アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2024年04月 >>
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30        
最新記事
最新コメント

2024年03月14日

J・J・サクライ
3/14改訂【ハーバードを首席で卒業し、夭折てしまった天才物理学者】

こんにちはコウジです!
「J・J・サクライ」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
J・J・サクライが生まれた頃、ベートーベンはもう居ません。


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


現代の量子力学
【スポンサーリンク】
【1933年1月31日生まれ ~ 1982年11月1日没】



Jサクライとアメリカ


Jサクライの日本語表記は


「桜井純」で日本の東京生まれの人です。


私が使っていていた教科書でカタカナ表記でしたので個人的には
カタカナ表記がしっくりきて、好きです。ミドルネームに由来する
と思われますが、
もう一つ「J」をつけて記載する事が多いです。
何故ミドルネームがJなのかは未だ調べています。


(以下、少し呟いてみます)よく言及されるのですが、英国の物理学者J・J・トムソンを真似て「J」に由来するという一説があります。ただ、科学史の観点から私は納得いきませんでした。


「電子線を考え抜いたトムソン(別途、トムソン卿って人が居ます)」と「相互作用に対して考え抜いていた桜井さん」は物凄く似通った所があるのですが、それを裏付ける一次情報が得られていないのです。探すことに時間を使わない言い訳としては、桜井さんは日本での活躍が少なく、夭折してる(早くに亡くなっている)という事情もあって日本における交流が少ないと予想出来るからです。仮にご家族が追記集をまとめたりしていたら読んでみたいのですが、そういう類の話も聞きません。


そもそも、そういった話が聞かれない時点で仮に、
ご遺族が居たとしてもJJサクライの「J」についての由来は明らかにしたくないと
考えている場合も予想されるからです。
追及点を掘り下げる際の
科学史での難しい所を実感しました。
(そして、文字を小さくして呟いてみました)


いずれにせよJJサクライの響きは良いですね。


JJサクライは新制高校に在学していた16歳の時に留学生選抜試験に合格し、アメリカに渡りました。学問好きの少年だったのでしょう。その後、ニューヨークにある高校を卒業した後に、ハーバードを主席で卒業しています。



JJサクライと弱い力

その後、JJサクライはコーネル大の大学院で研究を進め、在学中に弱い相互作用の考えを提唱しています。彼の研究では弱い相互作用と強い相互作用が出てくるので少し言及します。そもそも自然界には4つの力があると言われていて、ここでの2つは4つの内の2つなのです。



初学者は4つの力を考える時に「力の働く範囲




力の大きさ」を別々に把握しないといけません。

 

具体的に弱い力(相互作用)は、働く範囲が陽子直径より小さいのです。また、素粒子や準粒子がボゾンを交換して相互作用する中で、弱い力は強い力や電磁学に比べて大きさが数桁小さな力として作用します。 


弱い相互作用は標準模型での全てのフェルミ粒子とヒッグスボソンに作用します。フェルミ粒子とボーズ粒子を合わせて「素粒子」と呼びますが、相互作用の議論では素粒子間に働く力が議論されるのです。 


特にニュートリノは重力と弱い相互作用のみを使って相互作用します。弱い相互作用は束縛状態をもたらしません。重力が天文学的スケールで月と地球の間の相互作用に関与していたり、電磁力が原子間レベルで互いに力を与えあったりする束縛状態とは異なります。また、弱い相互作用とは違い強い核力は原子核の内部で非常に強い束縛状態を持ちます。別言すれば、弱い相互作用は結合エネルギーに関与しません。


まとめると、
素粒子間に働く「強い」・「弱い」の二つの力に加えて
重力と電磁相互作用で働く二つの力を考えた時に
「4つの力」がとして表現されるのです。
夫々の力は独自のメカニズムで働きます。



JJサクライの突然の他界 


JJサクライはこうしたメカニズムを


深く研究していきました。


そして49歳で突然、他界してしまいました。


少し調べてみましたが、その死因に対しては


情報が残されていません。何はともあれ、


惜しい人材を失ったこととなり残念です。


4つの力の理解と加速器を初めとした応用研究は未だ
続いています。次々問題が出てきます。
そんな議論に
参加して欲しかったです。
謹んでご冥福をお祈り致します。


合掌。





テックアカデミー無料メンター相談
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/11/11_初稿投稿
2024/03/14_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介

日本関連のご紹介
アメリカ関連のご紹介へ

UCBのご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



J Sakurai and America


The Japanese notation for J Sakurai is "Jun Sakurai", a person born in Tokyo, Japan. She used katakana notation in the textbook I was using, so I personally like the katakana notation. She seems to be derived from her middle name, but she is often listed with another "J". I'm still investigating why her middle name is J.


(Hereafter, I will mutter a little) There is a theory that it is derived from "J" by imitating the British physicist JJ Thomson. However, I was not convinced from the perspective of the history of science. "Thomson who thought out the electron beam (I'm Sir Thomson separately)" and "Mr. Sakurai who thought out about the interaction" have very similar points, but I got the primary information to support it. I haven't.


As an excuse not to spend time searching, Mr. Sakurai is less active in Japan, and she is dying (she died early), so it can be expected that there will be little interaction in Japan. Because. I would like to read it if my family is compiling a collection of additional notes, but I do not hear such stories.


In the first place, it is expected that he does not want to clarify the origin of JJ Sakurai's "J" even if there is a bereaved family at the time when such a story is not heard. I realized the difficult part in the history of science when digging into the pursuit point. (And she tried to make the letters smaller and muttered)


In any case, the sound of JJ Sakurai is good.


JJ Sakurai passed the international student selection test at the age of 16 when he was in a new high school and went to the United States. He must have been an academic boy. Then, after he graduated from high school in New York, he graduated from Harvard as chief.



JJ Sakurai and weak force


Since then, JJ Sakurai has been conducting research at Cornell University's graduate school, advocating the idea of ​​weak interactions while still in school. I will mention a little because his research shows weak and strong interactions. It is said that there are four powers in the natural world in the first place, and the two here are two of the four.


