アフィリエイト広告を利用しています
ファン
検索

メンズエステサロン
【エルセーヌMEN】

メタボリック対策やヒゲ脱毛など、男の魅力を引き出すエステ体験実施中!
<< 2024年11月 >>
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
最新記事
最新コメント

2023年06月23日

エルンスト・マッハ
6/23改訂【実証論の立場から認識の問題を議論】

こんにちはコウジです!
「マッハ」の原稿を改定します。
今回の主たる改定はタイトルの再考です。
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】


【スポンサーリンク】


【1838年2月18日 ~ 1916年2月19日】



マッハの人生についての概観


以前ご紹介した石原さんはアインシュタイン直後の時代の一人、今回はご紹介するエルンスト・マッハはアインシュタインに影響を与えた一人です。その存在と考え方は当時の物理学会と思想の世界に大きな影響を与え、後の認識論に影響を与えました。ボルツマンプランクがマッハとの議論を土台にして独自の論理を展開していきます。


マッハは最終的には国の政治に参加していたようです。そんな議論を進めたマッハの業績はとても大きいと思います。また、マッハは最初の科学史家だと言われています。昔から正しいと言われてきた科学に関わる方法論を一つ一つ再定義・確認して議論していったのです。



マッハの業績と独自性


エルンスト・マッハはオーストリアに生まれた


物理学者です。その研究範囲は


数学・物理学・感覚分析・心理分析に及びます。


マッハの残した業績はまさにパラダイム
シフトと呼べます。それは時間と空間の
概念に対しての挑戦でした。そもそも、
ニュートン以降の時代に、空間の概念は
絶対空間・絶対時間が主流でした。
背景として神様の概念に端を発する世界観
があったのです。宇宙も自然も神の作り
たもうた産物だと万人が考えていました。


所がマッハの考え方は徹底的に相対的です。
マッハの考え方によると空間は全て相対的で絶対空間という概念は設けません。論理的に考えて絶対空間の意義を感じない所が凄いのです。時間に関しても同様で絶対空間で流れる時間に意義を感じていません。後に議論される双子のパラドックスを知ると、複数の時間系を考える時にもっと我々には設定が必要な筈なのですが、そこまで議論を進めるべきなのです。


アインシュタインはそこを考え抜き相対論
に至ります。新しい考えを哲学的思考
方法で打ち出し、明確なメッセージ
を伝えたマッハの業績は素晴らしかったです。
晩年のマッハをアインシュタイン
表敬訪問しています。


 

マッハの進めた認識改革


またマッハは物理学に於ける認識の変革


にも大きく関わりました。ボルツマン


プランクらの実在論に対してマッハは


実証主義を展開し、自然に対する測定を


通じた認識の問題を議論しました。


観測者の感覚を重視した認識に対して


独自の立場を明確にしています。事物を


認識するのは認識者であって「個人個人の


感覚を通じて認識する過程」を含めて


マッハは議論を進めていったのです。そして、


音速をこえる時の画像は万人に説得力を持ちます。
Photography of bow shock waves around a brass bullet, 1888


 ↑ cf;Wikipedia  パブリック・ドメイン ↑


我々は未だに音速を表現する際に「マッハ」


という単位で彼の名前を使い続けています。


それは後世・我々が出来た小さな評価だった


とも言えるのでは無いいか、と私は思っています。


論敵も多かったマッハでしたが、しっかりと


今に残る確かな足跡を残しています。



〆最後に〆




TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。


nowkouji226@gmail.com


2020/08/13_初稿投稿
2023/06/23_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
オーストリア関連のご紹介
ウィーン大関連のご紹介
力学関係
熱統計関連のご紹介


【このサイトはAmazonアソシエイトに参加しています】


【2021年9月時点での対応英訳】



Mach life


Mr. Ishihara, who I introduced earlier, was one of the people immediately after Einstein, and Ernst Mach, who I will introduce this time, was one of the people who influenced Einstein. Its existence and way of thinking had a great influence on the Physical Society of Japan and ideas at that time, and influenced later epistemology. Boltzmann and Planck develop their own logic by referring to the foundation of Mach's argument. It seems that Mach eventually participated in national politics. I think Mach's achievements in promoting such discussions are very large. Mach is also said to be the first historian of science. He redefined, confirmed, and discussed science-related methodologies that have long been said to be correct.



Mach achievements and uniqueness


Ernst Mach is an Austrian-born physicist. His research interests cover mathematics, physics, sensory analysis, and psychological analysis.


The achievements left by Mach are just a paradigm
You can call it a shift. It's time and space
It was a challenge to the concept. in the first place,
In the post-Newton era, the concept of space was
There was only absolute space and time.
A world view that originates from the concept of God as a background
There was. The universe and nature are made by God
Everyone thought it was a product of humanity.


However, Mach's way of thinking is completely relative.
According to Mach's idea, all spaces are relative and do not have the concept of absolute space. It is amazing that I think logically and do not feel the significance of absolute space. The same is true for time, and I don't feel the significance of time flowing in absolute space. Knowing the twin paradox that will be discussed later, we should have more settings when considering multiple systems, but we should proceed to that point.


