アフィリエイト広告を利用しています

広告

posted by fanblog

2019年03月10日

09001 大人のさび落とし ベクトルの 和 と 差





ベクトルに関しまして

問題

四辺形 ABCD において

ABベクトル + CDベクトル

が 

ADベクトル + CBベクトルに

等しいことを

証明しなさい



HPNX0001.JPG


いきなりは

そんな ねー

乱暴じゃないですか


そこで

われわれは さび落としですため



高校生が 化けて 入ってる

まちがってたら

あとで 教えてね


ベクトルは 力と 方向

力の 量だけだと

スカラー と言って 実数で

表示




HPNX0002.JPG




だからですね

スカラーがー

ッテいうつもりが


チカラーがー



ベクトルは

矢印とかで

表して

HPNX0003.JPG





ベクトルの 大きさ

の時は

絶対値で

スカラ 量

HPNX0004.JPG




ベクトルの おおきさが 等しいということは


向きが 同じで

おおきさ ( ベクトルの 長さ ) が 同じ


重なってたり

平行だったり

ということは

向きと 力が 同じならば

なんか 自由に 動かせそうな

イメージですね




HPNX0005.JPG



零ベクトル

これって面白いんだけどね

0ベクトルは 点なので

方向は 考えられない



点って 実生活にも

そこかしこに ありますね


存在するけど

面積がない


HPNX0006.JPG


逆ベクトル

おおきさが 同じで

向きが 正反対



HPNX0007.JPG




ベクトルの和は

平行四辺形法  三角形法

HPNX0008.JPG



ベクトルの 差も

平行四辺形法 三角形法





HPNX0009.JPG



これは よく出て来ます


HPNX0010.JPG


平行四辺形法で

数式の 計算みたいな 方法


逆ベクトルを 使って

足し算しちゃう


あと


交換法則

結合法則


が 成り立ちます


HPNX0011.JPG







問題に 戻って

平行四辺形法で

ベクトルを 動かして

足し算すると



HPNX0012.JPG


ベクトルの 相等と言うのは

平行で 大きさ (長さ ) が等しいのだから



作図した 赤い部分は

平行四辺形に するための 作図なので


CD ベクトルは

BE ベクトルと等しくなるので


AB BE



三角形法の 足し算で

AE

HPNX0013.JPG



右辺も

平行四辺形に なる様に

作図してあるのだから


CBベクトル と DEベクトルが 等しく


AD + DE

=AE



HPNX0014.JPG



同じ問題を

三角形法で 証明すると


ここら辺は

数学的な 感 ですか

BD とか DB に 着目 するんだって




三角形の 足し算を

AB   CD 共に


BD とか DB を 入れて

計算するでしょ


HPNX0015.JPG





ABベクトル + CDベクトルを

計算してくと


DDベクトル

これは 零ベクトルに なるから

右辺に 成ったよ


HPNX0016.JPG




三角形法の時は

アバ みたいに なってる

ABBA

BBが くっついて 消えて

AAになって

AAは 零ベクトル

これを 踏まえると

こんな感じで



HPNX0017.JPG




数が ふえても 同じ

HPNX0018.JPG



二点 A,B に対する

P点は どんな 位置か


式変形して


逆ベクトルと マイナスで ねー



HPNX0019.JPG



おおきさが ( 距離が 同じ )


スカラ 量が 同じなんだからさ


コンパスで


点々点

平行でないと いけないから

重なってるとこで

ここだ


HPNX0020.JPG


次は

4辺形ABCD があるときに

0から
各頂点への ベクトルを

a,b,c,d,とする時に

こんな 関係に なるそうな


どんな 図形か


HPNX0021.JPG




大体 この手の問題はさ

平行四辺形っぽいけど


どうして

ッテいわれて


思っちゃったんです

これは ダメでしょ

なので

ここは

対辺に 着目して

対辺を ベクトルの差を 使って

計算してみると


HPNX0022.JPG



BA と CD で 考えるでしょ

三角形法の 差の 計算で

BA=OA-OB

 =a-b


CD=OD-OC

= d-c


HPNX0023.JPG



これを

関係式から

c のとこを

使ってみてですね

代入したら


HPNX0024.JPG





ベクトルが 等しくなった

ベクトルが 等しいということは

スカラ量が 同じで

平行

平行四辺形



 



HPNX0025.JPG





お疲れ様です。



家庭菜園と ざっかや

メニュウ ページ リターン    )







posted by matsuuiti at 16:06| Comment(0) | TrackBack(0) | 数1
この記事へのコメント
コメントを書く

お名前:

メールアドレス:


ホームページアドレス:

コメント:

※ブログオーナーが承認したコメントのみ表示されます。

この記事へのトラックバックURL
https://fanblogs.jp/tb/7488899
※ブログオーナーが承認したトラックバックのみ表示されます。

この記事へのトラックバック
カテゴリーアーカイブ
最新記事
タグクラウド
写真ギャラリー
数学Uの引き出し
ファン
検索
<< 2023年05月 >>
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31      
最新コメント
プロフィール
宮下 敬則さんの画像
宮下 敬則
プロフィール
×

この広告は30日以上新しい記事の更新がないブログに表示されております。