When considering the four forces, beginners must grasp the "range of force" and the "magnitude of force" separately.


Specifically, the weak force has a working range smaller than the proton diameter. In addition, while elementary particles and quasiparticles exchange bosons and interact with each other, weak forces act as strong forces or forces that are several orders of magnitude smaller than electromagnetics. Weak interactions affect all fermions and Higgs bosons in the Standard Model.


Fermions and bosons are collectively called "elementary particles", but in the discussion of interactions, the forces acting between elementary particles are discussed. Neutrinos in particular interact only with gravity and weak interactions. Weak interactions do not result in bound states.


This is different from the bound state where gravity is involved in the interaction between the Moon and the Earth on an astronomical scale, and electromagnetic forces exert forces on each other at the interatomic level.


Also, unlike weak interactions, strong nuclear forces have a very strong bound state inside the nucleus. In other words, weak interactions do not contribute to binding energy. JJ Sakurai has studied these mechanisms in depth. And at the age of 49 he suddenly passed away. He did some research, but no information was left about the cause of death. Anyway, it's a pity that he lost a regrettable talent.



Sudden Last of JJ 


Understanding of the four forces and applied research including accelerators are still ongoing. Problems come up one after another.


He wanted me to participate in such a discussion. It was


We sincerely pray for your souls.


Gassho.




2024年03月13日

ロジャー・ペンローズ
3/13改訂【ブラックホールにおける特異性を示しノーベル賞を受賞】

こんにちはコウジです!
「ペンローズ」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
ペンローズが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。



皇帝の新しい心
【スポンサーリンク】
【1931年8月8日生まれ ~ (ご存命中)】


 芸術家肌のペンローズ


 
その名はロジャー・ペンローズ

;Sir Roger Penrose OM FRS。


英国の物理学者ですが、




まだご存命の方なので

簡単に取り上げたいと

思います。有名人の

ブライアンとは少し

系統が違う気がするのです。


(芸能系ではない


純理論の学者さんです。

ムツゴロウさんとも

雰囲気が違いますね)

ロジャー・ペンローズは精神科医にして遺伝学者の父を持ち、
父方母方共に沢山の学者、芸術家がいる家庭に生まれました。
ロジャー自身も学者としてケンブリッジに進みます。


1994年にはナイトに叙せられています。また、
ホーキングと共にブラックホールにおける特異点を示し、
後に2020年のノーベル賞を受賞します。授賞理由は
「ブラックホールと相対論の関係」に対しての評価でした。

 ペンローズの研究業績


研究業績で気になってしまうのは認識に関する仮説に関してです。脳内での活動については個人的に昔から気になっている部分ではあるのですが、ロジャー・ベンローズの話の展開に、ほんの少しの違和感を覚えるのです。

ロジャーの主張は著書:皇帝の新しい心_で示されているのそうですが脳内の情報処理には量子力学が関わる。即ちユニタリー発展(U)と波束の収束(R)が含まれている仮定のもとに、片方のRに対する議論が欠けているという立場で話を進めているのです。

無論、脳内の活動は大きさスケールで考えた時に量子力学の対象となると思えます。脳内の伝達物質の一つは情報を与える電子であったりするからです。

その系統の話をきちんと読み通してはじめて分かる話なのか、
考え落としを含んでいる危うい話なのか、失礼ながら
気になってしまうのです。


本稿の中で私が使っている「違和感」が本物の違和感なのか
取り越し苦労の違和感なのか確かめたいと思います。
その意味で非常に興味深いです。





【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2021/07/02_初回投稿
2024/03/13_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリスのご紹介へ
ケンブリッジのご紹介へ
力学関係のご紹介
量子力学関係
AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)

Artist skin pen rose


Its name is Roger Penrose OM FRS.

He's a British physicist, but he's still alive, so I'd like to take a quick look. He feels a little different from the celebrity Brian.

(I'm a non-entertainment scholar of pure theory. The atmosphere is different from that of Mr. Mutsugoro.)

Roger Penrose was born into a family with a psychiatrist and geneticist father, and many scholars and artists on both his paternal and maternal sides. Roger himself goes to Cambridge. He, along with Hawking, showed his singularity in black holes and later won the 2020 Nobel Prize. The reason for his award was his appreciation for the relationship between black holes and relativity.

Penrose research achievements


What is worrisome about his research achievements is the cognitive hypothesis. I've always been concerned about activities in the brain, but I feel a little uncomfortable with the development of Roger Ben Rhodes' story. The claim is shown in Roger's book: The Emperor's New Heart, but quantum mechanics is involved in information processing in the brain. That is, under the assumption that unitary development (U) and wave packet convergence (R) are included, we are proceeding from the standpoint that there is a lack of discussion on one R. I'm rude and worried whether it's a story that can only be understood by reading through the story of that system properly, or a dangerous story that includes oversight. I would like to confirm whether the "uncomfortable feeling" I use in this article is a genuine uncomfortable feeling or a discomfort of having a hard time moving. In that sense, it's very interesting.



2024年03月12日

ロバート・シュリーファー
3/12改訂【超電導を理論化したBCS理論を提唱】

こんにちはコウジです!
「シュリーファー」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
シュリーファーが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


超伝導の理論
【スポンサーリンク】
【1931年5月31日 ~ 2019年7月27日】



 BCS理論を構築したシュリーファー


BCS理論を作った3人の中の一人が


シュリーファーであって、


BCS理論でのSはシュリーファのSです。


BCS理論自体の説明は他のメンバーである
バーディーンクーパーのご紹介の中で
解説していますので繰り返しません。
超伝導を微視的に解説した理論です。



 シュリーファーと超電導の研究


シュリーファは少年時代は手作りロケットを制作したり、アマチュア無線が好きだったりする電子工学好きな少年でした。そんなシュリーファはMIT(マサチューセッツ工科大学)で半導体の研究を当初進めていました。特に半導体表面での電子の振る舞いを研究していたのです。そして後に超伝導現象の研究に移ります。