Einstein thinks about it and comes to the theory of relativity. Mach's achievements in delivering his new ideas in a philosophical way and delivering a clear message were wonderful. Einstein pays a courtesy visit to Mach in his later years.



Mach's cognitive reform


Mach was also heavily involved in the transformation of cognition in physics. Mach developed positivism against the realism of Boltzmann, Planck and others, and discussed the problem of cognition through measurement of nature.


He takes a unique position on the observer's sense-oriented perception. It is the recognizer who recognizes things, and Mach proceeded with the discussion, including the process of recognizing things through individual senses. Images when the speed of sound is exceeded are persuasive to everyone.


We still continue to use his name in the unit "Mach" when expressing the speed of sound. I think it can be said that it is a small evaluation that we have made in posterity.


He was Mach, who had a lot of controversy, but he has a solid footstep that remains.


2023年06月22日

E・W・モーリー
6/22【米国で稀代の実験家が光速度に関する事実を実験検証】

こんにちはコウジです!
「モーリー」の原稿を改定します。
今回の主たる改定はタイトルの再考です。
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】




【スポンサーリンク】

【1838年1月29日 ~ 1923年2月24日】



稀代の実験家E・W・モーレー


その名を書き下すとエドワード・ウィリアムズ・モーリー


(モーレーとも書く時もあります)晩年のオッペンハイマー


とかエジソンと同郷ですね。個人的印象としては


米国4台研究拠点の一つです。他は


カリフォルニア・シカゴ・コネチカット州だと思えます。


其々で最先端の議論が繰り広げられてきました。


何より、モーリーはマイケルソン・モーリーの実験で有名です。
(マイケルソンはファーストネームでなく別人の名前です)


別項でも記述しましたが、この実験ではエーテルの


存在に起因する「光速度の変化」は見てとれませんでした。


その事が結果として「光速度普遍の原理」に


繋がっていったのが歴史的な事実です。




モーレの歴史的な位置付け


更に話を掘り下げていくと、


この話は等速運動をする


慣性系においてローレンツやアインシュタインが


考えていたような系の間の関係式へとつながり、


その関係式が更に考える為の材料となって


相対論の理論体系が構築出来ています。


理論の起点と確認点はあくまで実験で


確かめられた自然界の事実なのです。


こういった理論と実験の両輪を考えていく


ダイナミックさが物理学の醍醐味です。


その議論の中で

モーレの仕事は大きな役割を果たしました。

 

その他。モーレーは、熱拡散に関する研究を行い、


磁場中の光速に関する研究を行い、実績を残しています。


 

〆 


【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
頂いたメールは全て見ています。
必要箇所は適時、改定をします。


nowkouji226@gmail.com


2021/01/25_初稿投稿
2023/06/22_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係へ
電磁気関係

【このサイトはAmazonアソシエイトに参加しています】

【2021年9月時点での対応英訳】


If you write down the name, Edward Williams Morley,

A physicist born in New Jersey, USA. Speaking of New Jersey, it's the same hometown as Oppenheimer and Edison in his later years. As a personal impression

It is one of the four research bases in the United States. The other seems to be California, Chicago, Connecticut. There must have been discussions in each case. Above all, Morley is famous for Michaelson Moret's experiments.

As described in another section, the "change in speed of light" due to the presence of ether could not be seen in this experiment. It is a historical fact that this led to the "universal principle of the speed of light" as a result.

Further digging into the story, we can derive the relational expression between the systems that Lorenz and Einstein thought in the inertial system that moves at a constant velocity, which becomes the material for further consideration and the theory of relativity. The system has been built.

The starting point and the confirmation point of the theory are the facts of the natural world confirmed by experiments. The dynamic of thinking about these two wheels of theory and experiment is the real thrill of physics.

others. Morley has a track record of conducting research on thermal diffusion and research on the speed of light in a magnetic field.



2023年06月21日

J・C・マクスウェル
6/21改訂【場の理論をまとめ、電磁波が光速となる事を示した】

こんにちはコウジです!
「マクスウェル」の原稿を改定します。
今回の主たる改定はタイトルの再考です。
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】
【1831年6月13日 ~ 1879年11月5日】



マクスウェルの人物概要


その名を細かく記載すると、J・C・マクスウェル


:James Clerk Maxwell_。


マクスウェルは電磁気学を確立しました。


何より場の理論の基礎を作りあげ、


電場と磁場の関係をマクスゥエル方程式


で関連付けてまとめ上げ、


定式化をしたのです。更には、


直行する電場と磁場からなる「電磁波」


の関係を数式として確かにして、


媒体である光の進行相度が


光速度となる事を理論的に導きました。



天才肌のマクスウェル


個人的な意見として電磁気学に関わる人物は
何故だか高潔な心持を持っているように思えます。
特にマクスウェルに対してはそう感じます。


大英帝国のエディンバラで生まれたマクスウェルは
文理の面で、それぞれ早熟な才能を示ました。


14歳の時に書いた詩が地元の新聞に掲載されています。
言語学・修辞学の高度な習得を感じさせますね。


また同時期に、焦点を用いて「卵形線」を定義して、
「ピンと糸」を使った工夫で描き出す手法を提案していて、
論文に纏めています。マクスウェルに限らず当時の
物理学者は今よりも多面的に現象を論じ、
考えてていてた傾向はあるようです。
そんな時代を差し引いても天才肌ですね。
マクスウェルも光学・熱力学で業績を残します。


