アフィリエイト広告を利用しています

広告

この広告は30日以上更新がないブログに表示されております。
新規記事の投稿を行うことで、非表示にすることが可能です。
posted by fanblog

2018年08月03日

To merge “the Magic Mountain” - Fuzzy set

(1) Ironic principle

A Introduction

 Thomas Mann keeps a distance from reality; on one hand to consider the irony as true as possible, and on the other to criticize it. That is ironic. The critical distance could be considered an ironic distance. In fact, a kind of constraint is set to the critical conciseness.
 The constraint counteracts the requirement for an exhaustively specified concept language from the nature of language medium. Fuzzy logic maintains that as the complexity of a system increases, our ability to make precise and yet nontrivial assertions about its behavior diminishes. For example, it is very difficult to prove a theorem about the behavior of an economic system that is of relevance to real-world economics.

B Characteristics

 The subjectivity could be taken as the common characteristic. The fuzzy theory leads not to the objectivity, but to the subjectivity in the science, while the principle that underlies the way taken by Thomas Mann and Hans Castorp shows the intention for self-conquest. However, that concept is individual, while this one is super-individual. Anyway, the problem is an individual identification for both concepts.

C Word choice

 The ironic words of Thomas Mann such as adjectives and adverbs don’t lose the object at all, only the real nucleus during intentional incorrectness, while the concept of a fuzzy set is vague such as “big people” or “more or less” which is neither extensional nor intensional.
Hanamura (2005) deals with the easy mode of thought with fuzzy logic. Fuzzy logic is an extension of classical logic. Fuzzy logic considers not only the classic cut-and-dry states such as yes/no, true/false, but also the many intermediate states.
 For example, I consider the lower limit of the set “long” as three weeks to visit in the summer vacation. The classic logic assigns each length of stay to the set “long”, which is 21 days or longer, but not under 21 days. Therefore, if the length of stay is 22 days, it’s definitely long, if it’s 20 days, it’s not so much.
 The comic affair (difference of only 2 days) corresponds neither to human mode of thought nor to everyday experience such as “very”, “about”. However, it can be explained by the membership value in the fuzzy logic. For example, a length of stay of 20 days could belong to the set “long” at 95%, a length of stay of 18 days (86%) as fairly long.
 The technique of regulation of fuzzy logic, that is, the fuzzy control needs only a verbal description, what one does in which condition. Strictly speaking, the fuzzy control consists of three modules: fuzzification, inference and defuzzification.

花村嘉英(2005)「計算文学入門−Thomas Mannのイロニーはファジィ推論といえるのか?」より英訳 translated by Yoshihisa Hanamura

To merge “the Magic Mountain”

To consider the dynamism of a writing piece, Hanamura (2005) examines the irony of Thomas Mann as a kind of inference because his irony can be seen as a concrete application of his knowledge. This time I select the Magic Mountain because the irony in the Magic Mountain can be seen as an intersection of his irony throughout his works.
Sometimes the irony is also told as the beginning of individual subjective affirmation. Of course, I have a certain affinity to his irony. One needs irony to make the logical impossibility of parallel opposition possible. The irony makes the conflicting sentence invalid because it doesn’t know the final decision. That is the inference.
Irony connects point of views such as “neither nor” and “as well as” to the dialectical unit. It makes reservations for both sides, therefore it can engage in both sides at the same time. Irony appears as a necessary accessory of the humane life form. Given another function, irony also provides an aesthetic component, where it is an expression of aesthetic indifference and is affected by the universal empathy.
One can see it in the Magic Mountain as persistence to a scary degree. That is for example, the irony of Hans Castorp. He takes the viewpoints of both sides alternately, while criticizing one of the sides each time. The irony of Hans Castorp is simply the expression of double conflicting engagement.
Certainly, it was until now hard to represent irony in the area of theoretical linguistics. Hence I choose “fuzzy logic” as a trial, because one can find the point of contact between the irony of Thomas Mann and the fuzzy logic of Rotfi A. Zadeh.

