アフィリエイト広告を利用しています
ファン
<< 2014年02月 >>
            1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28  
最新記事
カテゴリアーカイブ
月別アーカイブ
日別アーカイブ

広告

posted by fanblog

2014年02月13日

ホウ素

ホウ素(ホウそ、硼素、英: boron、羅: borium)は、原子番号5の元素。元素記号は B。第13族元素のひとつ。

1808年にゲイ=リュサックとルイ・テナールの2人の共同作業及びハンフリー・デービーによって単体の分離が行なわれ、アラビア語で「ホウ砂」を意味する Buraq から命名された。



目次 [非表示]
1 歴史
2 性質 2.1 物理的および化学的性質
2.2 化合物 2.2.1 ボラン
2.2.2 窒化ホウ素
2.2.3 金属ホウ化物
2.2.4 有機ホウ化物

2.3 同素体
2.4 同位体

3 存在
4 生産 4.1 市場動向

5 用途 5.1 ガラスおよびセラミックス
5.2 音響機器
5.3 半導体
5.4 建築
5.5 原子力
5.6 有機化学
5.7 生物

6 生物学的役割 6.1 健康問題と毒性

7 脚注
8 参考文献 8.1 和書
8.2 洋書

9 関連項目


歴史[編集]

ホウ素(Boron)の名称は、ホウ砂を意味する[1]アラビア語のبورق (buraq) もしくはペルシャ語のبوره (burah) に起源があるとされる[2]。中国語では10世紀の「日華本草」にペルシャ語の音写としてホウ砂のことを「蓬砂」とした記述がみられ、14世紀には日本に伝来して「硼砂」と記されている[3]。





ホウ素鉱石である硼酸石(サッソライト)
ホウ素化合物の存在は数千年前には既に知られており、西チベットの砂漠から産出したホウ砂はサンスクリット語でチンカルと呼ばれていた。西暦300年頃の中国では既に釉薬としてホウ砂が利用されており、8世紀のペルシャの錬金術師であるジャービル・イブン=ハイヤーンはホウ砂について言及していたとされている。13世紀には、マルコ・ポーロによってホウ砂釉薬を用いた陶磁器がイタリアへと持ち帰られた。1600年ごろにはアグリコラによって冶金学における融剤としての用途が記されている。現代においてホウ素の最大の用途ともなっているガラス向けの用途は1758年に出版されたドッシーによる「技芸の侍女」において初めて言及されているが、当時はホウ砂が高価だったこともありごく一部のガラスに使われていたに過ぎない[4]。

1774年、イタリアのトスカーナ州州都フィレンツェ近郊のラルデレロで産出する地熱蒸気にホウ酸が含まれていることが分かり、ホウ酸工場が設立されて重要なホウ素資源として利用されたが、19世紀にはアメリカ大陸で大規模なホウ酸塩鉱物の鉱床が発見されたためその地位はアメリカに取って代わられた。ホウ素の生産が終了した後、ラルデレロでは高温の地熱蒸気を利用した地熱発電が行われている[3][5]。ホウ素を含む鉱石としては、イタリアのサッソで発見された希少鉱石のサッソライト(英語版)がある。サッソライトは1827年から1872年までの間ヨーロッパにおけるホウ砂の主要な資源として利用されていたが、その後こちらもアメリカ産のものに取って代わられた[6][7]。ホウ素化合物は1800年代まではあまり利用されることがなかったが、「ホウ砂王」とも呼ばれるフランシス・マリオン・スミス(英語版)のPacific Coast Borax Company(英語版)が初めてホウ素化合物の大量生産を行い安価で提供し、普及させた[8]。その後光学ガラスの大規模生産が始まると、ホウ砂はガラス工業において大量に消費されるようになっていった[3]。

ホウ素に関する初期の研究としては、1702年に報告されたホウ砂と硫酸を反応させることによるホウ酸の合成や、1741年に報告されたホウ素が緑色の炎色反応を示すことの発見、1752年に報告されたホウ酸とナトリウムを反応させることによるホウ砂の合成などがある[3]。単体のホウ素はジョセフ・ルイ・ゲイ=リュサックとルイ・テナールの二人[9]と、ハンフリー・デービー[10]がそれぞれ同時期に個別に単離に成功したが、それまでは単一の元素とは認められていなかった。1808年にデービーは、ホウ酸溶液に電気を通して電気分解することによって、一方の電極上に茶色の沈殿が生成されると記している。デービーはそれ以降の実験において、ホウ酸を電気分解する代わりにカリウムで還元させる方法を用いた。デービーはホウ素が新しい元素であることを確かめるために十分な量のホウ素を合成し、この元素をboraciumと命名した[10]。ゲイ=リュサックとテナールは、ホウ酸を還元するために高温で鉄と反応させる方法を採った。彼らはまた、ホウ素を酸素で酸化させることによってホウ酸を合成し、ホウ酸がホウ素の酸化生成物であることを示した[9][11]。イェンス・ベルセリウスは1824年にホウ素の元素としての性質を同定した[12]。その後、多くの化学者によって純粋なホウ素を合成しようと試みられてきたが、そのほとんどは不純物を多く含んだものであり、比較的高純度なものであってもホウ素の純度は85 %を下回っていたと考えられている。これに初めて成功したのはアメリカの化学者であるエゼキエル・ワイントローブであると考えられており、1909年に三塩化ホウ素を電弧中で水素還元させるという方法で純粋なホウ素を合成した[13][14][15][16]。

性質[編集]

物理的および化学的性質[編集]

ホウ素には複数の同素体があり物性値は同素体によって異なる値を示すが、全体として高融点かつ高沸点な硬くて脆い固体である[17]。例えば融点はアモルファスホウ素で2300 °C[18]、β菱面晶ホウ素で2180 °C[19]であり、沸点はβ菱面晶ホウ素で3650 °C[19]。アモルファスホウ素は2550 °Cで昇華する[18]。β菱面晶ホウ素のモース硬度は9.3[20]。比重はα菱面晶ホウ素が2.46、β菱面晶ホウ素が2.35である[18]。

単体のホウ素は金属元素と非金属元素の中間の性質を示す半金属元素であり、安定した共有結合を形成するという点では同じ第13族元素であるアルミニウムやガリウムなどの金属元素よりもむしろ炭素やケイ素と類似した性質を示す[21]。これはホウ素の第一イオン化エネルギーが8.296 eVと非常に高いためイオン化しにくく、2s22p1の最外殻電子がsp2混成軌道を形成する方がエネルギー的に有利であることに起因する[22]。単体ホウ素におけるホウ素同士の結合もまた共有結合性が強いため、自由電子として導電性に寄与できる電子が少なく、導電性を示すものの導電性は低いという半金属に特有な性質が現れる原因となる[23]。また、このような電気的特性を有するため単体ホウ素は半導体としての性質を示す[24]。