シュリーファ達がBCS理論をまとめた後、世界での研究は常温での超伝導実現に向けた研究が進んでいます。常温高圧環境下で現象を起こしたりする試みがなされていて、マイナス百数十ケルビンまで転移温度は近づいてきています。


現実には実現が難しい様な高圧をかけた時に、常温で超電導現象が実現した報告もあります。私が研究していた時代には青学の秋光先生や東工大の細野先生が挑んでいました。


それぞれご存命かと思われますので詳細は控えます。


科学史と言うより最前線に近いかと思えますので。


ご本人達にしてみれば


「今でも研究してますよ!」って気持ちも


あるのではないかとと思えるのです。



 シュリーファーの晩年


話し戻って、シュリーファは1957年から米国代表の立場で英国バーミンガム大学とコペンハーゲンのボーア研究所で超電導の研究を続けています。そして残念な事に、晩年に自動車事故を起こし人を殺めてしまい、懲役を課されています。カリフォルニア州サンディエゴにある刑務所で懲役に服しました。


素晴らしい研究のセンスとうっかりミスを犯してしまう性格は共にシュリーファの人生に影響を与えました。出来れば緊張感を持って生活を送って頂きたかったです。こんな話をするのは事故当時シュリーファは免許停止中だったからです。立場のある人間であれば尚更、責任を持った行動が求められます。


それだから、この話を知ってとても残念です。バーディン教授の人を集める性格とシュリーファー教授の人を遠ざけてしまう性格は対象的に思えてしまうのです。


バーディンは仲間とトランジスタを開発して、別途BCS理論をつくりあげて仲間の輪を広げました。その過程で出会った日本人、中嶋貞雄をアメリカに呼んで、もてなしていたりします。朗らかなアメリカ人のイメージです。


反面、シュリーファーは立派な立場をいくつも受けた後に人を殺めてしまいました。朗らかなアメリカ人として単純に語れない人生です。こんな話を我々は大きな教訓として考えるべきだと思います。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/17_初稿
2024/03/12_改定


舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ
イギリス関係のご紹介へ
オランダ関係のご紹介へ
熱統計関連のご紹介
量子力学関係
AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Schrieffer of BCS theory


One of the three who created the BCS theory is Schrieffer, and the S in BCS theory is Schrieffer's S.



Research on Schrieffer and superconductivity


When he was a boy, Shrifa was a boy who loved electronics, making handmade rockets and ham radio. Such Schrifa was initially conducting research on semiconductors at MIT (Massachusetts Institute of Technology). He was especially studying the behavior of electrons on the surface of semiconductors. And he later moved on to study superconducting phenomena.


After Schrifa et al. Summarized the BCS theory, research in the world is progressing toward the realization of superconductivity at room temperature. Attempts have been made to cause phenomena in a normal temperature and high pressure environment, and the transition temperature is approaching to minus one hundred and several tens of Kelvin.


There is also a report that the superconducting phenomenon was realized at room temperature when a high voltage that was difficult to realize in reality was applied. When I was studying, Professor Akimitsu of Seigaku and Professor Hosono of Tokyo Institute of Technology were challenging. I will refrain from detailing each of them as they may be alive. I think it's closer to the front line than the history of science. For the people themselves, I think they may have the feeling that they are still researching!



Schrieffer's later years


Returning to the story, Schrifa has been studying superconductivity at the University of Birmingham in the United Kingdom and the Bohr Institute in Copenhagen since 1957. And unfortunately, in his later years he had a car accident, killed a person and was sentenced to imprisonment. He was sentenced to jail in San Diego, California. Both his great sense of research and his inadvertent mistaken personality have influenced Shrifa's life. He wanted him to live a life with a sense of tension if possible. I tell this story because Shrifa was out of license at the time of the accident.


If you are a person in a position, you are even more required to act responsibly.
So I'm very sorry to know this story. The character of gathering Professor Bardeen and the character of keeping Professor Schrieffer away seem to be symmetrical. Bardeen developed a transistor with his companions and created a separate BCS theory to expand the circle of his companions. I invite Sadao Nakajima, a Japanese who I met in the process, to the United States for hospitality. It is an image of a cheerful American. On the other hand, Schrieffer killed a person after receiving several good positions. It's a life I can't talk about as a cheerful American. I think we should consider this story as a big lesson.


2024年03月11日

有馬朗人_
3/11改訂【ゆとり教育の推奨|複雑な原子核の状態を簡易に数式化】

こんにちはコウジです! 「有馬朗人」の原稿を改定します。
今回の主たる改定はAI情報の再考です。
また、 有馬朗人が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。
そして記述に誤解を生む表現がないかを チェックし続けてます。
ご意見・関連投稿は歓迎します。


大学貧乏物語 【スポンサーリンク】 【1930年9月13日 ~ 2020年12月6日】


 有馬氏へお悔やみ


東大学長を務めた有馬朗人氏が


2020/12/8に亡くなりました。享年90歳。


謹んでお悔やみを申し上げます。




有馬朗人は原子核物理学の世界で業績をあげ、
特に 有馬・堀江理論(配位混合の理論)、
相互作用するボゾン模型の提唱、 クラスター模型への貢献、
の3つの業績が大きな業績です。


有馬朗人の業績


特に相互作用するボゾン模型は有馬朗人が
オランダの研究機関に居た
1974年に発表していて、 別名で


「相互作用(する)ボソン近似」の名で


ご存知の方も多いのではないでしょうか。
粒子の入れ替えに対して波動関数の符号が
反転しない対象粒子に対して、
いわゆる
「第二量子化」された時の議論で
有馬朗人の考えた近似は使われます。


以上の説明は一般の人には分かりづらいかもしれませんが 原子核の状態を記述するには古典的な(ニュートン的な)記載 では不十分で、波動関数を使うだけではなくて群論や 電磁気的な側面を考慮して議論を進めていきます。