(ノッティングヒルで)マクスウェルは1860年から1866年までこの家に住んだ。
  マクスウェルのもっとも実りある時期で、重要な仕事はここで行われた。電磁気学
  だけでなく、気体分子運動論、三原色の原理、カラー写真の研究もここで
  行われた。」(太田浩一「ほかほかのパン」より引用)


電磁波が光学的に縦波・横波で議論されています。
現代では高校レベルの知識ですが
当時、説明するのは大変だったと思います。



マクスウェルの残した業績


マクスウェルの業績で個人的にもっとも


評価したいのは何よりも「場の考え」の確立です。


静的な意味での場と時系列で変化する


動的な意味での場は大きく違うと思えます。


マクスゥエルは後者の意味での「場」を


定式化して後の理論家達に


進むべき道を示したパイオニアでした。


実際に後のアインシュタインニュートンよりも


マクスウェルを近しく感じています。共に「場」を


考えていった系譜の人々なのではないでしょうか。


ニュートンよ許したまえ」という言葉を使い、


アインシュタイン絶対時間を否定して


相対性理論を構築していくのです.


先ほど電磁波が「光速で伝わる」と述べましたが、


電磁波を「情報」と置き換えて考えると


より分かりやすいかもしれません。


その時々の「場」の状態を決めている情報が


光速度で伝わっていく表現を


作っていった一人がマクスウェルなのです。


(晩年マクスウェルは)
「ケンブリッジ、アバーディン、ロンドンを通じて労働者
 の為の講義を退職後の1866年まで熱心に続けた。
 学生よりも労働者に学問への熱意を感じたようである。」
(太田浩一「ほかほかのパン」より引用)


そして偶然ですが、マクスウェルの没年に


アインシュタインが生まれています。


マクスウェルが亡くなったのは40代なので


もう少し活躍して欲しかったと思います。


残念至極。 



〆最後に〆


【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/09/04_初稿投稿
2023/06/21_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係
ケンブリッジ関連
電磁気学関連のご紹介


【このサイトはAmazonアソシエイトに参加しています】


 

【2021年9月時点での対応英訳】



Maxwell's personal profile


To elaborate on its name, James Clerk Maxwell.


Maxwell established electromagnetics.


There, he laid the foundation for field theory, and formulated the relationship between electric and magnetic fields by associating them with the Maxuel equation. Furthermore, he confirmed the relationship between the orthogonal electric field and the "electromagnetic wave" consisting of the magnetic field as a mathematical formula, and theoretically derived that the progressive phase is the speed of light.



Genius skin Maxwell


Born in Edinburgh, the British Empire, Maxwell showed precocious talent both in literature and in science. A poem he wrote when he was 14 was published in a local newspaper. He makes us feel the advanced acquisition of linguistics and rhetoric.


At the same time, he proposed a method of defining an "oval line" using focus and drawing it with a device using "pins and threads", and summarized it in a treatise. It seems that physicists at that time, not just Maxwell, tended to discuss and think about phenomena from a more multifaceted perspective than they do now. It's a genius skin even if the times are subtracted.


Maxwell also makes a mark in optics and thermodynamics. Electromagnetic waves are optically discussed as longitudinal waves and transverse waves. Today, it's high school level knowledge, but I think it was difficult to explain at that time.



Achievements left by Maxwell


What I personally want to evaluate most about Maxwell's achievements is the establishment of the "electromagnetic field idea". It seems that the electromagnetic field in the static sense and the electromagnetic field in the dynamic sense that change over time are very different.


Maxuel was a pioneer who formulated the "electromagnetic field" in the latter sense and showed the way to later theorists.


In fact, later Einstein feels closer to Maxwell than Newton. I think they are people of genealogy who both thought about "electromagnetic field". Using the phrase "Forgive me, Newton," Einstein denies absolute time and builds the theory of relativity.


And by chance, Einstein was born in the year of Maxwell's death.


Maxwell died in his 40s, so I hope he's a little more active. Twice


2023年06月20日

ウィリアム・トムソン
6/20改訂【B・K OM, GCVO, PC, PRS, PRSE】

こんにちはコウジです!
「ウィリアム・トムソン」の原稿を改定します。
今回の主たる改定はタイトルの再考です。
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】
【1824年6月26日 ~ 1907年12月17日】



多くの業績を残したトムソン


始めに、本稿のURLは”Baron Kelvin”を使っています。


名前としてはトムソンなんですが、ケルビン男爵


としての別名も持っていたからです。


その名を詳細に記すと、


初代ケルヴィン男爵ウィリアム・トムソン


William Thomson, 1st Baron Kelvin OM, GCVO, PC, PRS, PRSE


 

