2019年03月29日
小脳と直観@
最終的には、心の働きの脳内メカニズムについて述べていきます。
判断力・直観力
小脳と直観@
“体で覚える”記憶を作る小脳
理化学研究所脳科学総合研究センター特別顧問の伊藤正男(いとう まさお)博士は、
直観が生じる場所については、大脳基底核の他にもう一つ、別の場所を提案している。
小脳である。
小脳は、大脳の後方かつ下方に位置する脳の部位で、運動を学習する領域だ。
初めてスキーを滑る人が、スキーの滑り方を書いた本をいくら読んでも、決して上手く滑れるようにはならない。
スキー場で何度も転びながら、体で覚えるしかない。
自転車の乗り方もそうだし、泳ぎ方も同じだ。
こうした体で覚える運動の記憶は、大脳ではなく小脳の仕事である。
伊藤博士は、小脳研究の専門家だ。
伊藤博士が発見した小脳記憶のメカニズムは、面白いことに、大脳の海馬などで主に使われる仕組みとは正反対のものだった。
海馬の記憶が“書き込み方式”だとすれば、小脳の記憶は“消去法”によって行われるのである。
私たちの運動にミスが生じると、無駄な運動を導くような小脳のシナプスが回路から消される。
そして、残ったシナプスだけが熟練した動きを実現するのだ。
小脳は、“失敗された”シナプスを消していくことで運動の記憶を作る
小脳は、スキーの滑り方、自転車の乗り方、泳ぎ方など、運動の記憶を作るところだ。
「失敗しながら覚えていく」という言葉通り、失敗した経験は、失敗時に活動していた、小脳皮質のシナプスを消すことで記憶されていく。
このような働きをしている小脳からは、大脳の一次運動野や脊髄にニューロンが伸びており、運動を調節するのに役立っている。
また一次運動野から小脳に伸びているニューロンもある。
小脳
小脳の体積は、大脳の10分の1しかない。
しかしその表面積は大脳の半分以上あり、ニューロンの数では大脳の約140億個に対して小脳は1000億個にもなると言われる。
大脳と小脳の間にできた連絡路
体を動かす指令は、一次運動野から伸びたニューロンが脊髄へと伝えるが、
橋核を経由して小脳皮質にも伝わる。
その信号は小脳皮質で処理される。
小脳からの出力は脊髄に向かって運動を調整する。
小脳からは大脳へも出力しており、大脳と小脳は、下オリーブ核から登上線維が入力する。
小脳の記憶は「消去法」
大脳からやってきた信号は平行線維を伝わり、シナプスを通じてプルキンエ細胞に伝達される。
運動の熟練が起きる前は、多くのシナプスが効率よく信号を伝えている。
ところがスキーで転ぶなど運動にミスが生じると、エラー信号が登上線維を通じてプルキンエ細胞に伝わる。
すると、その時活動していた平行線維とプルキンエ細胞との間のシナプスで伝達効率が著しく低下する。
この現象を「長期抑圧LTD(長期増強)」と呼ぶ。
無駄な運動の原因となったシナプスはこうして回路から消され、エラー信号に出会わずに済んだシナプスだけが回路に残されて熟練した動きを実現する。
伊藤博士は、長期抑制が小脳で起きていることを世界で初めて証明した。
皮質にある「小脳チップ」
一次運動野からきた信号は、小脳のシワに平行して伸びている平行線維によって、プルキンエ細胞に伝えられる。
プルキンエ細胞は、小脳のシワに垂直な方向に扇のように樹状突起を広げており、そこで平行線維とシナプスを作っている。
プルキンエ細胞からは軸索を通じて小脳皮質以外の部位へと信号を出力する。
プルキンエ細胞には、下オリーブ核から伸びてきたニューロンである登上線維が植物のつるのように巻きついており、それがエラー信号をプルキンエ細胞に伝える。
こうした一連の構造は「微小帯域」あるいは「小脳チップ」などと呼ばれ、小脳皮質の機能単位を構成している。
小脳皮質にはこうした微小帯域が5000個ほどあると見積もられている。
参考文献:ニュートン別冊 脳力のしくみ 2014年7月15日発行
判断力・直観力
小脳と直観@
“体で覚える”記憶を作る小脳