そして、有馬さんは現象を嚙砕いて数式化して 難しい原子の世界を簡単な数式で表現したのです。 




また、政界においても活躍され、 特にゆとり教育の推奨が知られています。 有馬朗人が勧めたかった当初の教育は 世界史と日本史を共に学ぶ事で 知識をより豊かに身に着けていく様な 試みであって、現場に話が伝わった時点では 全く別の解釈として伝わっていました。 有馬朗人はその解釈を非常に 遺憾に感じて居たようです。




他にも色々と語りたかったでしょう。 ご冥福をお祈りします。







以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には適時、 返信・改定をします。




nowkouji226@gmail.com




2020/12/07_初稿投稿
2024/03/11_改定投稿



【スポンサーリンク】


(旧)舞台別のご紹介 纏めサイトTOP舞台別のご紹介時代別(順)のご紹介 日本関連のご紹介 東大関連のご紹介


AIでの考察(参考)


(2021年11月時点での対応英訳)


Condolences to Mr. Arima


Akito Arima, the president of the University of Tokyo, died on December 8, 2020. He is 90 years old. We would like to express our deepest condolences. Akito Arima has made great achievements in the world of nuclear physics, and is particularly famous for his three achievements: Arima-Horie theory (theory of mixed coordination), proposal of interacting boson models, and contribution to cluster models.


Achievements of Akito Arima


In particular, the interacting boson model was announced by Akito Arima in 1974 when he was at a research institute in the Netherlands, and many of you may know it under the alias of "interacting boson approximation". ..


Akito Arima's approximation is used in the discussion of so-called "second quantization" for objects whose wavefunction signs do not invert with respect to particle replacement. It was


It is also active in the political world, and is especially known for recommending Yutori education. The initial education that Akito Arima wanted to recommend was an attempt to acquire more knowledge by studying both world history and Japanese history, and when the story was conveyed to the field, it was a completely different interpretation. It was transmitted as. Akito Arima seems to have felt very regretful about his interpretation.


He would have wanted to talk a lot more. He prays for souls.


2024年03月10日

レオン・クーパー
_3/10改訂【26歳でクーパ対|超電導理論での電子挙動をモデル化】

こんにちはコウジです!
「クーパー」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
クーパーが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


超伝導の理論
【スポンサーリンク】
【1930年2月28日 ~(ご存命中)】



 クーパと超電導


初めに、本稿は関連用語の解説が中心となリます。
今後も含め
分かり易い内容にしたいので
超伝導現象を科学史の観点から改めて
まとめ直した方が
有益だろうと感じたからです。


既に内容をご承知の方にはしつこく感じるかと。
そうでしたらごめんなさい。読み飛ばしてください。


クーパーはジョン・バーディーン等と共にBCS理論を確立しました。
クーパーはユダヤ系です。賢い人達ですね。そもそも
BCS理論の大事な考え方
であるクーパー対という
考え方を
クーパーは26歳の時に纏めています。


さて、本題です。1911年のK・オンネスの発見により
通常の伝導性とは異なる
超伝導状態が存在すると明らかに
なりました。
定量的には絶対零度近くの
273℃=ゼロ・ケルビン(k)
に近づくと超伝導現象が起きます。


その時は抵抗値ゼロです。


例えばニオブ(Nb)は9.22ケルビンで
超伝導状態になります。超伝導状態への
転移を上手く説明した理論がBCS理論で
あって、BCSでのCはクーパーの名前に
由来します。



超電導の別の側面 


ここで別の側面から超伝導状態を考えます。温度を下げ相転移温度で現象が起きると電流を流した時に抵抗値がゼロになりますが同時に相転移温度で磁界に対して変化が生じます。


現時点での超電導現象の応用としてリニアモーターカーがあげられます。細かくは超伝導体の内部で内部磁場がゼロになり、外部からの磁界を遮断します。


超伝導状態になった時に磁石が浮かぶ写真は有名な例えですね。更に磁石は極性を持ちますから、ラダーと呼ばれる軌道で極性を切り替えていく事でリニアモーターカーは進むのです。この完全反磁性またはマイスナー効果と呼ばれる現象は超伝導現象での特徴の一つです。


ここで関連して磁力線について整理したいと思います。ご存知の通り磁石はN極とS極からなり磁力を持ちます。一般的に模式図で示される様に磁力線は片方から他方へゆったりした曲線で繋がっていきます。


所が超伝導現象では内部へ磁力線が侵入出来ない様な現象が起きます。相転移の前後で形が突然変わります。更には変化の違いで第一種超伝導体 と第二種超伝導体に物質によって分かれます。これらの現象を理解する為にクーパー等が確立したBCS理論が基礎になっていくつのです。


クーパーのアイディアは電子が対(つい)になるというもので、対になった電子がスピンを打ち消しあって超電導状態を作るというものです。その電子の対は今でも超電導の学者達の間で「クーパ対」と呼ばれています。


この考えが発展していき、現代では相転移の温度がどんどん高くなっています。実用上は常温常圧下で相転移を起こすことが大事になっていますので液体ヘリウムよりも安価な液体窒素で冷やせる事が望ましいのです。


実際、液体窒素の沸点は−196℃ですので現在は、液体窒素で冷やす事で相転移を実用出来る素材を中心に研究が行われて居ます。そして、現在では現象発生に対して「ゆらぎ」のメカニズムをより解明していこうという取り組みが進んでいます。さらなる今後の進展に期待しましょう。


【スポンサーリンク】




以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/09/16_初回投稿
2024/03/10_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ
熱統計関連のご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Cooper and superconductivity


First, this article focuses on explanations of related terms. I wanted to make the content easy to understand, including in the future, so I felt that it would be useful to reorganize the superconducting phenomenon from the perspective of the history of science.


Do you feel persistent to those who already know the contents? If so, I'm sorry.


Cooper established the BCS theory with John Bardeen and others. Cooper is of Jewish descent. He's smart people, aren't he?