トムソンは熱力学や電磁力学で


沢山の研究成果を残してます。


彼は僅か10歳でグラスゴー大学へ入学しました。


トムソンの父がグラスゴー大で教鞭を


とっていた事実はある様ですが、


それを別にしても早熟ぶりに驚かされます。


その後、トムソンはケンブリッジで勉学を進め、


22歳でグラスゴー大学の教授になり、


イギリスの大学で初めての物理学研究室


を立ち上げました。


 

トムソンの広めた諸概念


1845年の論文では、ファラデーの理論を


数学的に整え回路近辺の空間を考えてます。


この発表は後のマクスウェルに示唆を
与えたと言われています。後の電磁場
の考え方に原型を与えたのでしょう。


また、トムソンは数学的表現である「ベクトル」
を「使い始めた」人であると言われています。


ハミルトンが別途ベクトルの概念を使っている


ようですが、ハミルトンは四次元空間の定式化


の中で使っています。これに対してトムソン卿は


ベクトルの概念を使って実際に起きている
磁気現象を
数学上で(ベクトル表現で)
より現実的に対応させているのです。


また、

物理学者としては別にJ・J ・トムソンが居ます。


更に、電磁気学から量子力学への移行する中での
業績としては磁性に関するものがあります。
ファラデーが見つけた常磁性という概念を
説明する為にトムソン卿は感受性・透磁率
といった概念を固有の物質で考えていきました。


後に「スピン」等の概念を考える土台を
トムソンが作っていったと言えないでしょうか。



多くを残したトムソン


そして、トムソン卿は沢山の物理学者と議論しました。
例えば、無名だったピエール・キューリを見出し、
交流し真価を認めました。また、別項でご紹介して
いますが、日本初期の物理学者である田中舘愛橘を育て、
彼がトムソンを敬愛していた事も広く知られています。





【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2020/10/13_初稿投稿
2023/06/20_改定投稿


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係
ケンブリッジ関連
電磁気学関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】



Thomsom did many  advanced work


First, the URL for this article uses "Baron Kelvin". He's named Thomson, but he also had an alias as Baron Kelvin.


To elaborate on its name, William Thomson, 1st Baron Kelvin OM, GCVO, PC, PRS, PRSE


Thomson has left a lot of research results in thermodynamics and electrodynamics. He entered the University of Glasgow at the age of only 10.


It seems that Thomson's father was teaching at the University of Glasgow, but apart from that, he is amazed at his precociousness. After that, Thomson studied in Cambridge, became a professor at the University of Glasgow at the age of 22, and set up the first physics laboratory at a university in the United Kingdom.


In his 1845 treatise, he mathematically arranged Faraday's theory and considered the space near the circuit.


This announcement suggests to Maxwell later
It is said to have given. Later electromagnetic field
Probably gave a prototype to the idea of.


Also, Thomson is a mathematical expression "vector".
Is said to be the person who "started using".



Works of Thomson 


It seems that Hamilton uses the concept of vector separately, but Hamilton uses it in the formulation of four-dimensional space. Sir Thomson, on the other hand, uses the concept of vectors to mathematically (in vector representation) the phenomena that are actually occurring.


In addition, there is another physicist, JJ Thomson.


In addition, one of the achievements in the transition from electromagnetism to quantum mechanics is related to magnetism. To explain the concept of paramagnetism that Faraday found, Sir Thomson considered the concepts of sensitivity and permeability with unique substances. It can be said that Thomson laid the foundation for thinking about concepts such as "spin" later.


And Sir Thomson discussed with many physicists.
For example, he found the unknown Pierre Cucumber,
He interacted and acknowledged its true value. Also, I will introduce it in another section.
However, it is also widely known that Tanakadate Aikitsu, a physicist in the early days of Japan, was brought up and Tanakadate admired Thomson.


2023年06月19日

G・R・キルヒホフ
6/09改訂【反射熱と放射エネルギーと電気回路でそれぞれ法則を確立】

こんにちはコウジです!
「キルヒホフ」の原稿を改定します。
今回の主たる改定はタイトルの再考です。
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】
【1824年3月12日 〜 1887年10月17日】


 

その名は正しくはグスタフ・ロベルト・キルヒホフで
Gustav Robert Kirchhoff,とつづります。


1824年に現在のロシア領カリーニングラードである
ケーニヒスベルクで生まれました。


生まれ故郷にあるケーニヒスベルク大学で学び、
26歳でブレスラウ大学員外教授に就任しています。


キルヒホッフについて伝えられている内容は
主に業績となりますので、本稿は時代背景
をもとにし研究内容を中心とした
記述を纏めたいと思います。


私自身がドイツ系の人になったつもりで
出来るだけ正確に記載したいと考えています。


ロシアをドイツ語圏と見てるのは強引だと思いますが、
そこの考察は後程。;)


実際にキルヒホッフの業績の中で有名なものは
@電気回路におけるキルヒホッフの法則、
A放射エネルギーについてのキルヒホッフの法則、
B反応熱についてのキルヒホッフの法則です。