花村嘉英(2005)「計算文学入門−Thomas Mannのイロニーはファジィ推論といえるのか?」より英訳 translated by Yoshihisa Hanamura

2018年03月02日

マクロの文学分析と計算文学の定義

 マクロの文学分析とは、地球規模が東西南北、できればオリンピック、フォーマットのシフトは、縦横に購読脳と執筆脳を置いてLでマージをする。そのためにリレーショナルなデータベースを作成し、データを処理していく。データベースは、今のところ、魯迅、鷗外、井上靖、トーマス・マン、ナディン・ゴーディマである。今後、バランスを取りながら、作家の数を増やしていく予定である。

 私のブログでいう計算文学とは、論理計算と統計処理からなる文学分析(カリキュレーション)を指す。脳の細胞の分析とか数理や技術を駆使するコンピューティングも含めた理系の手法とは異なる。あくまで、小説のデータベースを作成し、そこから作家の執筆脳を分析するというスタンスである。

花村嘉英ブログ「トーマス・マンとファジィ」より

2017年12月20日

ラフ集合からThomas Mannの「魔の山」を考える6

4 質疑応答の一例

 計算文学を研究するためのシステムは、あるのかないのか。つまり、どこがスタートラインで、どのような基礎研究があり、それはどのような形で応用編へ展開していくのか。
⇒ 人文から見た計算文学は、認知のTの逆さの定規を言語と情報の認知に分けたLのフォーマットによる、作家の執筆脳の研究である。縦の購読脳だけではない。
現在、「魔の山」のDBを作成している。Excel上にシートを分けて、あらすじをまとめ、イディオムや形容詞といった用語類とか音に関する情報そしてまたThomas Mannのイロニーが読み取れる文章などを抽出している。良いDBを作るには、関連文献と共に作品自体を何度も重ねて読む必要がある。
⇒「魔の山」のDBを使用して、推定による統計を試みている。データが比較的大きいためである。
ラフ集合をベースとした研究分野にテキストマイニングがある。まず、DBを作成するために、テキストデータの収集方法を検討しなければならない。例えば、非定型文の場合、不要な情報が大半を占めるため、分析する上で不満が残る。より具体的な情報を得るには、文章が完成した定型自由文を用いるほうが良い(林 俊克2002)。そこから、Thomas Mannのイロニーにまつわる因果関係を探ることはできる。筆者がかねてから思っているように、「魔の山」を単体レベルではなく、他の作家のDBとマージすると面白い。
⇒ 他の作家の候補として、魯迅、ナディン・ゴーディマ、森鴎外、井上靖、川端康成などを考えている。地球規模を意識して、東西南北にバラつくように作家を選んだり、男と女の割合も7対3ぐらいになるようにしていきたい。

参考文献

花村嘉英 (2005)  計算文学入門−Thomas Mannのイロニーはファジー推論といえるのか? 新風舎 
花村嘉英 (2017)  Thomas Mann “Der Zauberberg”のデータベース
林俊克 (2002)  Excelで学ぶテキストマイニング入門、オーム社
津本周作 (2001) ラフ集合論の現状と課題、日本ファジー学会誌552-561
Mann, Thomas (1974)  Der Zauberberg, Fischer Verlag.

花村嘉英 (2017)「ラフ集合でThomas Mannの「魔の山」を考える−テキストマイニングのトレーニング」より

ラフ集合からThomas Mannの「魔の山」を考える5

3 まとめ

 周知のように、ラフ集合は、表形式のデータからどのような知識を抽出できるのかを問題にする。例えば、近似の観点から見ると、対象となる概念の肯定的な側面と否定的な側面を持つ知識を抽出することに特徴がある。一方、縮約の立場から見ると、概念の肯定的な側面を表現する最小限の属性集合を求めることに特徴がある。 
 現在作成しているThomas Mannのイロニーに関するDBは、1 「計算文学入門の概要」中でも示した通り、彼のイロニー自体が物事を肯定的にも否定的にも考察することから、ラフ集合によるアプローチは面白いと考えられる。また、ラフ集合の考え方を基とするテキストマイニングについては、Thomas Mannのイロニーが読み取れるような文章を抽出しながら話を進めれば、計算文学において価値のある基礎研究となるであろう。

花村嘉英 (2017)「ラフ集合でThomas Mannの「魔の山」を考える−テキストマイニングのトレーニング」より

ラフ集合からThomas Mannの「魔の山」を考える4

2.2 縮約

 データからパターンを抽出する際、最も簡単なルールを求めたい。ラフ集合の場合は、下近似の部分集合がルールを与えることから、属性の集合を満たす集合により下近似の部分集合を与え、属性数が最小のものを求めることによりルールが生成される。
 前節は、属性が一つの場合を扱ったが、実際に下近似を生成するには、複数の[属性=値]の連言による分割を考える必要がある。例えば、症状と喫煙の連言を考えてみよう。{{1},{2},{3,4},{5,6}}という分割が生成され、クラスの分割に一致した下近似と上近似が求められる。
 必要最小限の属性のみを抽出することは、簡略化と呼ばれる。また、ラベルの下近似を与える最小限の属性集合は、縮約と呼ばれる。{症状と喫煙}は、縮約の一例となる。最小限の[属性=値]の対を持つ規則は、必要最小限の属性数を持つ縮約から求めることができる。例えば、表1の場合、{症状と喫煙}という縮約から、以下のルールを求めることができる。