In the first place, Cooper summarized the idea of ​​Cooper pair, which is an important idea of ​​BCS theory, at the age of 26.


Well, the main subject. The discovery of K. Onness in 1911 revealed that there is a superconducting state that is different from normal conductivity.
Quantitatively, a superconducting phenomenon occurs when approaching minus 273 ° C = zero Kelvin (k) near absolute zero. At that time, the resistance value is zero. For example, niobium (Nb) becomes superconducting at 9.22 Kelvin. The theory that well explains the transition to the superconducting state is the BCS theory, where C comes from Cooper's name.



Another aspect of superconductivity


Now consider the superconducting state from another aspect. When the temperature is lowered and a phenomenon occurs at the phase transition temperature, the resistance value becomes zero when a current is passed, but at the same time, the phase transition temperature changes with respect to the magnetic field.


The current application is a linear motor car. In detail, the internal magnetic field becomes zero inside the superconductor, blocking the external magnetic field. The picture of a magnet floating when it is in a superconducting state is a famous analogy. Furthermore, since magnets have polarity, the linear motor car advances by switching the polarity in a trajectory called a ladder. This phenomenon called the complete antimagnetism or the Meissner effect is one of the characteristics of the superconducting phenomenon.


Here, I would like to organize the lines of magnetic force in relation to this. As you know, a magnet consists of N pole and S pole and has magnetic force. Generally, as shown in the schematic diagram, the lines of magnetic force are connected by a loose curve from one side to the other.


However, in the superconducting phenomenon, a phenomenon occurs in which the lines of magnetic force cannot penetrate inside. The shape changes suddenly before and after the phase transition. Furthermore, it is divided into type 1 superconductors and type 2 superconductors depending on the substance due to the difference in change. The BCS theory established by Cooper et al. Is useful for understanding these phenomena.


This idea has evolved, and the temperature of the phase transition is getting higher and higher in modern times. In practice, it is important to cause a phase transition under normal temperature and pressure, so it is desirable to cool it with liquid nitrogen, which is cheaper than liquid helium.


In fact, since the boiling point of liquid elements is -196 ° C, research is currently being conducted focusing on materials that can be used for phase transition by cooling with liquid nitrogen. At present, efforts are underway to further elucidate the mechanism of "fluctuation" in response to the occurrence of phenomena. Let's look forward to further progress.

2024年03月09日

マレー・ゲルマン
__3/9改訂【クォークの名付け親、ファインマンの論敵】

こんにちはコウジです!
「ゲルマン」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
ゲルマンが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

物理学がわかる本
【スポンサーリンク】
【1929年9月15日 ~ 2019年5月24日】



 ニューヨーク生まれのゲルマン


ゲルマンは米ニューヨーク生まれの理論家です。
素粒子論の世界でノーベル賞を受けています。


ゲルマンの名を本来はゲル-マンと書きますが、
【Gell-Mannと書きますが、】


本稿ではゲルマンとしています。
記述が楽で、読みやすいからです。


ゲルマンはイェール大で学士号を受け、MITで博士号を受けました。
その後、プリンストン高等研究所、コロンビア大、シカゴ大、
カリフォルニア工科大で研究を続けます。サンタフェ研究所の設立者
の一人でもあります。ゲルマンの研究実績としてはクォークの提唱
が大きかったですね。加速器の開発後には様々な粒子が
未整理のまま次々と発見され、それらの関係と性質は
未解決な部分が残るままに、問題が蓄積されていきます。


それらを整理・理解する手段がクォークだと言えます。
ゲルマンの理解体系では対象性が使われていて、
ストレンジネスやカラーといった概念で素粒子が理解されていきます。

秩序ある奥深い理論だと思います。



 ゲルマンとファインマン


さて、ゲルマンの業績として素粒子の分類に関する側面を取り上げてきましたが、ゲルマンの研究での真骨頂は粒子の反応に関しての研究ではないでしょうか。「粒子の質量は力の届く距離に反比例!!」という動かしがたい事実をとらえて、(たとえばπ中間子が凡そ原子の200倍の重さであると)考えていくと保存される物理量を反応前後で明確に出来るのです。


関連してR・P・ファインマンという論敵がいました。あくまで伝えられている内容なのですが、ゲルマンとファイン・マンの論争はまるで子供の喧嘩みたいにも思えます。激怒したファイン・マンが、「貴様の名前綴りからハイフォン消すぞ!」【Gell-Mann改めGellmannとするぞ!の意】と怒鳴りつけたら、「ゲルマンがお前の名前をハイフォン付きで書いてやる!」【Feynman改めFeyn-Manとしてやる!の意】と言い返す有り様だったようです。アメリカ人の感覚なのでしょうか。西部劇の勢いなのでしょうか。ただ少し理解出来るかも、と思ったのは互いの愛する家族を侮辱していたのですね。瞬間的に家祖も汚す発想は、頭の切れる天才同士の喧嘩だったのでしょう。より効果的な屈辱の与え方を考えて。。。
いや、やはり激怒して
子供じみた喧嘩してたのかもしれません。;)


そんなゲルマンとファイン・マンは
それぞれに素晴らしい業績を残しました。


【スポンサーリンク】




以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/11/05_初稿投稿
2024/03/09_改定投稿


舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関連のご紹介へ
イェール大学関連のご紹介へ
纏めサイトTOP
電磁気関係
量子力学関係


AIによる考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)




Germanic born in New York


German is a theorist born in New York, USA.


He has received the Nobel Prize in the world of particle physics.


Originally the name of German is written as Gell-Man,


[I write Gell-Mann, but]


In this paper, it is German.


It's easy to write and easy to read.


German received a bachelor's degree from Yale University and a PhD from MIT. He then continues his research at Princeton Institute for Advanced Study, Columbia University, University of Chicago, and California Institute of Technology. He is also one of the founders of the Santa Fe Institute. Quark's proposal was a big part of his German research achievements. After the development of the accelerator, various particles are discovered one after another without being organized, and problems are accumulated while the unsolved parts of their relationships and properties remain. Can we say that quarks are the means to organize and understand them? In German's understanding system, symmetry is used, and elementary particles are understood by concepts such as strangeness and color.
I think he is an orderly and profound theory.