それぞれにとても大事な考察だったといえるでしょう。


まず第一に、回路におけるキルヒホッフの法則が最重要です。
別言すれば一番知られています。


当然と言えば当然の事実を明言化しているだけだ、
とも言えるのですが


「回路網中の任意の接続点に流入する電流の和は 0(零)である」
というのが第一の法則です。


正確にはキルヒホッフの第一法則というべきでしょうが、
本稿では単純に「第一の法則」または「第一法則」と省略します。


キルヒホッフの時代には自由電子運動論を裏付ける
理論はありません。電子を直接観測にかけるどころか
原子や電子のサイズも想像がつかないで、
あくまで電子は一つのモデルでした。


キルヒホップに考えた時に、正直者のドイツで学んだ人は
出来る事実で話を組み立てます。


つまり出来るだけ正確に観測を続けて
結果を蓄積して、観測事実の相互関係を定量化するのです。


当時は電源と抵抗の単純な回路を考えた時に
夫々を要素と考えて回路に落とす作業自体にも
議論があったでしょう。


つまり、我々が当たり前に書いている回路図も
国際度量衡といった枠組みが無くて、ヨーロッパの一部の
人々が使うだけの不可思議な記号だったのです。


知る人ぞ知る知見だったとも言えます。そんな回路上での一点を
考えたら入り込む電流と出ていく電流の総和が等しい。
(実験事実によると)ゼロとなるという事実が第一法則なのです。


この法則は今、電気工学(ひいては現代産業)
で幅広く応用されています。


そして次に、キルヒホッフの電圧則はキルヒホッフの第2法則
とも呼ばれます。回路を考えたときに回路網中の任意の
閉ループを考えてみて構成する部分的な電圧を計測したとき、
任意の分け方で考えた起電力の総和と電圧降下の総和は等しいのです。


抵抗、電球、電線電池からなる回路で何が電気を起こしていて、
何が消費するか考えてみてください。


そして再強調しますがこの時代には電子の存在は今より不確かです。


今の学生が教科書を読んだときに漫画的な丸い物体
(模式的な電子の姿)を見て想像するような作業ができないのです。


力学と比べて電磁気学や熱学はまとめ難い側面があります。
実際には電圧を生じる電池のような物質があり、
電気を流し抵抗を持つ同線等の要素を細かく考えていくことで、
回路間の色々な場所での電圧降下をかんがえていき、
キルヒホッフは第二法則を確立することが出来たのです。


そして1859年にキルヒホッフは黒体放射における
キルヒホフの放射法則を発見しました。


電子の運動でオームの法則に従い議論されるのに対して、
熱放射は空間での現象に対しての考察です。


また、
別の空間的な考察としてキルヒホッフには
分光学での考察も行っています。


フラウンホーファーが発見したいわゆるフラウンホーファー線
(太陽の光線を分解した時に現れる特徴的な吸収)が
ナトリウムのスペクトルと同じ周波数帯に見受けられると示し、
(今で言う分光学的方法で)太陽の内部にある
と思われる元素を同定できることを示しました。


他に音響学、弾性論に関しても先進的な研究を行っています。



〆最後に〆




TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2022/04/04_初回投稿
2023/06/19_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
力学関係のご紹介


【このサイトはAmazonアソシエイトに参加しています】




 

 

(対応英訳)


His name is correctly Gustav Robert Kirchhoff, spelled Gustav Robert Kirchhoff. He was born in 1824 in what is now Russian Kaliningrad, Königsberg. He studied at the University of Königsberg in his hometown and became a non-professor at the University of Breslau at the age of 26.
Since the content reported about Kirchhoff is mainly his achievements, this article will summarize his research content based on his historical background. I would like to describe it as accurately as possible as if I were a German person. ;)


In fact, the most famous achievements of Kirchhoff are (1) Kirchhoff's law in electric circuits, (2) Kirchhoff's law on radiant energy, and (3) Kirchhoff's law on heat of reaction. It can be said that each was a very important consideration.

First of all, Kirchhoff's law in the circuit is of utmost importance. In other words, it is the best known. Of course, it can be said that it only clarifies the facts of course, but the first rule is that the sum of the currents flowing into any connection point in the network is 0 (zero). am. To be precise, it should be called Kirchhoff's first law, but in this article, it is simply abbreviated as "first law" or "first law". There is no theory to support the theory of free electron motion in this era.


Far from directly observing the electrons, I couldn't imagine the size of the atoms and electrons, and the electrons were just one model. When thinking this way, honest and learned in Germany build up the story with the facts that can be done. In other words, we continue to observe as accurately as possible, accumulate observation results, and quantify the interrelationship of observation facts. At that time, when considering a simple circuit of power supply and resistance, there would have been discussion about the work itself of considering each as an element and dropping it into the circuit. In other words, the circuit diagram we take for granted was a mysterious symbol that was only used by some people in Europe, without a framework such as the General Conference on Weights and Measures. It can be said that it was a knowledge known to those in the know. Considering one point on such a circuit, the sum of the incoming current and the outgoing current is equal. The first law is the fact that it is zero according to the experimental facts. This law is now widely applied in electrical engineering (and thus modern industry).