(3)[症状=重い(慢性)]⇒[クラス=長い]、[症状=重い(急性)]⇒[クラス=短い]、[症状=軽い]∧[喫煙=しない]⇒[クラス=中位]、[症状=軽い]∧[喫煙=する]⇒[クラス=長い]

 次に、[クラス=中位]を満たす集合{1}について考えてみよう。この{1}が、他のクラスを満たす集合{2},{3,4},{5,6}から特定できるような属性の集合を求める。レコード1と属性年代により特定できないレコードの集合を[1]年代と表記すると、属性年代、性別、病名、症状、喫煙に対して、以下のことが定義できる。

(4)
[1]年代=[1,2,3]
[1]性別=[1,5] [1]病名=[1,2,5] [1]症状=[1,2]
[1]喫煙=[1,3,4,5,6]

{1}の部分集合となるものは存在しないので、一つの属性だけで[クラス=中位]を分類することができる情報はない。そこで、これらの属性間の連言を考えてみる。[年代=20-29]∧[性別=女]を満たす集合は、[1]年代∩[1]性別として表記される。この場合、縮約の候補は、以下のようになる。

(5)
[1]性別∩[1]症状=[1]
[1]症状∩[1]喫煙=[1]

{性別,症状}、{症状,喫煙}あたりが候補となりそうだ。{2},{3,4},{5,6}についてもこの方法を適用すると、{症状,喫煙}が縮約となることがわかる。ここまでが、属性数2の縮約である。
次に、属性が3つある縮約を求めてみよう。これまでの議論からわかるように、この縮約は、属性数3となる候補のうち{性別,症状}を包含する属性の集合から生成される。この場合は、{1}ではなく{2},{3,4},{5,6}に関して計算しなければならない。例えば、

(6)
[2]性別∩[2]症状=[2]
[3]性別∩[3]症状=[3,4]
[4]性別∩[4]症状=[3,4]
[5]性別∩[5]症状=[5]
[6]性別∩[6]症状=[6]

となるので、3番目のレコードに着目すれば、

(7)
[3]性別∩[3]症状∩[3]年代=[3]
[3]性別∩[3]症状∩[3]病名=[3,4]
[3]性別∩[3]症状∩[3]喫煙=[3,4]

が得られる。{性別,症状、喫煙}は、{症状,喫煙}を部分集合として含むので、{性別,症状、年代}、{性別,症状、病名}が縮約となる。同様にして、4番目のレコードに着目すれば、

(8)
[4]性別∩[4]症状∩[4]
年代=[4] [4]性別∩[4]症状∩[4]病名=[3,4]
[4]性別∩[4]症状∩[4]喫煙=[3,4]

が得られ、3番目のレコードと同じ結果となる。以上のことから 表1のクラスに関する縮約は、{症状,喫煙}、{性別,症状,年代}、{性別,症状、病名}となる。 ここまで述べてきた計算方法は、一つずつ属性を追加していくことにより縮約にたどりつくボトムアップ型であるが、ラフ集合にはこれとは別に、決定ルールから出発するトップダウン型の計算方法がある。例えば、1番目のレコードは、次のような形式によって記述される。

(8)[年代=20-29]∧[性別=女]∧[病名=持病]∧[症状=軽い]∧[喫煙=しない]⇒[クラス=中位]

これらの属性のうち何が削除されると矛盾が生じるだろうか。例えば、症状と喫煙を削除すると、次のような二つの決定ルールが生成される。

(9)a [年代=20-29]∧[性別=女]∧[病名=持病]⇒[クラス=中位]
(9)b [年代=20-29]∧[性別=女]∧[病名=持病]⇒[クラス=短い]

 ラフ集合では、このことを矛盾が発生したと言う。つまり、{症状,喫煙}は、ルールの記述になくてはならない属性の集合を与えている。この手続きを残りの{2,3,4,5,6}に関しても適用すると、最終的に、{症状,喫煙}、{性別,症状,年代}、{性別,症状、病名}が表1の分類に不可欠な属性の集合となり、これらが縮約となる。