結晶性ホウ素は化学的に不活性であり、フッ化水素酸や塩酸による煮沸に対しても耐性を示す。微細粉末は熱濃過酸化水素や熱濃硝酸、熱硫酸もしくは熱クロム酸混液に対して徐々に侵される[14]。ホウ素の酸化率は結晶化度、粒径、純度および温度に依存する。ホウ素は室温では空気と反応しないが、高温では燃焼して酸化ホウ素を形成する[25]。
4 B + 3 O2 → 2 B2O3
ホウ素はハロゲン化によって三ハロゲン化物を形成する。
2 B + 3 Br2 → 2 BBr3
三塩化ホウ素は通常、酸化ホウ素から合成される[25]。

化合物[編集]

ホウ素の化合物は通常+3価の形式酸化数を取る。これらには酸化物、硫化物、窒化物およびハロゲン化物が含まれる[25]。





三フッ化ホウ素の構造。π供与性配位結合におけるホウ素の空のp軌道を示す。
三ハロゲン化物は平面三角形構造を取る。それらの化合物はホウ素上に6つの電子しか持たないためオクテット則を満たしておらずルイス酸としてはたらき、ルイス塩基のような電子対供与体と即座に反応する。例えば三フッ化ホウ素 (BF3) はフッ化物イオン (F−) と反応してテトラフルオロホウ酸塩アニオン (BF4-) を与える。三フッ化ホウ素は石油化学産業において触媒として利用される。三ハロゲン化ホウ素は水と反応してホウ酸を形成する[25][26]。





四ホウ酸アニオン([B4O5(OH)4]2−)の棒球モデル。結晶質のホウ砂 (Na2[B4O5(OH)4]・8H2O)中などで見られる。ピンク色のホウ素原子が赤色の酸素原子に架橋されており、端には白色の水素原子を伴う4つの水酸基がある。4つのホウ素の内、右上と左下の2つはsp2混成軌道による平面三角形構造を形成して電気的に中性となっているが、残り2つのホウ素はsp3混成軌道による四面体構造を形成してそれぞれ-1価の電荷を持っている。全てのホウ素の酸化数は+3価である。このように、配位数と電荷の異なったホウ素の混合は天然ホウ素の特色である。
ホウ素は地球上の自然中においては様々な種類の+3価の酸化物として見られ、しばしば他の元素と結合している。100種類以上のホウ酸塩鉱物でホウ素は+3価のホウ素を含んでいる。これらのホウ酸塩鉱物はいくつかの点でケイ酸塩鉱物と類似しているが、SiO4の四面体構造が構造の基本単位となっているケイ酸塩とは異なり、ホウ酸塩はBO4の四面体構造だけでなくBO3の平面三角形構造の基本単位も多く見られる[27]。典型的な例としては、一般的なホウ酸塩鉱物の一つであるホウ砂における四ホウ酸アニオンがある(左図)。四ホウ酸アニオン中のホウ素は平面三角形構造と四面体構造の2種類の構造を取っており、四面体構造を取っているホウ素は負の電荷を有している。この負の電荷は、例えばホウ砂におけるナトリウム (Na+) のような金属陽イオンとの間で釣り合っている[25]。

ボラン[編集]

ボランはホウ素と水素の化合物であり、BxHyの組成式で表される。これらの化合物は自然中で形成されることはない。ボランの多くは空気と接触すると激しく反応してすぐに酸化される。狭義にボランと言えばBH3を指し、これはガス状の化合物であり二量体のジボランを形成する。より大きなボランは全て多面体構造のホウ素クラスターの集合からなり、そのいくつかは異性体として存在する。例えばB20H26の異性体は、ホウ素が10原子集まったクラスター2つが融合して形成される。

ボランのうち重要なものにはジボラン2H6および、ペンタボラン5H9、デカボランB10H14とその2つの熱分解物がある。多数の水素化ホウ素アニオンが知られており、例えば[B12H12]2-がある。

ボランの形式酸化数は正であり、水素はヒドリドのように-1価としてカウントされるという仮定に基き計算される。ホウ素の平均酸化数は単純に分子中の水素とホウ素の原子数比である。例えばジボラン2H6ではホウ素の酸化数は+3価であるが、デカボランB10H14においては7/5価もしくは1.4価である。これらの化合物においては、ホウ素の酸化数はしばしば整数とはならない。

窒化ホウ素[編集]

窒化ホウ素は様々な構造を取り、それらはダイヤモンドやカーボンナノチューブを含む炭素の同素体に似た構造を取る。ダイヤモンド様の構造をした窒化ホウ素は立方晶窒化ホウ素と呼ばれ、ホウ素原子はダイヤモンドの四面体構造における炭素原子の位置に存在しているが、4つのB-N結合の内の一つは配位結合と見ることができる。すなわち、三フッ化ホウ素の場合と同様に、3つの窒素原子とホウ素原子が結合することで3つのB-N結合と1つの空軌道が形成され、窒素の2つの電子がルイス塩基としてホウ素上の空軌道へ供与されることで4つ目のB-N結合が形成されることとなる。立方晶窒化ホウ素はダイヤモンドに匹敵する硬さを有しているため研磨剤に用いられる。黒鉛様の六方晶窒化ホウ素 (h-BN) は正の電荷を持つホウ素と負の電荷を持つ窒素が交互に配列した平面構造が層状に積み重なったを構造を取る。そのため、六方晶窒化ホウ素とグラファイトは共に層間の滑りによる潤滑性を示すという類似した性質もあるものの、非常に異なった性質も示す。例えば、黒鉛は優れた熱伝導性および電気伝導性を示すが[28]、h-BNは平面方向の熱伝導性および電気伝導性が比較的乏しい[29][30]。

金属ホウ化物[編集]

