アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2021年11月 >>
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30        
最新記事
最新コメント

2021年11月27日

大貫 義郎_1928年 ~ ご存命中
【ご存命中なので研究内容のご紹介】

「大貫氏」の原稿を投稿します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【ご存命中】


↑Credit:Wikipedia↑


【1928年生まれ ~ ご存命中】





大貫義郎の人脈


大貫義郎は名古屋大で坂田昌一に教えを受け、


群論を使った素粒子論の構築を


行いました。そもそも低温物理学


では名古屋で発展してきた部分が大きいです。


本ブログの別項で中嶋貞雄バーディン


のエピソードをご紹介しましたが、


後にノーベル賞を受賞する二人、


益川敏英と小林誠は大貫義郎が育てました。


名古屋大学でのつながりが素粒子論で大きな


役割を果たしていたと言えるでしょう。



大貫義郎の研究業績


大貫義郎は素粒子を構成する素子の
対象性に着目して、数学的手法として
群論」を使って整理していきました。
素粒子の反応過程で関わる現象は多岐にわたり、個別の要素に拘っているだけでは話が進まないのです。反応に関わるグループを詳細に分類して個別の反応要素を考えるよりもまず、一団の性格を見極めたうえで、グループの性質に応じた個別様子の役割をしっかり考えていく作業が群論を使ったアプローチで可能になっていったのです。そのアプローチが大貫義郎の業績です。

より詳細には、坂田モデルにおける
基本粒子同士の入れ替えに対して
素粒子としての性質が変わらないと
いう考え方を足掛かりに群論を組み
立てたのです。


そうした考え方を駆使して議論を組み立てて、


大貫義郎はクォークを明確に分類し、


整理していったのです。


英語が話せるようになる「アクエス」



〆さいごに〆



以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には適時、
返信・改定をします。


nowkouji226@gmail.com


2020/12/21_初版投稿
2021/11/27_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Onuki Yoshiro's personal connections


Yoshiro Onuki was taught by Shoichi Sakata at Nagoya University and constructed the theory of elementary particles using group theory. In the first place, in cryogenic physics, there is a big part that has developed in Nagoya. I introduced the episodes of Sadao Nakajima and Bardeen in another section of this blog, but Yoshiro Onuki raised the two Nobel Prize winners, Toshihide Maskawa and Makoto Kobayashi. It can be said that the connection at Nagoya University played a major role in particle physics.



Yoshiro Onuki's research achievements


Yoshiro Onuki focused on the symmetry of the elements that make up elementary particles, and used "group theory" as a mathematical method to organize them.
There are a wide variety of phenomena involved in the reaction process of elementary particles, and it is not possible to proceed just by focusing on individual elements. Rather than classifying the groups involved in the reaction in detail and considering the individual reaction elements, group theory was used to first identify the character of the group and then firmly consider the role of the individual appearance according to the nature of the group. The approach made it possible. That approach is the achievement of Yoshiro Onuki.


More specifically, we constructed a group theory based on the idea that the properties of elementary particles do not change when the basic particles are replaced with each other in the Sakata model.


By making full use of such ideas, Yoshiro Onuki clearly classified and organized quarks.


ヨハン・C・F・ガウス
【1777年生まれ-11/27改定】

「ガウス」の原稿を投稿します。作業としては関連リンクの改定、小見出しの設定、装丁の改善です。特に提携終了となった「テキストポン」などの商標は順次置き換えていきます。私の文章で遷移語が不足しているようです。遷移語は、「同様に」、「しかし」、「に加えて」、「たとえば」などの単語です。以後加筆します。別途、個別の人物の追加もトピックスのご紹介もしていく予定です。今後もご覧下さい。また、ブログ宣伝でツイッター使います。7/11(日)朝の時点でフォロワーは合計【11691】でした。


作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【1777年4月30日生まれ ~ 1855年2月23日没】