And then, Kirchhoff's voltage law is also called Kirchhoff's second law. When considering a circuit, when considering an arbitrary closed loop in the circuit network and measuring the partial voltage, the sum of the electromotive force and the sum of the voltage drops considered by any division are equal. Think about what is producing and consuming electricity in a circuit consisting of resistors, light bulbs, and electric wire batteries. And again, the existence of electrons in this era is more uncertain than it is now. When a current student reads a textbook, he cannot do the work that he imagines by seeing a cartoon-like round object (a schematic electronic figure). Compared to mechanics, electromagnetism and thermal physics are difficult to summarize. In reality, there is a substance such as a battery that generates voltage, and by carefully considering factors such as the same line that conducts electricity and has resistance, Kirchhoff considers the voltage drop in various places between circuits. I was able to establish the second law.


And in 1859 Kirchhoff discovered Kirchhoff's law of radiation in blackbody radiation. Whereas the motion of electrons is discussed according to Ohm's law, thermal radiation is a consideration of phenomena in space. In addition, as another spatial consideration, Kirchhoff is also considering spectroscopy. The so-called Fraunhofer line discovered by Fraunhofer (the characteristic absorption that appears when the sun's rays are decomposed) is shown to be found in the same frequency band as the spectrum of sodium, inside the sun (in what is now called a spectroscopic method). It was shown that the element that seems to be in can be identified. He also conducts advanced research on acoustics and elasticity.

2023年06月18日

E・クラウジウス
6/18改訂【熱力学の第一法則を定めエントロピーを定義|エントロピー】

こんにちはコウジです!
「クラウジウス」の原稿を改定します。
今回の主たる改定はタイトルの再考です。
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】
【1822年1月2日 〜1888年8月24日】


クラウジウスはドイツ系の人で、名前をつづると
Rudolf Julius Emmanuel Clausius, です。


クラウジウスはプロイセン王国領生まれました。今で言う、ポーランド地域の生まれです。お父様は牧師として務める傍ら、小学校の校長を務めていました。そこでクラウジウスは学び始めます。ベルリン大学の時代に熱力学に関心を抱き始め、初の論文をまとめます。


それは、当時の物理学の中心となっていた熱(温度)、圧力、 対象となる物質の体積(占めている空間)、およびその質量に関する関係の考察でした。


ニュートン力学が広く知られ、その質点モデルをもとに人々が分子であるとか、原子であるとかいう概念を想像していくうえで、知見をまとめていっている段階での考察です。


手探りの中で気体分子の(またはその幾つかの合成物の)
性質を突き詰めていった人の一人がクラウジウスなのです。


今で言う化学と熱力学の境界線はどう考えられていたのでしょうか。
概念形成の歴史を考えていく中で一つの転換点となっている
気もします。後に放射線を使って原子を少しでも可視化したりする前の、
関連概念の形成時代があったのです。


斯様な考え方で考えていくと、クラウジウスの諸業績の中で第一に思いつくものは熱力学に対する業績で、特に、エントロピーの概念が最も大きいのではないでしょうか。気体分子を単純化して特定環境下(温度下)での個々の質点の位置と運動量で考えていった時にエントロピーはボルツマンが後程、再定義しています。


熱力学第一法則・第二法則の定式化も定式化しました。クラウジウスによるとエントロピーの定義は次のように示されます。


 dS = {dQ }/ {T}


1824年、カルノーは、「熱量は保存され、熱が高温から低温へと移動するときに仕事が発生する」という理論を組み立てました。この理論は1840年代後半、W・トムソンによって世に広まりました。一方、同じ頃に、熱そのものが仕事に変化し、また仕事も熱に変化するというジュールの測定結果が、おなじくW・トムソンなどによって世に認められるようになりました。


しかし、この2つの理論は互いに矛盾するように思われました。そのため、W・トムソンは初め、ジュールの測定結果のうち、「仕事が熱に変化する」という箇所については否定的な見解を示していました。


これに対しクラウジウスはジュールの理論を受け入れ、熱と仕事は互いに変換可能だと考えました。しかし、カルノーの理論を完全に捨て去ることもしませんでした。クラウジウス独自の考察から、熱に関する2つの原理が生み出されました。 


またクラウジウスの不等式の概念は内部エネルギーや散逸を考えていく上でおおきな足掛かりとなりました。



〆最後に〆




TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2022/04/01_初回投稿
2023/06/08‗改訂投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
ドイツ関連のご紹介へ
時代別(順)のご紹介
力学関係のご紹介
電磁気学のご紹介へ
熱統計力学のご紹介へ


【このサイトはAmazonアソシエイトに参加しています】





(対応英訳)


Clausius is of German descent, spelling his name
Rudolf Julius Emmanuel Clausius,.


Clausius was born in the Kingdom of Prussia. He was born in Poland in these days. While his father was a minister, he was the principal of an elementary school. There Clausius begins to learn. He began to take an interest in thermodynamics during his time at the University of Berlin and summarized his first treatise.


It was a consideration of the relationship between heat (temperature), pressure, volume of the target substance (occupied space), and its mass, which were the core of physics at that time. Newtonian mechanics is widely known, and it is a consideration at the stage of summarizing the findings in imagining the concept that people are Molecules or Atoms based on the mass model, and it is in the process of groping.