Germanic and Feynman


Now, as German's achievements, we have taken up the aspect of the classification of elementary particles, but I think the true value of German's research is the research on particle reactions. Relatedly, there was an opponent named R.P. Feynman. It's just been told, but the Germanic and Fineman controversy seems like a quarrel between children. Furious Fine Man said, "I'll erase the haiphong from your name spelling!" [Gell-Mann will be changed to Gellmann! When yelling, "German will write your name with a haiphong!" [Feynman will be changed to Feyn-Man! It seems that it was like saying back. Is it an American feeling? Is it the momentum of the Western drama? I thought it might be understandable, but it was insulting each other's loved ones. The idea of ​​instantly polluting the ancestors was probably a quarrel between smart geniuses. Think about how to give more effective humiliation. .. ..
No, I'm still angry
It may have been a childish quarrel. ;)


Such Germanic and Fine Man
Each has made great achievements.

2024年03月08日

赤ア 勇
‗3/8改訂【青色LED・短波長半導体レーザーの発光度の強化】

こんにちはコウジです!
「赤ア 勇」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
赤ア 勇が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


ブルーレイディスク
【スポンサーリンク】
【1929年1月30日 - 2021年4月1日】


赤ア 勇の業績として大きいのは何よりダイオード関係で、
その方面では第一人者だという印象が強いです。その関連で
ノーベル物理学賞も受賞しています。また、
赤崎さんと言えばブルーレイディスクを思い浮かべて欲しい。


本ブログのご紹介画像では京都大学を使っていますが、
実際には赤崎氏は名古屋大学とも大きく関わっていて
(現)デンソーテンで卒業後に仕事をした後に
京大の先輩の名古屋大就任に伴い名古屋大学で研究を進めます。
今でも名古屋大学には赤崎記念研究館があり名大の時計塔では
青色LEDのイルミネーション時計が使われているそうです。


そして
(現)パナソニックの東京研究所に
所長からスカウトされ勤務します。
そうした業績の成果は有意義な結果を生んでいて、
最終的な製品として「ブールーレイディスク」の名を
聞いたことがある人は多いかと思います。
青色LED・短波長半導体レーザーの発光度の強化(実用化)
は非常に工学技術として優れています。
「情報を読み取る」という点に着目して
ブルーレイの情報として画像だけではなく
音の情報も含ませることで映画などの動画を
保存する手段を確立したのです。


個人的な業績の印象として
赤崎氏は20世紀後半の時代に沢山の仕事をしています。


1991年・窒素系半導体での多重ヘテロ効果発見。
1993年・AlGaN/GaNダブルヘテロ構造での低閾値光励起誘導放出
1995年・室温にでの最短波長パルス秒レーザーダイオード( 376nM)
1997年・GaN系半導体量子構造での量子閉じ込めシュタルク効果実現
2000年・GaN系統の結晶におけるピエゾ電界強度結晶方位依存性での
無極性面、半極性面の存在を理論的に証明
2003年・紫外/紫色LEDの実現


赤ア 勇さんは日本のレーザー技術の水準を最高峰へ高めました。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。


nowkouji226@gmail.com


2023/04/06‗初稿投稿
2024/03/08_ 改訂投稿


旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2023年4月時点での対応英訳)


Isamu Akasaki's greatest accomplishment is diode-related.
I have a strong impression that he is a leader in that regard. in that regard
He also won the Nobel Prize in Physics.


Kyoto University is used in the introduction image of his blog,
In fact, Mr. Akasaki is also heavily involved with Nagoya University.
After working at (now) Denso Ten after graduating
I will proceed with research at Nagoya University as my senior from Kyoto University was appointed to Nagoya University.
Even now, Nagoya University has the Akasaki Memorial Research Hall, and the Meidai clock tower
It seems that the blue LED illumination clock is used.


and
(Currently) Panasonic Tokyo Research Laboratory
You will be scouted by the director to work.
The results of such achievements have produced meaningful results,
As the final product, the name of "Blu-ray disc"
I'm sure many of you have heard of it.
Enhancement of luminous intensity of blue LEDs and short wavelength semiconductor lasers (practical application)
is very good engineering.


As an impression of personal achievements
Akasaki has done a lot of work in the late 20th century.


1991: Discovery of multiple heterogeneous effects in nitrogen-based semiconductors.
1993・Low-threshold photoexcited stimulated emission in AlGaN/GaN double heterostructure
1995 Shortest wavelength pulsed second laser diode at room temperature (376nM)
1997・Realization of quantum confined Stark effect in GaN-based semiconductor quantum structure
2000 ・Piezo electric field strength crystal orientation dependence in GaN-based crystals
Theoretical proof of the existence of non-polar and semi-polar planes
2003・Achievement of UV/Violet LED


Isamu Akasaki raised the standard of Japanese laser technology to the highest peak.



2024年03月07日

大貫 義郎_【群論で素粒子を整理】
3/7改訂【ご存命中なので研究内容のご紹介】

こんにちはコウジです!
「大貫 義郎」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
大貫 義郎が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 – 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


↑Credit:Wikipedia↑


【1928年生まれ ~ ご存命中】




【スポンサーリンク】



大貫義郎の人脈


大貫義郎は愛知県の名古屋大で坂田昌一に教えを受けました。
2024年の時点で96歳ほどになられているでしょうか。
未だ個人情報非公開です。


Wikipediaで調べてもほとんど更新がありません。
「1965年と1966年の二度、マレー・ゲルマンやユヴァル・ネーマンらとの連名で、
ノーベル物理学賞候補となっていたことが判明」の部分以外はほとんど私のブログ
と一緒の検索結果が出てきます。(記.2024/2/26)