ホウ素は非常に多くの元素との間でホウ化物を形成するが、特に金属元素との間で形成されるホウ化物は金属的な性質を示すことが多いことから、ホウ素自身は非金属元素であるものの、しばしばホウ素合金として扱われる[31]。金属ホウ化物は一般的に高硬度、高融点、低反応性といった性質を示す[32]。金属ホウ化物の多くはホウ素と金属元素を共に溶融もしくは焼結させることによって合成することが可能であり、ホウ化鉄やホウ化クロムなどの工業的製造法としては高純度なものは得られにくいものの大量生産が可能なテルミット反応などの直接還元法が利用されている[33]。金属ホウ化物はホウ素原子と金属原子との間に化学量論的な関係が見られないことが多い。これは、金属原子が形成する立体構造の空隙に遊離したホウ素原子が取り込まれた構造を取るものや、逆にホウ素が形成する立体構造の空隙に遊離した金属原子が取り込まれた構造を取るものが多く存在するためである[34]。金属ホウ化物として重要なものにホウ化鉄(フェロボロン)があり、Fe2BやFeB、Fe2B5などが知られている[35]。ホウ化鉄は製鉄の原料として焼入れや溶接に関する性能向上に利用される[36]。ホウ素はこのような二元化合物のみならず、複数の金属元素との間に他元化合物を形成することも知られている[37]。代表的なものに、非常に強力な磁力を有するネオジム磁石として利用されるネオジム-鉄-ホウ素の三元化合物であるNd2Fe14Bがある[38]。

有機ホウ化物[編集]

数千種類におよぶ有機ホウ化物の存在が知られており、代表的なものにトリエチルボランやボロン酸のようなアルキルホウ素化合物、ボラジン誘導体のような複素環式化合物などが存在する。アルキルホウ素化合物はハロゲン化ホウ素とグリニャール試薬を用いて合成され、アリールホウ素化合物も同様に合成することができる。トリアルキルホウ素を含むアルキルボランはヒドロホウ素化反応によってボランから合成される[39]。トリエチルボランなどのトリアルキルホウ素化合物は空気中で酸素と反応して自然発火する自然発火性物質であるが、一方でトリフェニルボランのようなトリアリールホウ素化合物は空気中で燃焼しない[40]。ハロゲン化ホウ素は4倍モル当量のアルキル化剤もしくはアリール化剤と反応させると、トリアルキルもしくはトリアリールホウ素からさらに反応が進行してテトラアルキルもしくはテトラアリールホウ酸イオンが生成される。このような化合物としてはテトラフェニルホウ酸ナトリウムやテトラメチルホウ酸リチウムなどがあり、テトラフェニルホウ酸ナトリウムはカリウムやルビジウムなどの重アルカリ金属元素を分離するのに用いられる[39]。

同素体[編集]

詳細は「ホウ素の同素体」を参照





アモルファスホウ素
ホウ素には7つの同素体が存在しており、それらは結晶およびアモルファスの構造を取る。よく知られているものにα-菱面体、β-菱面体、β-正方晶があり、特殊な条件下ではα-正方晶やγ-斜方晶のような形も取る。アモルファスの同素体には、微細な粉末状のものとガラス状のものの2つが知られている[41][42]。標準状態において最も安定なものはβ-菱面体晶であり、他の同素体は全て準安定状態である[43]。少なくとも14以上の同素体が報告されているが、前述の7つ以外の同素体は弱い論拠に基いたものであったり実験的に立証できなかったりするため、それらは単一の同素体ではなく複数の同素体の混合物や不純物によって安定化した構造であると考えられている[44][42][45][46]。




α

β

γ

β


結晶形
菱面体晶 菱面体晶 斜方晶 正方晶

原子数/単位格子[46]
12 105‒108 28 192

密度 (g/cm3)[47][48][49][50]
2.46 2.35 2.52 2.36

ビッカース硬度 (GPa)[51][52]
42 45 50–58

体積弾性係数 (GPa)[52][53]
185 224 227

バンドギャップ (eV)[52][54]
2 1.6 2.1 〜2.6[55]

同位体[編集]

詳細は「ホウ素の同位体」を参照

天然に存在するホウ素は2種類の安定同位体から成っており、11Bが80.1 %、10Bが19.9 %を占める。天然存在比11B/10Bの値と実測の11B/10Bの値の差として定義される質量差δ11Bは伝統的に‰(千分率、パーミル)で表され、その値の幅は自然水域において-16から+59の広い範囲を取る。ホウ素には13の既知の同位体があり、半減期の最も短い7Bは陽子放出およびアルファ崩壊によって3.5×10−22の半減期で崩壊する。ホウ素の同位体分離は、B(OH)3および[B(OH)4]-の交換反応によって制御される。ホウ素の同位体はまた、熱水系や熱水変質岩において水層から鉱石結晶が析出する際にも分離される。例えば熱水変質岩の粘土上では[10B(OH)4]-イオンが析出することで海水から優先して除去され、その結果として大洋性地殻や大陸性地殻と比較して海水中の11B(OH)3濃度が大規模に高められている可能性がある。このような同位体比の違いは同位体特性(英語版)としての働きをするかもしれない[56]。エキゾチック原子核である17Bは中性子ハローを示す(すなわち液滴模型から予測されるよりも大きな原子半径を示す)[57]。

10Bは良質な熱中性子捕獲材である。10Bの天然存在比はおよそ20 %ほどでしかないため原子力産業においては天然ホウ素を濃縮して純粋な10Bとして利用しており、ほぼ純粋な11Bが利用価値の低い副生物として生じる。

存在[編集]





ホウ砂の結晶
ホウ素は地殻中の存在率が比較的低い元素であり、その存在率は酸化ホウ素としておよそ0.001 %である(地殻中の元素の存在度も参照)。しかしながら、その存在率の低さに反してホウ素はホウ酸塩の形で鉱床を形成して局所的に濃縮されるため容易に採掘可能であることから、古くから人類に利用されてきた[58]。このようなホウ素の濃縮は、マグマの冷却による火成岩の形成過程や、マグマから揮発放散したホウ素の堆積などによって引き起こされる。そのため、火山におけるマグマの噴出孔近辺や火山性の温泉、湖沼などにおいても、しばしばホウ素の濃縮が見られる[59]。ホウ素は地球上において単体の形では存在しておらず、常に酸素と結合してホウ砂やホウ酸、ホウ酸塩、コールマン石(英語版)、ケルナイト(英語版)、ウレキサイトなどの形で存在している。このようなホウ素を主成分として含む鉱物は100種類以上存在している。また、ホウ素はそのイオン半径からケイ素やアルミニウム、ベリリウム、リンなどに置換されやすく、数多くの鉱物中に微量元素としても存在している[60]。海水中のホウ素濃度はおよそ4-5 mg/Lであり、場所や深度による差異は比較的小さい[61]。