Claudius is one of the people who scrutinized the properties of gas molecules (or some of their compounds). What was the boundary between chemistry and thermodynamics as it is now? I feel that it is a turning point in thinking about the history of concept formation. There was an era of the formation of related concepts before later using radiation to visualize atoms as much as possible.


Considering this way of thinking, the first thing that comes to mind among Clausius's achievements is his Achievements in Thermodynamics, and in particular, the concept of Entropy is probably the largest. When he simplified the gas molecule and thought about the position and momentum of each mass point in a specific environment (under temperature).


Boltzmann later redefined
Formulation of the first law and the second law of thermodynamics.and,


the definition of entropy is


dS = {dQ} / {T}


In 1824, Carnot constructed the theory that heat is conserved and work occurs when heat moves from hot to cold. This theory was popularized by William Thomson in the late 1840s. On the other hand, in the same period, Joule's measurement result that heat itself turns into work and work also turns into heat came to be recognized by the same Thomson and others. However, the two theories seemed to contradict each other. As a result, Thomson initially gave a negative view of Joule's measurements of "work turns into heat."


Clausius, on the other hand, accepted Jules' theory and thought that heat and work could be converted into each other. But he did not completely abandon Carnot's theory. This gives rise to two principles of heat.

2023年06月17日

ヘルムホルツ
6/17改訂【神経科医にして物理学者|熱力学の方向性に対して議論・研究】

こんにちはコウジです!
「ヘルムホルツ」の原稿を改定します。
今回の主たる改定はタイトルの再考です。
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】




【スポンサーリンク】
【1821年8月31日生まれ - 1894年9月8日没】

 

多才な人だったヘルムホルツ



ヘルムホルツの名を全て書き下すと、


Hermann Ludwig Ferdinand von Helmholtz。


神経科医にして物理学者です。


学位を修めた際には無脊椎動物の神経繊維と


神経細胞に関して研究していました。


その後、軍医さんとしてポツダム連隊に配属されます。


その後にベルリン大学で教えるという


キャリアを重ねています。


そんな中で沢山の弟子を育てています


その中の一人ヘルツはヘルムホルツのもとで


電気力学ついて考察を進め、電磁波の存在を示します。


ヘルムホルツの活動は多岐にわたるのです。


そもそも神経活動の伝搬物質は微細電流で、


神経活動の研究には電圧測定は不可欠です。


ヘルムホルツの研究で別の側面をご紹介すると、


熱と仕事の関係があげられます。


ジュール等による熱の仕事当量に対してのデータから、


今で言う熱力学第1法則を導出しています。


学会で論文・力の保存についてを発表しています。


エネルギーの相互関係 



マイヤージュールケルビン卿も別途、研究を進めていたエネルギー保存則に関する成果です。また、ヘルムホルツは化学反応の方向性についても仕事をしています。2つの物資を考えると、熱は必ず接触面で温かい物質から冷たい物質に伝わります。不可逆的な現象です。その不可逆性を考えてヘルムホルツは熱力学に関する知見を化学にあてはめ、自由エネルギー、温度、エントロピーを使って全エネルギーを定義して議論しました。化学反応が起こるには方向性があるのです。別途、研究を進めていたギブズの成果でもありますのでギブズ-ヘルムホルツの式として呼ばれています。


ヘルムホルツによる波の定式化



また。ヤングの光の三原色に加えて残像の効果を考え、色盲さんの説明が出来る様になりました。音については、人の感じる音色が周波数と、ゲイン(幅)から決まると説明しました。更には、母音に含まれる振動数が基本で、声道の形によって更に個性が出てきて共鳴音の効果が異なるのだと指摘しました。また、田中舘愛橘がベルリン大学へ留学していた時に電磁気を教えていたことでも知られています。




TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。


nowkouji226@gmail.com


2021/07/06_初回投稿
2023/06/17_改定投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
ドイツ関係のご紹介
電磁気関係
熱統計関連


【このサイトはAmazonアソシエイトに参加しています】


【2021年9月時点での対応英訳】



 Helmholtz's activities are diverse


If you write down all the names of Helmholtz,
Hermann Ludwig Ferdinand von Helmholtz.


I am a neurologist and a physicist. When he completed his degree, he was studying nerve fibers and cells in invertebrates.


After that, he will be assigned to the Potsdam Regiment as a surgeon. He has since continued his career teaching at the University of Berlin. Meanwhile, he is raising a lot of disciples. One of them, Hertz, goes on to consider electromechanics under Helmholtz and shows the existence of electromagnetic waves.


Helmholtz's activities are diverse. In the first place, the propagating substance of neural activity is a minute current, and voltage measurement is indispensable for studying neural activity. Another aspect of Helmholtz's research is the relationship between heat and work.


Helmholtz derives the first law of thermodynamics, which is now called, from the data on the work equivalent of heat by Joule and others. And he is presenting his treatise and preservation of power at an academic conference.