群論を使った素粒子論の構築を行いました。
そもそも低温物理学
では名古屋で発展してきた部分
が大きいです。
本ブログの別項で中嶋貞雄バーディン
エピソードをご紹介しましたが、
後にノーベル賞を
受賞する二人、
益川敏英と小林誠は大貫義郎が育てました。


名古屋大学でのつながりが素粒子論で大きな
役割を果たしていたと言えるでしょう。



大貫義郎の研究業績


大貫義郎は素粒子を構成する素子の対象性に着目して、
数学的手法として
群論」を使って整理していきました。


群論の中では「要素と演算」を意識して考えていき、
それらを使って単位元や逆元を考えていくのです。


素粒子の反応過程で関わる現象は多岐にわたり、
個別の要素に拘っているだけでは話が進まないのです。
反応に関わるグループを詳細に分類して個別の反応要素を
考えるよりもまず、一団の性格を見極めたうえで、
グループの性質に応じた個別粒子の役割をしっかり
考えていく作業が群論を使ったアプローチで
可能になっていったのです。
そのアプローチが大貫義郎の業績です。

より詳細には、坂田モデルにおける基本粒子同士の
入れ替えに対して「
素粒子としての性質が変わらない」
いう考え方を足掛かりに群論を組み立てたのです。


そうした考え方を駆使して議論を組み立てて、
大貫義郎はクォークを明確に分類し、整理していったのです。


【スポンサーリンク】



〆さいごに〆


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には適時、
返信・改定をします。


nowkouji226@gmail.com


2020/12/21_初版投稿
2024/03/07_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
量子力学関係


AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)



Onuki Yoshiro's personal connections


Yoshiro Onuki was taught by Shoichi Sakata at Nagoya University and constructed the theory of elementary particles using group theory. In the first place, in cryogenic physics, there is a big part that has developed in Nagoya. I introduced the episodes of Sadao Nakajima and Bardeen in another section of this blog, but Yoshiro Onuki raised the two Nobel Prize winners, Toshihide Maskawa and Makoto Kobayashi. It can be said that the connection at Nagoya University played a major role in particle physics.



Yoshiro Onuki's research achievements


Yoshiro Onuki focused on the symmetry of the elements that make up elementary particles, and used "group theory" as a mathematical method to organize them.
There are a wide variety of phenomena involved in the reaction process of elementary particles, and it is not possible to proceed just by focusing on individual elements. Rather than classifying the groups involved in the reaction in detail and considering the individual reaction elements, group theory was used to first identify the character of the group and then firmly consider the role of the individual appearance according to the nature of the group. The approach made it possible. That approach is the achievement of Yoshiro Onuki.


More specifically, we constructed a group theory based on the idea that the properties of elementary particles do not change when the basic particles are replaced with each other in the Sakata model.


By making full use of such ideas, Yoshiro Onuki clearly classified and organized quarks.


2024年03月06日

広重 徹
3/6改訂【科学史の社会的側面を深掘りしていった先人|早い最期】

こんにちはコウジです!
「広重 徹」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
広重 徹が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


思想史のなかの科学
【スポンサーリンク】
【1928年8月28日生まれ ~ 1975年1月7日没】



 広重徹の育った時代


広重博士は京都大学の理学部を卒業した後に
大学院をドロップアウトしてます。


戦争の時代に青春時代を過ごし、
占領下の日本で多感な時期を過ごし、
世相として色々あった時代に
研究者としてのスタートをしていたので
大変だったろうかと思います。


広重徹は初め素粒子論を専攻していたそうです。



 広重徹と科学史


広重徹は特に科学史の中で社会的側面に焦点をあてて
研究をしていました。村上陽一郎
本を書いたり
ランダウローレンツの業績を
翻訳して
日本に紹介していたりしました。


それだから文章を読んだ時に、きっと感じます。
広重徹の守っていた立場があるのです。


社会の中で科学史が意味を持ちます。
科学史の大きな役割を感じます。
社会から過度な期待がある半面で、
ある意味で無理解な評価があるのかな、
覚悟しながら冷静に話して一般の人々に
理解してもらう事が大事です。


科学は発展し続けているのでその意味合いを吟味する事が大事です。何よりも、その理解の中で文章を読んでいる人に整理した形でその時々の「全体像」を伝えて、当時の現象理解と問題点を出来るだけ考えられるように出来るようにします。そうすれば、歴史を語りながら、科学技術の発展に繋がっていくのです。


科学の理解には助けがあると非常に有益な場合があります。新しい知見を身に付けていく中で概念の形成過程を詳細に追いかける事で、より深く科学が理解できるのです。私も科学史の文章を作っている一人だと考えると、少し身の引き締まる思いがします。




[caption id="attachment_5003" align="aligncenter" width="300"]名大 名古屋大学[/caption]

話し戻って、広重徹は30代で博士課程を終えて(於、名古屋大学)、40代で早くして亡くなります。もう少し話しが聞きたかったなぁ、って感じですね。その後、斯様な議論はあまり無いかと思うのです。


また、広重徹の奥様が自分史を残していたのでリンクを残します。広重徹のお人柄が偲ばれると同時に終戦後の世相が感じられて興味深いかと思えます。リンクがある間に是非、ご覧下さい。


http://www.asahi-net.or.jp/~fv9h-ab/kamakura/DrMiki.html





以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/10_初稿投稿
2024/02/25_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
京大関連のご紹介
量子力学関係
AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


 (2021年11月時点での対応英訳)



The era when Tetsu Hiroshige grew up


Dr. Hiroshige dropped out of graduate school after graduating from the Faculty of Science at Kyoto University. .. .. I think it was difficult because he spent his youth in the era of war, spent a sensitive time under the occupation, and started as a researcher in various times as a social situation. It seems that Tetsu Hiroshige initially majored in particle physics.



Tetsu Hiroshige and the history of science


Tetsu Hiroshige's research focused on social aspects, especially in the history of science. He wrote books with Yoichiro Murakami and translated the achievements of Landau and Lorenz and introduced them to Japan.


So when he reads the text, he surely feels.