商業的に利用可能なホウ酸塩の埋蔵量は全世界でおよそ1000万トンと見られている[62][63]。ホウ素の最大の産出国はトルコとアメリカであり[64][65]、全世界のホウ素の埋蔵量の63 %がトルコにあるとされる[66]。経済的に重要なホウ素源はケルナイトおよび天然ホウ砂であり、それらはアメリカのカリフォルニア州にあるモハーヴェ砂漠に位置する世界最大の露天掘りホウ砂鉱山「Rio Tinto Borax Mine(もしくはthe U.S. Borax Boron Mine)」で採掘されている。Rio Tinto Borax Mineだけでホウ酸塩の世界産出量のおよそ半分におよぶホウ素が生産されている[67][68]。世界最大のホウ酸塩鉱床はエスキシェヒル、キュタヒヤ、バルケスィルを含むトルコの中-西部に存在しているが、その多くは利用されていない[69][70][71]。

生産[編集]

ホウ素化合物の生産はホウ酸塩が容易に入手可能なため、単体ホウ素を経由せずに生産される。

初期の単体ホウ素の合成方法はホウ酸をマグネシウムもしくはアルミニウムを用いて還元することによって生産されていた。しかしこの方法では純粋な単体ホウ素を得ることができず、常に金属ホウ化物が不純物として混在した。純粋な単体ホウ素は、揮発性のハロゲン化ホウ素を高温条件下で水素還元させることによって得られる。半導体産業で用いられる超高純度ホウ素は高温条件下でのジボランの分解によって合成され、その後ゾーンメルト法やチョクラルスキー法によってさらに精製される[72]。

ホウ素の同位体である10Bは高い中性子吸収能を有するが、天然ホウ素中の同位体存在率はおよそ20 %でしかないため、同位体を分離して10Bを濃縮する必要がある。その方法としては、蒸留法や化学的交換法があり、蒸留法では低沸点のホウ素化合物であるハロゲン化ホウ素を用いた低温蒸留が、化学的交換法では有機ホウフッ化化合物を用いた気液交換反応が利用される[73]。また、蒸留法と化学的交換法を組み合わせた化学交換蒸留法という方法も開発されており[74]、現代の濃縮ホウ素の生産のほとんどは化学交換蒸留法によって行われている[75]。

市場動向[編集]

2005年のホウ素の消費量はアジア、ヨーロッパおよび北アメリカの需要の増大によってB2O3換算で180万トンにのぼると推定されている。ホウ素の採掘および精製能力は今後十年間の需要増に見合う十分な能力を有していると考えられている。

近年、ホウ素の消費形態は変化した。コールマン石(英語版)のようなホウ素鉱石はヒ素が含有されているという懸念のために使用量が減少した。そして消費者の動向は、不純物含有量の少ない精製されたホウ酸塩やホウ酸を利用する方向に進んだ。2008年における結晶質ホウ素(純度99 %)の平均価格はおよそ5 $/g、非晶質ホウ素は2 $/gであった[76]。

ホウ素の需要の増加に伴い、いくつかの生産者は生産能力を増強するために投資を行った。トルコの国営企業である「Eti Mine Works」はトルコ西部のエーゲ海地方にあるEmetで2003年に年間生産能力10万トンのホウ素生産プラントを立ち上げた。「Rio Tinto」グループはホウ素の年間生産量26万トンの既存設備の生産能力を2003年5月までに31万トンに増強し、さらに2006年までには36.6万トンにまで増強する計画である。中国のホウ素の生産者は高品質なホウ酸塩の急速な需要増に追いつくことができなかった。そのため、中国の四ホウ酸ナトリウム(ホウ砂)の輸入量は2000年から2005年までに100倍も増加し、同期間中のホウ酸の輸入量も年に28 %ずつ増加した[77][78]。

ホウ素需要の世界的な増加はガラス繊維およびホウケイ酸ガラス生産の急成長によって引き起こされた。繊維強化プラスチックのような強化素材用途ガラス繊維においては、ヨーロッパやアメリカではホウ素を用いないホウ素フリーなガラス繊維も発展しているが、アジアにおけるホウ素を用いたガラス繊維の生産量が急速に増加しており、ホウ素の需要としては相殺されている。近年のエネルギー価格の上昇によって、絶縁素材用途のガラス繊維の使用量が増加し、それに伴ってホウ酸塩の需要がさらに拡大する可能性もある。イギリスの金属市場調査会社であるロスキルは、ホウ素の需要が年間3.1 %ずつ成長して2010年までに2100万トンにまで成長すると予測している。その成長はアジアにおいて著しく、年間平均5.7 %の需要の成長が予測されている[77][79]。

用途[編集]

ホウ素が単体で使用されることは少ないが、化合物や合金の形で様々に利用されている。

身近な用途で使用される場合は、ホウ砂やホウ酸の状態であることが多い。ホウ砂はガラスの原料や防腐剤、金属の還元剤、溶接溶剤や研磨剤、火の抑制剤などに使われ、教育の現場では、ホウ砂と洗濯糊などを用いてスライムを作成する子供向けの科学実験工作がしばしば行われる。ホウ酸は目の洗浄剤、うがい薬や鼻スプレーなど口腔衛生のための医薬品、ホウ酸団子としてゴキブリ駆除などに使われる。

ガラスおよびセラミックス[編集]





ホウケイ酸ガラス製のビーカーと試験管
ホウケイ酸ガラスは一般的に15から20%の酸化ホウ素を含んでおり、熱膨張率が低いため熱衝撃に対する耐性が高い。ホウケイ酸ガラスの主要な商標としてデュランおよびパイレックスがあり、熱衝撃に対する抵抗性を利用して主に実験用のガラス器具や、一般用の調理器具、耐熱皿などに用いられる[80]。

ホウ素繊維(ガラス長繊維)は軽量かつ高強度であるため、主に航空宇宙分野における構造体に用いられる複合材料の構成要素として利用されており、一般消費者向けとしてはゴルフクラブや釣り竿のような一部のスポーツ用品にも使われている[81][82]。このようなホウ素繊維は、化学気相蒸着法によってタングステン繊維の上にホウ素を堆積させることによって製造される[64][83]。

ホウ素繊維(ガラス短繊維)はレーザーアシストCVD法によって製造される。収束したレーザービームの並進によってサブミリメートルサイズの螺旋状のホウ素結晶のような複雑な構造さえも作り出すことができる。そのような構造は弾性係数450 MPa、剪断ひずみ3.7 %、破断応力17 GPaといった良好な機械的性質を示し、セラミックスもしくはMEMSの強化に用いることができる[84]。

音響機器[編集]

