予想(その23) 偶数と奇数

「コラッツの大木」のグラフを眺めていて、ある事に気がついた人もいるかも知れません。

 それは、このグラフでは、偶数の数と比べて、明らかに、奇数の数が少ない、と言う事です。

 何しろ、偶数の方は倍数の数列まで有るのに対して、奇数は分岐点の接続部の形でしか登場しないのです。偶数の数列の中に一つ置きに分岐点があるとは言っても、やはり、奇数は偶数の半分しか存在していません。いや、分岐のない偶数の数列や、分岐の発生が頭からじゃない偶数の数列もありますので、実質上、奇数は偶数の半分以下しか出てこないのであります。

 偶数と奇数は常に同数だと思っていた人たちには、これは奇妙にも感じられた事でしょう。

 しかし、ほんとは、不思議でも何でもないのであります。
 むしろ、コラッツの数式の計算においては、奇数より偶数の出現率の方が高い事は、「コラッツ予想(その3)」の段階ですでに指摘されておりましたので、「コラッツの大木」のグラフ内での結果(奇数より偶数が多い)も、そもそもが、予測されていた事実だったのです。

 そして、奇数より偶数の数の方が倍以上に多かったとしても、その事自体は、なんら問題ではありません。なぜならば、数字の数は無限だからです。いくら、偶数が先にいっぱい登場してしまったとしても、一足早く、偶数が種切れしてしまうような事もないのです。一方で、奇数だって、その出現率がいかに低かろうと、遅れて、いつかは、必ず、偶数の数に追いついているのであります。

 だから、コラッツの数式とは、ただ単に、偶数と奇数の配分のバランスが悪かった、と言うだけの話なのでした。

 いや、意外に、そのような言い方が間違いであり、むしろ、自然界の数字の配分とは、コラッツの数式のように、奇数より偶数の方が多いと言うのが、正しい関係であったのかも知れません。

×

この広告は30日以上新しい記事の更新がないブログに表示されております。