There is a position that Tetsu Hiroshige protected. He feels the great role of the history of science in society. While he has excessive expectations from society, it is important to talk calmly and get the general public to understand, while being prepared to have an incomprehensible evaluation in a sense. Above all, if it is possible to convey an organized "overall picture" to the person reading the text in that understanding so that they can understand the current phenomenon and think about problems as much as possible, while talking about history, It will lead to the development of science.


Considering that I am one of the authors of the history of science, I feel a little tight. Returning to the story, Tetsu Hiroshige finished his doctoral course in his thirties (at Nagoya University) and died early in his forties.


I feel like I wanted to hear a little more. After that, I don't think there are many such discussions. Also, since Tetsu Hiroshige's wife left her own history, I will leave a link. At the same time as the personality of Tetsu Hiroshige is remembered, it seems interesting to feel the social situation after the end of the war. take a look.


http://www.asahi-net.or.jp/~fv9h-ab/kamakura/DrMiki.html

2024年03月05日

小出昭一郎
3/5改定【分かり易い教科書|金属錯塩の光スペクトルを研究】

こんにちはコウジです!
「小出昭一郎」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
小出昭一郎が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 - 1827年3月26日)


初見の人が検索結果を見て記事内容が分かり易いように再推敲します。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。


分光器
【スポンサーリンク】
【1927年3月25日生まれ ~ 2008年8月30日没】


小出昭一郎は多くの専門書を残した事
で知られています。東京に生まれ
東京帝大で学びました。第5回
ソルベー会議が開かれた年に生まれています。


教育に時間を捧げた人生だったのでしょうか。研究成果としては余り伝わっていません。ただ、金属錯塩の光スペクトルを研究していたようです。そこで手掛かりとして錯体について調べを進めてみます。錯体とは広義には、「配位結合や水素結合によって形成された分子の総称」(Wikipedia)狭義には、「金属と非金属の原子が結合した構造を持つ化合物」です。(Wikipedia)


何だか亀の甲羅みたいな記号が沢山出てきます。
そこからもう少し考えてみると、
光の吸光や発光に伴い対象物資内の
「状態遷移に関する情報」が得られるのです。
そしてそこから、電磁気特性や、
触媒の効果が理解出来るかと。


具体的に主な錯体としては
アンミン錯体_テトラアンミン銅錯体_[Cu(NH3)4]^2+
シアノ錯体_ヘキサシアニド鉄錯体_[Fe(CN)6]^4-[Fe(CN)6]^3+
ハロゲノ錯体-テトラクロリド鉄錯体_[Fe(CN)6]^4-[FeCl4]-
ヒドロキシ錯体 - アルミン酸_[Al(OH)4]-(または_[Al(OH)4(H2O)2]-
などがあるようです。


ただ、当時の日本物理学は
本丸を攻めきれてはいなかったのですね。
そう感じるのは現象整理に終始した研究内容
であると思えるからです。しかし、しかし、
私はその関心の中に大事なものを感じます。
たとえば対称性を考える時にこうした研究が
大いに有益だかと思えるからです。


プランクの黒体輻射理論発表から数十年がたち、
欧州ではハイゼンベルグが1925年に書いた論文を皮切りに
急速に各国
で議論が拡大されていた時代です。


小出昭一郎の暮らした敗戦国日本は
戦前・戦後の混乱の中で情報がどこまで
取れていたのでしょうか。


リアルタイムで議論が進まない環境で、
ソルベー会議の成果をタイムラグのある中で
把握しています。学会誌を見る度に興奮した筈です。


小出昭一郎はそんな中でも量子力学の
理解を進め国内に広めていたのです。
そして、何より後進を育てていたのです。
小出昭一郎は多くの教科書で
物理の世界を紹介していました。
イメージを作ってくださいました。



【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には適時、返信・改定をします。


nowkouji226@gmail.com


2020/11/20_初回投稿
2024/02/05_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
AIでの考察(参考)


【このサイトはAmazonアソシエイトに参加しています】


(2021年11月時点での対応英訳)


Shoichiro Koide left behind many specialized books
Is known for. He was born in Tokyo and studied at Tokyo Imperial University. He was born in the year the 5th Solvay Conference was held.


Was he a life devoted to education? The results of his research have not been well communicated. However, he seems to have been studying the optical spectrum of metal complex salts. So he goes on to investigate the complex as a clue. In a broad sense, a complex is a "generic term for molecules formed by coordination bonds or hydrogen bonds" (Wikipedia). In a narrow sense, it is a "compound having a structure in which metal and non-metal atoms are bonded" (Wikipedia).


There are many symbols like the shell of a turtle. If you think about it a little more, you can get information about the state transition in the object as the light absorbs and emits light. And from there, can we understand the electromagnetic characteristics and the effect of the catalyst?


Specifically, the main complex
Ammine complex_Tetraamminecopper complex_ [Cu (NH3) 4] ^ 2 +
Cyanide complex_Hexacyanide iron complex_ [Fe (CN) 6] ^ 4- [Fe (CN) 6] ^ 3 +
Halogeno Complex-Tetrachloroauric Acid Complex _ [Fe (CN) 6] ^ 4- [FeCl4]-
It seems that there are hydroxy complexes – aluminate _ [Al (OH) 4]-(or _ [Al (OH) 4 (H2O) 2]-, etc. However, Japanese physics at that time was not able to attack Honmaru. It was.


Decades have passed since the announcement of Planck's theory of blackbody radiation, and in contrast to the times when discussions were taking place in other countries, Japan, the defeated country where Shoichiro Koide lived, was able to obtain information in the prewar and postwar turmoil. Was it?
In an environment where discussions do not proceed in real time, we grasp the results of the Solvay Conference with a time lag. Every time I read an academic journal, I should be excited.


Even so, Shoichiro Koide promoted his understanding of quantum mechanics and spread it throughout the country.
And, above all, he was raising the younger generation.
Shoichiro Koide introduced the world of physics in many textbooks.