花村嘉英 (2017)「ラフ集合でThomas Mannの「魔の山」を考える−テキストマイニングのトレーニング」より

ラフ集合からThomas Mannの「魔の山」を考える3

2 ラフ集合

 津本(2001)に基づき平易なラフ集合の考え方を紹介する。津本論文は、データベース(DB)の中にある集合体の近似的な表現とそれに必要な最小限の属性集合(縮約と呼ばれる)の求め方を説明している。

2.1 近似

 「魔の山」の登場人物が患っている病気の症状(表1)について考えてみる。

表1 登場人物の病気の症状
No. (名前または
ニックネーム)     年代   性別  病名     症状     喫煙  クラス(療養所の滞在期間)
1.
Claudia Chauchat   20-29  女   持病    軽い(慢性)  なし    中位
2.
Hans Castorp     20-29  男  持病(カタル) 軽い(慢性) あり    長い
3.
Joachim Ziemßen   20-29  男  発熱(肺痛) 重い(慢性)  なし   長い
4.
爪を噛む青年     10-19   男   発熱      重い(慢性) なし    長い
5.
Barbara Hujus     20-29  女   持病     重い(急性) なし    短い
6.
Tou-les-deuxの長男   10-19  男  チフス    重い(急性)  なし    短い

この表は、1から6までのレコードを持っている。そして、内容は、属性の集合{年代、性別、病名、症状、喫煙}と所属クラス(サナトリウムの滞在期間)である。それぞれ属性には、値の集合がある。例えば、病名に関して大きく分類すると、{持病、発熱、チフス}がそれに当たる。
周知のように、ラフ集合は、各属性がデータの集合{1,2,3,4,5,6}の分割を与えるところに原点がある。[病名=持病]、[病名=発熱]、[病名=チフス]を満たすデータの部分集合は、{1,2,5}、{3,4}、{6}である。表1は、他の属性についても同様の分割を与えている。次に、レコードのラベル付けを考える。ここでは、クラスをそのラベルと仮定する。[クラス=中位]に注目すると、これを満たすデータは、{1}である。これらをまとめると、表2となる。

表2 分割の例
病名による分割  クラスによる分割
持病 {1,2,5}    短い {5,6}
発熱 {3,4}     中位 {1}
チフス{6}     長い {2,3,4,}

病名による分割とクラスによる分割から何が言えるであろうか。一番簡単なことは、[病名=チフス]を満たす分割が、[クラス=短い]を満たす分割の部分集合となっていることである。古典論理によれば、こうした関係は、次のように表記される。

(1)[病名=チフス]⇒[クラス=短い]

ラフ集合では、[病名=チフス]を満たす分割を[クラス=短い]の下近似と呼ぶ。[病名=チフス]を満たせば、クラスは短いが確定するためである。 次に、[クラス=短い]のすべてをカバーする分割について考えてみよう。上述の例では、[病名=持病]を満たす集合と[病名=チフス]を満たす集合の和集合が{1,2,5,6}となり、[クラス=短い]を部分集合とすることができる。これらの集合間の関係は、古典論理を用いると、次のように表すことができる。ラフ集合では、これらの病名に関するデータの分割をそれぞれのクラスの上近似と呼ぶ。

(2)[クラス=短い]⇒[病名=持病]∨[病名=チフス]

この結果、[クラス=短い]の下近似は、[病名=チフス]を満たす集合、上近似は、[病名=持病]または[病名=チフス]を満たす集合で与えられる。これらの関係は、表3にまとめられる。

表3 病名よる上近似と下近似
クラス 分割 上近似 下近似
短い {5,6} {6} {1,2,5,6}
中位 {1}   { } {1,2,5}
長い {2,3,4} { } {1,2,3,4,5}

ラフ集合は、近似の質をcard(下近似)/card(上近似)により定義する。例えば、[クラス=短い]の場合、近似の質は、1/4 =0.25である。一方、症状であれば、表4のような近似が得られる。

表4 症状よる上近似と下近似
クラス 分割  上近似 下近似
短い {5,6}  {6} {1,2,5,6}
中位 {1}    { } {1,2,5}
長い {2,3,4}  { } {1,2,3,4,5}

この表から分かるように、例えば、[クラス=短い]の場合、近似の質は、2/2 =1.0である。
ラフ集合では、各属性がデータ集合の分割を構成し、その分割によってクラスや決定属性といったデータのラベルと属性との関係について、近似とその質が測定されていく。その際、ラベルを上近似と下近似で押さえるということが、ラフ集合の特徴として上げられる。