密度が小さく、ヤング率が大きく、音の伝わる速さが16,200 m/sとアルミニウムの約2.6倍以上であることから、音響材料としてはベリリウム以上に理想的な素材として知られている[85]が、技術的に加工が難しい素材であった。実際に音響機器の応用商品が流通し始めたのは1980年代からである。
レコード針のカンチレバーにおいては品川無線、シュア、オーディオテクニカ、ダイナベクター、デノンより商品化されている。
ダイヤトーンでは炭化ホウ素 (B4C)、をスピーカーの高・中音域ユニットの振動板に用いている。「経年劣化で自然崩壊する」などと記載されることが多いが定かではない。衝撃により崩壊しているのではないかという説も有る。
デノンはボロン長繊維を使用したボロンファイバー振動板を低域ユニットに使用していた。高域ユニットの振動板としても、αボロン化合物が使用されたが、チタンやジュラルミンベースに溶射する形を取っていた。

半導体[編集]

ホウ素は単体でも電流電圧特性を示すが、半導体素子においては多くがケイ素へのドーパントとして使用されている。ケイ素はそれ自身では真性半導体であるが、ホウ素を微量添加することでP型半導体が作製でき、ダイオードやトランジスタに欠かすことができない材料となる。

建築[編集]

ホウ素系薬品で処理をした古新聞紙が、「セルロースファイバー」という名称で断熱材として使用される。吸湿性を持つ天然繊維系断熱材として注目されている。ホウ素系薬品で処理することにより、撥水性、難燃性、駆虫作用が得られる。日本の大手ハウスメーカーで採用例は少ないが、アメリカでは家庭用断熱材の40 %前後のシェアを占める[86]。充填工法で施工されるために、専門の吹き込み用機器が必要なこと、改築の際に壁・天井に充填されたセルロースファイバーが障害になる、吹き込み後の沈み込みの可能性、などの問題を指摘する声がある[87]。

鍵の潤滑剤としても使われる。鍵穴にホウ素の粉末をスプレー注入することによって抜き差しや回転の滑りを良くするという用途がある。

原子力[編集]

ホウ素の同位体のうち 10B は非常に大きな中性子吸収断面積を持つ。この特性を生かし、原子炉内において中性子の吸収のため制御棒に使用される。化合物であるホウ酸は一次冷却水に溶かし込んで加圧水型原子炉の余剰反応度制御に使われる。微量のホウ素添加を行った金属による放射性物質運搬容器も使用される。

有機化学[編集]

ホウ素の有機化学への利用はH・C・ブラウンによって系統的に研究が行われ、ブラウンはその業績によって1979年にノーベル化学賞を授与された。還元剤としての水素化ホウ素ナトリウムやヒドロホウ素化は、現在でも有機合成上、盛んに利用されている。

有機ホウ素化合物は鈴木・宮浦カップリングによって多用な変換が可能なため、複雑な化合物の前駆体として利用されている。トリエチルボランは自己発火性を持つために、点火剤として使用される。

生物[編集]

植物の必須元素の一つであり、98 %は細胞壁に存在することから、細胞壁の合成、細胞膜の完全性の維持、糖の膜輸送、核酸合成、酵素の補酵素などに関係していると予想されているが、まだ解明されてはいない[88]。植物中でホウ素輸送を行う物質は2002年 (平成14年) に初めて同定された[89]。

一方、高濃度のホウ素は植物の成長を阻害する[90]ため、土壌中のホウ素含有量が高いオーストラリア南部などでは農業が困難となっている[91]。植物の遺伝子を改変することで、ホウ素耐性を持たせる研究が進められている[92]。

生物学的役割[編集]

ホウ素は主に植物の細胞壁を維持するのに必要である重要な栄養素である。土壌中におけるホウ素の欠乏は植物に対して全体的な成長障害を引き起こすが、逆に土壌中のホウ素濃度が1 ppmを越えても葉の周辺や先端の壊死といった過剰障害を引き起こす。特にホウ素に敏感な植物では土壌中のホウ素濃度が0.8 ppmを越えると同様の症状が現れることがあり、土壌中のホウ素濃度が1.8 ppmを越えるとホウ素に耐性を示すような植物を含むほとんどの植物において過剰障害の兆候が現れる。ホウ素濃度が2.0 ppmを越える土壌で正常に生育できる植物はほとんどなく、一部は生存できないこともある。植物組織中のホウ素濃度が200 ppmを越えると過剰障害の兆候が現れる[93][94][95]。

ホウ素は恐らく全ての哺乳類にとって必須であると考えられているが、動物におけるホウ素の生物学的役割は良く知られていない。例えば、精製してホウ素を除去した食品を与え、空気中のチリを濾過することによってホウ素欠乏症を誘発させたラットでは体毛への影響が出ることが知られていおり、ホウ素は超微量元素としてネズミの最適な健康状態を維持するために必要である。動物におけるホウ素の摂取は広く食糧に由来しており、その必要摂取量はラットにおける試験からの推測によって非常に少量であると考えられている[96]。

1989年以降、ホウ素が人間を含む動物にとって栄養素として生物学的な役割を持つのではないかという議論が起こった[97]。アメリカ合衆国農務省が閉経後の女性に対して1日3 mgのホウ素を投与する実験を行った結果、ホウ素の補給がカルシウムの排出を44 %抑え、エストロゲンおよびビタミンDを活性化させるという結果が示され、骨粗鬆症を抑制する可能性が示唆された。しかし、これらの影響が栄養素としての効果なのか医薬品としての効果なのかということは判別できなかった。アメリカ合衆国国立衛生研究所は「正常なヒトの食事におけるホウ素の1日当たりの総摂取量の範囲は2.1から4.3 mgである」と述べた[98][99]。

角膜ジストロフィーの珍しい型である先天性角膜内皮ジストロフィー(英語版)2型は、ホウ素の細胞内濃度を調整している輸送体をコード化するSLC4A11(英語版)遺伝子における突然変異と関連している[100]。しかし、2013年のDiego G. Ogandoらの報告によればSLC4A11とホウ素輸送の関係は否定されており、SLC4A11はNa+-OH−(H+)およびNH4+に対する透過性を持った輸送体であるとされている[101]。

健康問題と毒性[編集]

単体ホウ素、酸化ホウ素、ホウ酸、ホウ酸塩および多くの有機ホウ素化合物はヒトおよび動物にとっては食塩と同程度に無毒である。動物に対する半数致死量 (LD50)は体重1キロ当たりおよそ6 gであり、LD50が体重1キロ当たり2 g以上となる物質は一般に無毒であるとされている。ヒトに対する最小致死量ははっきりとしていない。事件を除く1日4 gのホウ酸の摂取は報告されているが、それを超える量の摂取では有毒であると考えられている。50日間継続して1日0.5 g以上のホウ酸を摂取すると下痢など消化器系の不良が生じ、他の毒性も示唆される[102]。中性子捕捉療法のために行われるホウ酸20 gの単回投与では、著しい他の毒性が生じることなく使用されている。魚類は飽和ホウ酸溶液中で30分間生存することができ、ホウ酸ナトリウム溶液中ではより長く生存できる[103]。ホウ酸は、昆虫に対しては動物に対してよりも毒性が強く、通常殺虫剤として利用される[104]。