ドイツ生まれのガウス


ドイツのガウスは18世紀の数学者にして、物理学者にして、


天文学者です。ガウスの業績として大きいのはガウス分布、


ガウス関数、ガウスの最小自乗法、ガウスの法則等でしょう。


物理では磁束密度の単位に名を残しています。


数学で出てくるガウス分布はガウスの考察した関数


で表されていて、現代でも統計データの処理


で多用されます。実際にサンプル数が多くなると


この分布での表現が適していて「データの中心値」


を真ん中にしてグラフが綺麗な左右対称の山型となります。


山の頂上と裾野の「形」がガウス分布特有の形になります。


 

また、地球磁気の研究に関連した話として、


フーリエ級数展開に関しての研究を進め、


高速な計算方法を開発しました。特に、


データ数を2倍し続ける場合についてを議論を構築


していますが、それは後の時代に使われる


高速信号処理器の中での作動原理と本質的に同じものでした。


200年以上前に数学的なデシャブー現象があったのです。



ガウスの法則の導出


電磁気学の世界で出てくる「ガウスの法則とは


電荷量が取り囲む曲面から計算される。


といった有名な法則です。より細かくは


電束を面積分した総和が電荷密度の体積積分の総和と等しいと考えられ、その体積の内側にある電気の源を電荷と定義出来るのです。実際に電気の担い手が電荷だと考えると、地上の電位を基準として特定の等電位の導体を考えてみて、それよれり電荷密度が低い状態を正に帯電した環境、基準より電子密度が濃い状態を負に帯電した環境と考える事が出来るのです。


こういった考え方を進め、ガウスは


電気が流れていく状態を記述しました。


また、よく使われているCGS単位系の中に


ガウス単位系とも呼ばれる単位系があります。


パトロンが生活を支えたりしていたという時代背景


もありガウスは教授となる機会は無かったようですが、


デデキンドとリーマンは彼の弟子だったと言われています。


個人的にはやはり、物理学者というよりも数学者として


沢山の仕事を残してきた人ったと思います。


そして、


独逸人らしい厳密さで現象を極めたのです。



ハイブリット英会話スタイルで伸ばす「アクエス」


以上、間違い・ご意見は
以下アドレス迄お願いします。
問題点には適時、
改定・返信をします。


nowkouji226@gmail.com


2020/09/28_初稿投稿
2021/11/27_改定投稿



旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
ドイツ関連のご紹介へ
電磁気学関係


【このサイトはAmazonアソシエイトに参加しています】


 

【2021年8月時点での対応英訳】



Gauss of Germany 


Gauss of Germany is an 18th century mathematician, physicist and astronomer. His major achievements in Gauss are Gaussian distribution, Gaussian function, Gaussian least squares method, Gauss's law, etc. He has left his name in physics as a unit of magnetic flux density.


The Gaussian distribution that appears in mathematics is represented by the function that Gauss considered, and is often used in the processing of statistical data even in modern times. When the number of samples actually increases


The expression in this distribution is suitable, and the graph becomes a beautiful symmetrical mountain shape with the "center value of the data" in the center. The "shape" of the top and bottom of the mountain is unique to the Gaussian distribution.
In addition, as a story related to the study of geomagnetism, Gauss proceeded with research on Fourier series expansion, and Gauss developed a high-speed calculation method. He specifically builds a debate about when he keeps doubling the number of data, which is essentially the same principle of operation in high-speed signal processors used in later times. There was a mathematical deshabu phenomenon over 200 years ago.


It is a famous law that appears in the world of electromagnetism, such as "Gauss's law is calculated from the curved surface surrounded by the amount of electric charge."



electrical property of surface


The sum of the surface integrals of the electric flux is considered to be equal to the sum of the volume integrals of the charge density, and the source of electricity inside that volume can be defined as the charge. Considering that the actual bearer of electricity is the electric charge, consider a conductor with a specific equipotential potential based on the electric potential on the ground. You can think of the state as a negatively charged environment. Advancing this way of thinking, Gauss described the state in which electricity is flowing.


In addition, there is a unit system called Gaussian unit system among the commonly used CGS unit systems.


Gauss did not seem to have had the opportunity to become a professor, partly because the patrons supported his life, but it is said that Dedekind and Lehman were his disciples.


Personally, I think Gauss has left a lot of work as a mathematician rather than a physicist.


And Gauss mastered the phenomenon with his unique rigor.