花村嘉英 (2017)「ラフ集合でThomas Mannの「魔の山」を考える−テキストマイニングのトレーニング」より

ラフ集合からThomas Mannの「魔の山」を考える2

1 「計算文学入門」の概要

本書は、タイトルにもあるように計算文学の入門編という位置づけである。計算文学は、人文科学と情報科学によるシナジー効果を探るための研究分野の一つと言える。しかし、闇雲に勉強したところで、マージなどできるはずがない。まず、スタートラインに立つために、ポイントとなる組み合わせを探る必要がある。周知のように、人間とコンピュータの間にロジックを立てることは標準となっており、「Thomas Mannはファジーネス」といった組み合わせを見つけることができれば、仮に既に亡くなってしまった作家の分析をコンピュータ上で行う場合でも、結合や比較といった単体的な処理ではなく、マージのための方向性を規定することができる。無論、言語系のロジックは、システム系と仕組みが異なるため緩衝材が必要となる。
Thomas MannのイロニーとZadehのファジー理論は、それぞれ次のように定義されている。

Baumgart(1964:22)によるThomas Mannの「イロニー」の定義。
”Als die Bedingung seines Prosas hält Thomas Mann immer die Distanz zur Wirklichkeit, einmal um sie so genau wie möglich zu betrachten, einmal sie zu kritisieren, das heißt ironisch. …Die kritische Distanz könnte zu einer ironischen Distanz werden. Tatsächlich ist der kritischen Prägnanz eine Art Grenze gesetzt, die aus der Beschaffenheit des sprachlichen Medium selbst dem Bedürfnis nach einer restlos präzisierten Begriffssprache entgegenwirkt.”
「Thomas Mannは、散文の条件として常に現実から距離をとる。一つには、現実をできるだけ正確に考察するために、また一つには、それを批判するために、つまり、イロニー的に。・・・この批判的な距離は、イロニー的な距離となるであろう。実際、批判的な表現上の簡潔さには、余すところなく正確に規定された概念言語の要求に対して、言語媒体そのものの特徴から反対の行動をとるある種の制限が設けられている。」

Yager et al(1987: 23)によるZadehの「ファジー理論」の定義。
”There is an incompatibility between precision and complexity. As the complexity of a system increases, our ability to make precise and yet non-trivial assertions about its behavior diminishes. For example, it is very difficult to prove a theorem about the behavior of an economic system that is of relevance to real-world economics.”
「正確さと複雑さは、両立が困難である。システムの複雑さが増すと、その振舞いについて正確ではっきりとした主張はできなくなってくる。例えば、現実の経済と関連したシステムの振舞いを推測することは、大変に難しい。」

双方の定義間にあるギャップを埋めるために、言語系とシステム系の論理をつなぐ緩衝材として論理文法を使用する。(詳細については、「計算文学入門」の第2章「論理文法の基礎」を参照すること。) 論理文法は、小史を兼ねてHPSG(Head Driven Phrase Structure Grammar)、Montague Grammar、DRT(Discourse Representation Theory)、直感主義の論理などを経てファジー理論へと進んで行く。その際、Richard Montague による言語分析(PTQ)とThomas Mannの「魔の山」をマージすることにより、何か異質のもの(ここではファジー推論)を引き出せるかどうかがポイントとなる。つまり、Thomas Mannのイロニーを形式論によって記述する場合、ファジー推論を選択することが現状ではベストであるという結論を探っていく。
「魔の山」からの分析は、上述したイロニー的な距離が問題となる。特に、主人公のHans CastorpとChaucha夫人との距離、さらに、ダボスの療養所に勤務する医者のDr. Krokowski(Behrens院長の助手)を仲介としたHans Castorpと甥のJoachim Ziemßen との距離が問題となっている。距離を測定するために、ファジー化、ファジー推論および脱ファジー化という技法が使われる。また、推論の基礎をなす記憶についても言及がある。(詳細については、「計算文学入門」の第3章「やさしい曖昧な数学」を参照すること。)