ボランのような水素化ホウ素やそれに類似したガス状の化合物は毒性を示す。ホウ素自体は他の単体ホウ素やホウ素化合物と同様に本質的には有毒ではないが、その毒性は化学構造に起因する[6][7]。

ボランは可燃性かつ有毒であるため、取り扱いには特別な操作が必要となる。水素化ホウ素ナトリウムは強い還元性を持つ物質であるため、水や酸、酸化剤などと反応して火災や爆発を起こす危険性がある[105]。ハロゲン化ホウ素は腐食性を有する[106]。

脚注[編集]

1.^ “Etymology of Elements”. Innvista. 2009年6月6日閲覧。
2.^ Shipley, Joseph T. (2001). The Origins of English Words: A Discursive Dictionary of Indo-European Roots. JHU Press. ISBN 978-0-8018-6784-2.
3.^ a b c d 斉藤 (1965) 4頁。
4.^ 斉藤 (1965) 3-4頁。
5.^ “地熱エネルギー入門(翻訳)序章”. 日本地熱学会. 2014年1月19日閲覧。
6.^ a b Garrett, Donald E. (1998). Borates: handbook of deposits, processing, properties, and use. Academic Press. pp. 102; 385–386. ISBN 0-12-276060-3.
7.^ a b Calvert, J. B.. “Boron”. University of Denver. 2009年5月5日閲覧。
8.^ Hildebrand, G. H. (1982) "Borax Pioneer: Francis Marion Smith." San Diego: Howell-North Books. p. 267 ISBN 0-8310-7148-6
9.^ a b Gay Lussac, J.L. and Thenard, L.J. (1808) "Sur la décomposition et la recomposition de l'acide boracique," Annales de chimie [later: Annales de chemie et de physique], vol. 68, pp. 169–174.
10.^ a b Davy H (1809). “An account of some new analytical researches on the nature of certain bodies, particularly the alkalies, phosphorus, sulphur, carbonaceous matter, and the acids hitherto undecomposed: with some general observations on chemical theory”. Philosophical Transactions of the Royal Society of London 99: 33–104. doi:10.1098/rstl.1809.0005.
11.^ Weeks, Mary Elvira (1933). “XII. Other Elements Isolated with the Aid of Potassium and Sodium: Beryllium, Boron, Silicon and Aluminum”. The Discovery of the Elements. Easton, PA: Journal of Chemical Education. p. 156. ISBN 0-7661-3872-0.
12.^ ベルセリウスはホウフッ化塩の還元、特にホウフッ化カリウムを金属カリウムとともに加熱することでホウ素を合成した。以下を参照のこと。Berzelius, J. (1824) "Undersökning af flusspatssyran och dess märkvärdigaste föreningar" (Part 2) (Investigation of hydrofluoric acid and of its most noteworthy compounds), Kongliga Vetenskaps-Academiens Handlingar (Proceedings of the Royal Science Academy), vol. 12, pp. 46–98; 特にpp. 88ff. Reprinted in German as: Berzelius, J. J. (1824) "Untersuchungen über die Flußspathsäure und deren merkwürdigste Verbindungen", Poggendorff's Annalen der Physik und Chemie, vol. 78, pages 113–150.
13.^ Weintraub, Ezekiel (1910). “Preparation and properties of pure boron”. Transactions of the American Electrochemical Society 16: 165–184.
14.^ a b Laubengayer, A. W.; Hurd, D. T.; Newkirk, A. E.; Hoard, J. L. (1943). “Boron. I. Preparation and Properties of Pure Crystalline Boron”. Journal of the American Chemical Society 65 (10): 1924–1931. doi:10.1021/ja01250a036.
15.^ Borchert, W. ; Dietz, W. ; Koelker, H. (1970). “Crystal Growth of Beta–Rhombohedrical Boron”. Zeitschrift für Angewandte Physik 29: 277. OSTI 4098583.
16.^ 斉藤 (1965) 5頁。
17.^ 村上 (2004) 70頁。
18.^ a b c “[http://library.iyte.edu.tr/tezler/master/kimya/T000727.pdf SYNTHESIS AND CHARACTERIZATION OF MgB2 SUPERCONDUCTING WIRES]”. p. 3 (2008年). 2014年1月11日閲覧。
19.^ a b “Boron, B”. Testbourne Ltd.. 2014年1月11日閲覧。
20.^ 宇野、木村 (2008) 11頁。
21.^ コットン、ウィルキンソン (1987)、286頁。
22.^ コットン、ウィルキンソン (1987)、285頁。
23.^ 櫻井、鈴木、中尾 (2003)、33頁。
24.^ 白井 (2008) 43頁。
25.^ a b c d e Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils; (1985). “Bor” (German). Lehrbuch der Anorganischen Chemie (91–100 ed.). Walter de Gruyter. pp. 814–864. ISBN 3-11-007511-3.
26.^ コットン、ウィルキンソン (1987)、286-287頁。
27.^ コットン、ウィルキンソン (1987)、292頁。
28.^ “炭素入門”. 東洋炭素. 2014年1月16日閲覧。
29.^ Engler, M. (2007). “Hexagonal Boron Nitride (hBN) – Applications from Metallurgy to Cosmetics”. Cfi/Ber. DKG 84: D25. ISSN 0173-9913.
30.^ Greim, Jochen and Schwetz, Karl A. (2005). Boron Carbide, Boron Nitride, and Metal Borides, in Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH: Weinheim. doi:10.1002/14356007.a04_295.pub2.
31.^ 斉藤 (1965) 167頁。
32.^ コットン、ウィルキンソン (1987)、289頁。
33.^ 斉藤 (1965) 167-168頁。
34.^ コットン、ウィルキンソン (1987)、290頁。
35.^ 斉藤 (1965) 177頁。
36.^ “鉱物資源マテリアフロー ホウ素 (B)”. 石油天然ガス・金属鉱物資源機構. 2014年1月25日閲覧。
37.^ 斉藤 (1965) 181頁。
38.^ 土浦宏紀、栂裕太、守谷浩志、佐久間昭正 (2009). “Nd2Fe14B永久磁石の磁気異方性”. 固体物理 (アグネ技術センター) 44 (10) 2014年1月25日閲覧。.
39.^ a b コットン、ウィルキンソン (1987)、316-319頁。
40.^ 斉藤 (1965) 134頁。
41.^ Wiberg 2001, p. 930.
42.^ a b Housecroft & Sharpe 2008, p. 331.
43.^ コットン、ウィルキンソン (1987)、289頁。
44.^ Donohue 1982, p. 48.
45.^ Lundström, T (2009). “The solubility in the various modifications of boron”. In Zuckerman, J. J.; Hagen, A. P.. Inorganic reactions and methods. Vol. 13: The formation of bonds to group-I, -II, and -IIIB elements. New York: John Wiley & Sons. pp. 196–97. ISBN 0470145498.