理化学研究所脳科学総合研究センター特別顧問の伊藤正男(いとう まさお)博士は、
直観が生じる場所については、大脳基底核の他にもう一つ、別の場所を提案している。
小脳である。
小脳は、大脳の後方かつ下方に位置する脳の部位で、運動を学習する領域だ。
初めてスキーを滑る人が、スキーの滑り方を書いた本をいくら読んでも、決して上手く滑れるようにはならない。
スキー場で何度も転びながら、体で覚えるしかない。
自転車の乗り方もそうだし、泳ぎ方も同じだ。
こうした体で覚える運動の記憶は、大脳ではなく小脳の仕事である。
伊藤博士は、小脳研究の専門家だ。
伊藤博士が発見した小脳記憶のメカニズムは、面白いことに、大脳の海馬などで主に使われる仕組みとは正反対のものだった。
海馬の記憶が“書き込み方式”だとすれば、小脳の記憶は“消去法”によって行われるのである。
私たちの運動にミスが生じると、無駄な運動を導くような小脳のシナプスが回路から消される。
そして、残ったシナプスだけが熟練した動きを実現するのだ。
小脳は、“失敗された”シナプスを消していくことで運動の記憶を作る
小脳は、スキーの滑り方、自転車の乗り方、泳ぎ方など、運動の記憶を作るところだ。
「失敗しながら覚えていく」という言葉通り、失敗した経験は、失敗時に活動していた、小脳皮質のシナプスを消すことで記憶されていく。
このような働きをしている小脳からは、大脳の一次運動野や脊髄にニューロンが伸びており、運動を調節するのに役立っている。
また一次運動野から小脳に伸びているニューロンもある。
小脳
小脳の体積は、大脳の10分の1しかない。
しかしその表面積は大脳の半分以上あり、ニューロンの数では大脳の約140億個に対して小脳は1000億個にもなると言われる。
大脳と小脳の間にできた連絡路
体を動かす指令は、一次運動野から伸びたニューロンが脊髄へと伝えるが、
橋核を経由して小脳皮質にも伝わる。
その信号は小脳皮質で処理される。
小脳からの出力は脊髄に向かって運動を調整する。
小脳からは大脳へも出力しており、大脳と小脳は、下オリーブ核から登上線維が入力する。
小脳の記憶は「消去法」
大脳からやってきた信号は平行線維を伝わり、シナプスを通じてプルキンエ細胞に伝達される。
運動の熟練が起きる前は、多くのシナプスが効率よく信号を伝えている。
ところがスキーで転ぶなど運動にミスが生じると、エラー信号が登上線維を通じてプルキンエ細胞に伝わる。
すると、その時活動していた平行線維とプルキンエ細胞との間のシナプスで伝達効率が著しく低下する。
この現象を「長期抑圧LTD(長期増強)」と呼ぶ。
無駄な運動の原因となったシナプスはこうして回路から消され、エラー信号に出会わずに済んだシナプスだけが回路に残されて熟練した動きを実現する。
伊藤博士は、長期抑制が小脳で起きていることを世界で初めて証明した。
皮質にある「小脳チップ」
一次運動野からきた信号は、小脳のシワに平行して伸びている平行線維によって、プルキンエ細胞に伝えられる。
プルキンエ細胞は、小脳のシワに垂直な方向に扇のように樹状突起を広げており、そこで平行線維とシナプスを作っている。
プルキンエ細胞からは軸索を通じて小脳皮質以外の部位へと信号を出力する。
プルキンエ細胞には、下オリーブ核から伸びてきたニューロンである登上線維が植物のつるのように巻きついており、それがエラー信号をプルキンエ細胞に伝える。
こうした一連の構造は「微小帯域」あるいは「小脳チップ」などと呼ばれ、小脳皮質の機能単位を構成している。
小脳皮質にはこうした微小帯域が5000個ほどあると見積もられている。
参考文献:ニュートン別冊 脳力のしくみ 2014年7月15日発行
この記事へのコメント
コメントを書く
この記事へのトラックバックURL
https://fanblogs.jp/tb/8675671
※ブログオーナーが承認したトラックバックのみ表示されます。
この記事へのトラックバック