測定値(36℃)とインターバルの制限を確認する。精度の低い測定器は、公差が大きく、大きなインターバルになる。一方、精度が高い測定器は、限りなく公差が小さく唯一の明白な値となる。また、垂直の線は、公差による値が問題となることを示している。
では、曖昧な数字のメンバーシップ値は、どのように算出できるのであろうか。最善の方法は、双方のメンバーシップ関数の交点において最大値を選択することであろう。例えば、体温計による測定値 36.0℃ ±0.4℃と健康の目安といえる曲線の流れが与えられる。それらを重ねると、その結果としてが出てくる。ファジィ集合「病気」に対する36.0°C 士 0.4℃のメンバーシップ値は、0.3から0.6 の範囲だが、最大値を使用することが実践的である。さらに、 多くのファジィ集合が問題になる場合もある。平温には個人差があり、低い人もいれば、高い人もいる。但し、ここで紹介した方法とは異なるものが、よりうまくこうした問題を解決できるならば、無論それをやさしい曖昧な数学に取り入れることに異論はないであろう。
花村嘉英(2005)計算文学入門−Thomas Mannのイロニーはファジィ推論といえるのか?より
【このカテゴリーの最新記事】
-
no image
-
no image
-
no image
-
no image
-
no image