46.^ a b Oganov, A. R.; Chen, J.; Ma, Y.; Glass, C. W.; Yu, Z.; Kurakevych, O. O.; Solozhenko, V. L. (12 Feb). “Ionic high-pressure form of elemental boron”. Nature 457 (7027): 863–868. arXiv:0911.3192. Bibcode 2009Natur.457..863O. doi:10.1038/nature07736. PMID 19182772.
47.^ Wentorf Jr, R. H. (1965). “Boron: Another Form”. Science 147 (3653): 49–50 (Powder Diffraction File database (CAS number 7440–42–8)). Bibcode 1965Sci...147...49W. doi:10.1126/science.147.3653.49. PMID 17799779.
48.^ Hoard, J. L.; Sullenger, D. B.; Kennard, C. H. L.; Hughes, R. E. (1970). “The structure analysis of β-rhombohedral boron”. J. Solid State Chem. 1 (2): 268–277. Bibcode 1970JSSCh...1..268H. doi:10.1016/0022-4596(70)90022-8.
49.^ Will, G.; Kiefer, B. (2001). “Electron Deformation Density in Rhombohedral a-Boron”. Zeitschrift für anorganische und allgemeine Chemie 627 (9): 2100. doi:10.1002/1521-3749(200109)627:9<2100::AID-ZAAC2100>3.0.CO;2-G.
50.^ Talley, C. P.; LaPlaca, S.; Post, B. (1960). “A new polymorph of boron”. Acta Crystallogr. 13 (3): 271. doi:10.1107/S0365110X60000613.
51.^ Solozhenko, V. L.; Kurakevych, O. O.; Oganov, A. R. (2008). “On the hardness of a new boron phase, orthorhombic γ-B28”. Journal of Superhard Materials 30 (6): 428–429. doi:10.3103/S1063457608060117.
52.^ a b c Zarechnaya, E. Yu.; Dubrovinsky, L.; Dubrovinskaia, N.; Filinchuk, Y.; Chernyshov, D.; Dmitriev, V.; Miyajima, N.; El Goresy, A. et al. (2009). “Superhard Semiconducting Optically Transparent High Pressure Phase of Boron”. Phys. Rev. Lett. 102 (18): 185501. Bibcode 2009PhRvL.102r5501Z. doi:10.1103/PhysRevLett.102.185501. PMID 19518885.
53.^ Nelmes, R. J.; Loveday, J. S.; Allan, D. R.; Hull, S.; Hamel, G.; Grima, P.; Hull, S. (1993). “Neutron- and x-ray-diffraction measurements of the bulk modulus of boron”. Phys. Rev. B 47 (13): 7668. Bibcode 1993PhRvB..47.7668N. doi:10.1103/PhysRevB.47.7668.
54.^ Madelung, O., ed (1983). Landolt-Bornstein, New Series. 17e. Berlin: Springer-Verlag.
55.^ Kumashiro, Y, ed (2000). “Boron and boron-rich compounds”. Electric Refractory Materials. New York: Marcel Dekker. pp. 589‒654 (633, 635). ISBN 082470049X.
56.^ Barth, S. (1997). “Boron isotopic analysis of natural fresh and saline waters by negative thermal ionization mass spectrometry”. Chemical Geology 143 (3–4): 255–261. doi:10.1016/S0009-2541(97)00107-1.
57.^ Liu, Z. (2003). “Two-body and three-body halo nuclei”. Science China Physics, Mechanics & Astronomy 46 (4): 441. Bibcode 2003ScChG..46..441L. doi:10.1360/03yw0027.
58.^ 斉藤 (1965) 7頁。
59.^ 斉藤 (1965) 17、21頁。
60.^ 斉藤 (1965) 10-13、15頁。
61.^ 斉藤 (1965) 25頁。
62.^ Argust, Peter (1998). “Distribution of boron in the environment”. Biological Trace Element Research 66 (1–3): 131–143. doi:10.1007/BF02783133. PMID 10050915.
63.^ Woods, William G. (1994). “An introduction to boron: history, sources, uses, and chemistry”. Environmental Health Perspectives 102, Supplement 7 (Suppl 7): 5–11. PMC 1566642. PMID 7889881.
64.^ a b Kostick, Dennis S. (2006年). “Mineral Yearbook: Boron (PDF)”. United States Geological Survey. 2008年9月20日閲覧。
65.^ “Mineral Commodity Summaries: Boron (PDF)”. United States Geological Survey (2008年). 2008年9月20日閲覧。
66.^ “Developments in the Economic Sector (of Turkey)”. Turkish government. 2007年12月19日時点のオリジナルよりアーカイブ。2007年12月21日閲覧。
67.^ “U.S. Borax Boron Mine”. The Center for Land Use Interpretation, Ludb.clui.org. 2013年4月26日閲覧。
68.^ “Boras”. Rio Tinto (2012年4月10日). 2013年4月26日閲覧。
69.^ Kistler, R. B. (1994). “Boron and Borates”. Industrial Minerals and Rocks (Society of Mining, Metallurgy and Exploration, Inc.): 171–186.
70.^ Zbayolu, G.; Poslu, K. (1992). “Mining and Processing of Borates in Turkey”. Mineral Processing and Extractive Metallurgy Review 9 (1–4): 245–254. doi:10.1080/08827509208952709.
71.^ Kar, Y.; Şen, Nejdet; Demİrbaş, Ayhan (2006). “Boron Minerals in Turkey, Their Application Areas and Importance for the Country's Economy”. Minerals & Energy – Raw Materials Report 20 (3–4): 2–10. doi:10.1080/14041040500504293.
72.^ Berger, L. I. (1996). Semiconductor materials. CRC Press. pp. 37–43. ISBN 0-8493-8912-7.
73.^ 斉藤 (1965) 64頁。
74.^ 宍戸、岡田 (2008) 156頁。
75.^ 谷内廣明、下条純、萬谷健一 (12 2003). “濃縮ボロン製品の今後の展望”. 神戸製鋼技報 (神戸製鋼) 53issue=3 2014年1月19日閲覧。.
76.^ “Boron Properties”. Los Alamos National Laboratory. 2008年9月18日閲覧。