花村嘉英 (2017)「ラフ集合でThomas Mannの「魔の山」を考える−テキストマイニングのトレーニング」より

ラフ集合からThomas Mannの「魔の山」を考える1

0 はじめに

 Thomas Mann(1875−1955)の「魔の山」(Der Zauberberg)は、1924年、Fischer Verlagから出版され、評論、翻訳、テキスト言語学、映画といった主に文系の分野で研究がなされてきた。しかし、ここでは、この作品を計算文学というシナジーの領域で考察していく。出発点は、「計算文学入門」の中で説明したThomas Mannのイロニーとファジー推論の整合性の良さである。それをベースにスイスのダボスにあるサナトリウムの患者について表形式のデータを作成し、その一部を平易なラフ集合の概念に基づいて分析していく。「計算文学入門」は、記号論理を用いてThomas Mann のイロニーを分析しているが、 Zadeh自身がシステム系のファジー理論を言語系にアレンジしたように、本稿では、ラフ集合を言語系にアレンジしながらデータを処理していくため、テキストマイニングのトレーニングとしての位置づけもある。

花村嘉英 (2017)「ラフ集合でThomas Mannの「魔の山」を考える−テキストマイニングのトレーニング」より

2017年12月09日

Thomas Mannの「魔の山」のデータベース化と推定からの分析7

7 まとめ

 「魔の山」のデータベースの作り方と統計処理の推定による分析例を説明した。論理計算によるトーマス・マンとファジィというシナジーのメタファーを支えるために、データベースを作成し、実験を重ねてさらに客観性を上げていくつもりである。
 問題解決の場面には、作家の執筆脳に関する情報が見え隠れしているため、さらに他のカラムと調節しながら、考察を続けていきたい。

【参考文献】
花村嘉英 計算文学入門−Thomas Mannのイロニーはファジィ推論といえるのか?
     新風舎 2005
花村嘉英 从认知语言学的角度浅析鲁迅作品−魯迅をシナジーで読む 
     華東理工大学出版社 2015
花村嘉英 森鴎外の「山椒大夫」のDB化とその分析 中国日语教学研究会江苏分会 2015
花村嘉英 森鴎外の「佐橋甚五郎」のデータベースとバラツキによる分析 
     中国日语教学研究会江苏分会 2016
花村嘉英 日本語教育のためのプログラム−中国語話者向けの教授法から森鴎外の
     データベースまで 南京東南大学出版社 2017
Mann, Thomas: Der Zauberberg, Frankfurt a. M., Fischer 1986
日本成人病予防協会監修:健康管理士一般指導員通信講座テキスト 2014
佐々木隆宏 流れるようにわかる統計学 東京:KADOKAWA 2017

花村嘉英(2017)「Thomas Mannの「魔の山」のデータベース化と推定からの分析」より

ファン
検索
<< 2024年09月 >>
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30          
最新記事
写真ギャラリー
最新コメント
タグクラウド
カテゴリーアーカイブ
プロフィール
花村嘉英さんの画像
花村嘉英
花村嘉英(はなむら よしひさ) 1961年生まれ、立教大学大学院文学研究科博士後期課程(ドイツ語学専攻)在学中に渡独。 1989年からドイツ・チュービンゲン大学に留学し、同大大学院新文献学部博士課程でドイツ語学・言語学(意味論)を専攻。帰国後、技術文(ドイツ語、英語)の機械翻訳に従事する。 2009年より中国の大学で日本語を教える傍ら、比較言語学(ドイツ語、英語、中国語、日本語)、文体論、シナジー論、翻訳学の研究を進める。テーマは、データベースを作成するテキスト共生に基づいたマクロの文学分析である。 著書に「計算文学入門−Thomas Mannのイロニーはファジィ推論といえるのか?」(新風舎:出版証明書付)、「从认知语言学的角度浅析鲁迅作品−魯迅をシナジーで読む」(華東理工大学出版社)、「日本語教育のためのプログラム−中国語話者向けの教授法から森鴎外のデータベースまで(日语教育计划书−面向中国人的日语教学法与森鸥外小说的数据库应用)」南京東南大学出版社、「从认知语言学的角度浅析纳丁・戈迪默-ナディン・ゴーディマと意欲」華東理工大学出版社、「計算文学入門(改訂版)−シナジーのメタファーの原点を探る」(V2ソリューション)、「小説をシナジーで読む 魯迅から莫言へーシナジーのメタファーのために」(V2ソリューション)がある。 論文には「論理文法の基礎−主要部駆動句構造文法のドイツ語への適用」、「人文科学から見た技術文の翻訳技法」、「サピアの『言語』と魯迅の『阿Q正伝』−魯迅とカオス」などがある。 学術関連表彰 栄誉証書 文献学 南京農業大学(2017年)、大連外国語大学(2017年)
プロフィール
×

この広告は30日以上新しい記事の更新がないブログに表示されております。