77.^ a b The Economics of Boron, 11th edition. Roskill Information Services, Ltd.. (2006). ISBN 0-86214-516-3.
78.^ “Raw and Manufactured Materials 2006 Overview”. 2009年5月5日閲覧。
79.^ “Roskill reports: boron”. Roskill. 2009年5月5日閲覧。
80.^ Pfaender, H. G. (1996). Schott guide to glass (2 ed.). Springer. p. 122. ISBN 0-412-62060-X.
81.^ Herring, H. W. (1966年). “Selected Mechanical and Physical Properties of Boron Filaments”. NASA. 2008年9月20日閲覧。
82.^ Layden, G. K. (1973). “Fracture behaviour of boron filaments”. Journal of Materials Science 8 (11): 1581–1589. Bibcode 1973JMatS...8.1581L. doi:10.1007/BF00754893.
83.^ Cooke, Theodore F. (1991). “Inorganic Fibers−A Literature Review”. Journal of the American Ceramic Society 74 (12): 2959–2978. doi:10.1111/j.1151-2916.1991.tb04289.x.
84.^ Johansson, S.; Schweitz, Jan-Åke; Westberg, Helena; Boman, Mats (1992). “Microfabrication of three-dimensional boron structures by laser chemical processing”. Journal Applied Physics 72 (12): 5956–5963. Bibcode 1992JAP....72.5956J. doi:10.1063/1.351904.
85.^ 井上敏也 監修『レコードとレコード・プレーヤー』ラジオ技術社、1979年 (昭和54年)においてカンチレバーの素材として紹介されている。
86.^ 山本順三「無垢材・無暖房の家―断熱・防音・透湿!奇跡の工法」ISBN-10: 4778201167
87.^ 西方里見『最高の断熱・エコ住宅をつくる方法』 ISBN-10: 4767809517
88.^ 京都大学農学部植物栄養学研究室
89.^ http://jstshingi.jp/abst/p/07/jst/05/0504.pdf
90.^ Ross O. Nable, Gary S. Bañuelos, Jeffrey G. Paull, "Boron toxicity", Plant Soil 193, 181-193 (1997). doi:10.1023/A:1004272227886
91.^ http://www.dwlbc.sa.gov.au/land/topics/rootzone/boron.html
92.^ Kyoko Miwa, Junpei Takano, Hiroyuki Omori, Motoaki Seki, Kazuo Shinozaki, Toru Fujiwara, "Plants Tolerant of High Boron Levels", Science 318, 1417 (2007). doi:10.1126/science.1146634
93.^ Mahler, R. L.. “Essential Plant Micronutrients. Boron in Idaho”. University of Idaho. オリジナルの2009年10月1日時点によるアーカイブ。 2009年5月5日閲覧。
94.^ “Functions of Boron in Plant Nutrition”. U.S. Borax Inc.. 2009年3月20日時点のオリジナルよりアーカイブ。2014年1月31日閲覧。
95.^ Blevins, Dale G.; Lukaszewski, KM (1998). “Functions of Boron in Plant Nutrition”. Annual Review of Plant Physiology and Plant Molecular Biology 49: 481–500. doi:10.1146/annurev.arplant.49.1.481. PMID 15012243.
96.^ Nielsen, Forrest H. (1998). “Ultratrace elements in nutrition: Current knowledge and speculation”. The Journal of Trace Elements in Experimental Medicine 11 (2–3): 251–274. doi:10.1002/(SICI)1520-670X(1998)11:2/3<251::AID-JTRA15>3.0.CO;2-Q.
97.^ “Boron”. PDRhealth. 2008年5月24日時点のオリジナルよりアーカイブ。2008年9月18日閲覧。
98.^ Zook, E. G. (1965). “Total boron”. J. Assoc. Off Agric. Chem 48: 850.
99.^ United States. Environmental Protection Agency. Office of Water, U. S. Environmental Protection Agency Staff (1993). Health advisories for drinking water contaminants: United States Environmental Protection Agency Office of Water health advisories. CRC Press. p. 84. ISBN 0-87371-931-X.
100.^ Vithana, En; Morgan, P; Sundaresan, P; Ebenezer, Nd; Tan, Dt; Mohamed, Md; Anand, S; Khine, Ko; Venkataraman, D; Yong, Vh; Salto-Tellez, M; Venkatraman, A; Guo, K; Hemadevi, B; Srinivasan, M; Prajna, V; Khine, M; Casey, Jr; Inglehearn, Cf; Aung, T (July 2006). “Mutations in sodium-borate cotransporter SLC4A11 cause recessive congenital hereditary endothelial dystrophy (CHED2)”. Nature Genetics 38 (7): 755–7. doi:10.1038/ng1824. ISSN 1061-4036. PMID 16767101.
101.^ Diego G. Ogando et al. (2013-10-1). “SLC4A11 is an EIPA-sensitive Na+ permeable pHi regulator”. American Journal of Physiology - Cell Physiology 305 (7): 16-27. doi:10.1152/ajpcell.00056.2013.
102.^ Nielsen, Forrest H. (1997). Plant and Soil 193 (2): 199. doi:10.1023/A:1004276311956.
103.^ Garrett, Donald E. (1998). Borates. Academic Press. p. 385. ISBN 0-12-276060-3.
104.^ Klotz, J. H.; Moss, JI; Zhao, R; Davis Jr, LR; Patterson, RS (1994). “Oral toxicity of boric acid and other boron compounds to immature cat fleas (Siphonaptera: Pulicidae)”. J. Econ. Entomol. 87 (6): 1534–1536. PMID 7836612.
105.^ “化学物質安全性カード 水素化ホウ素ナトリウム”. 国立医薬品食品衛生研究所. 2014年2月1日閲覧。
106.^ “Environmental Health Criteria 204: Boron”. the IPCS (1998年). 2009年5月5日閲覧。
【このカテゴリーの最新記事】
この記事へのコメント
コメントを書く

お名前:

メールアドレス:


ホームページアドレス:

コメント:

※ブログオーナーが承認したコメントのみ表示されます。

この記事へのトラックバックURL
https://fanblogs.jp/tb/2233458
※ブログオーナーが承認したトラックバックのみ表示されます。

この記事へのトラックバック
検索
最新コメント
おはよー☆ by じゅん (02/05)
体調悪いので病院に。。。。 by じゅん (02/04)
おはーよ♪ by じゅん (02/04)
タグクラウド
プロフィール
あすにゃんさんの画像
あすにゃん
ブログ
プロフィール
×

この広告は30日以上新しい記事の更新がないブログに表示されております。