Job of Hermholtz


Meyer, Jules, and Sir Kelvin are also the results of the energy conservation law that they were studying separately. Helmholtz also works on the direction of chemical reactions. Considering two materials, heat is always transferred from a warm substance to a cold substance on the contact surface. It is an irreversible phenomenon. Given its irreversibility, Helmholtz applied his findings on thermodynamics to chemistry, using free energy, temperature, and entropy to define and discuss total energy. There is a direction for a chemical reaction to occur. It is also called the Gibbs-Helmholtz formula because it is the result of Gibbs, who was conducting research separately.



Formalizm of wave by Hermholtz


Also. Considering the effect of afterimages in addition to the three primary colors of Young's light, I can now explain Mr. Colorblind. Regarding sound, I explained that the timbre that people feel is determined by the frequency and gain (width). Furthermore, he pointed out that the frequency contained in the vowel is the basis, and the effect of the resonance sound is different depending on the shape of the vocal tract. It is also known that Tanakadate Aikitsu taught electromagnetics when he was studying abroad at the University of Berlin.


2023年06月16日

A・H・ルイ・フィゾー
6/16改訂【光速度を始めて測定|ドップラー効果を考察】

こんにちはコウジです!
「フィゾー」の原稿を改定します。
今回の主たる改定はタイトルの再考です。
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】


 
【スポンサーリンク】
【1819年9月23日生まれ 〜 1896年9月18日没】



フランス生まれのフィゾー


その名は正確には、


アルマン・イッポリート・ルイ・フィゾー


(Armand Hippolyte Louis Fizeau,


フィゾーは地上での光速度を始めて


測定した人で、フランス人です。


 

フィゾーの実験として有名な物は1849年に


回転歯車を使った公開実験です。


明快に原理を示して光速度を数値化しました。


フィゾーの示した数値が重要なのは、


後に明らかになっていきますが


光が電気と関係してるからです。


マクスウェル_が電磁気学をまとめる中で、


自分の理論での計算結果とフィゾーの示した値が


とても近い事実に気付きます。それはきっと、


現代風に言えば、電磁波の伝播速度が


光速度に近い、という事実なのでしょう。


媒質が真空であれば一致する筈です。


 

 フィゾーの業績


また、フィゾーはドップラー効果も予見してます。こ


の「ドップラー効果」という言葉はスマホ入力で


一発変換されています。


そんな当たり前の言葉なのですが、


もともとはフィゾー達が


確かにしていった概念なのです。


 

今の我々は簡単に考える作業も、時代が変われば


大変な困難に直面したはずです。特に


新規の概念を手探りで考えていく中での実験は


大変だったであろうと思えます。


フィゾーが実験を繰り返す困難は測り知れません。


当時は未だ


「指向性の強い(光が拡散せず、広がらない)」


レーザー光線も無かったでしょうし、


当然デジタルのカウンターなども無いので、


計測系のイメージだけでも大変だったでしょう。


私が何より興味深いのはフィゾーの


頭の中にある理論的な考察が


閃きによって実験に昇華するプロセスです。


フィゾーは理論的な原理を優れた実験で


わかり易く示したのです。






TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致します。


nowkouji226@gmail.com


2020/12/01_初版投稿
2023/06/16_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
力学関係のご紹介
電磁気学関係
量子力学関係


【このサイトはAmazonアソシエイトに参加しています】



Fizeau born in France


The name is exactly
Armand Ippolito Louis Fizeau
(September 23, 1819-September 18, 1896)


Fizeau is the first person to measure the speed of light on the ground and is a Frenchman.


A famous Fizeau experiment was a public experiment using rotary gears in 1849. The principle was clearly shown and the speed of light was quantified.


Fizeau's numbers are important because, as we will see later, light is related to electricity.



Job of Fizeau


Later, as Maxwell summarizes electromagnetism, he finds that the results of his theory and the values ​​Fizeau show are very close. Perhaps it is the fact that the propagation speed of electromagnetic waves is close to the speed of light in modern terms. If the medium is a vacuum, it should match.


Fizeau also foresaw the Doppler effect. The word "Doppler effect" is converted in one shot by smartphone input. It's such a natural word, but it was originally a concept that Fizeau and his colleagues had made sure.


Even the tasks that we think easily now must have faced great difficulties in different times. In particular, I think it would have been difficult to experiment while groping for new concepts.


The difficulty for Fizeau to repeat his experiment is immeasurable. At that time, there would not have been a laser beam with "strong directivity (light does not diffuse and does not spread)", and of course there was no digital counter, so it would have been difficult just to imagine the measurement system.


What is most interesting to me is the process by which the theoretical considerations in Fizeau's mind are sublimated into experiments by inspiration.


I think Fizeau demonstrated his theoretical principles in a good experiment.



2023年06月15日

レオン・フーコー
6/15改訂【実験で振り子の慣性を考察|媒質中の光速度を導出】

こんにちはコウジです!
「フーコー」の原稿を改定します。
今回の主たる改定はタイトルの再考です。
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】


 
【スポンサーリンク】
【1819年9月18日生まれ ~ 1868年2月11日没】



フーコーの有名な実験


「フーコーの振り子」という装置


を発明した事でフーコーは有名です。


振り子の運動に地球の運動を反映させるのです。


色々な国の科学博物館で見る事が出来ます。


中国でも韓国でもアメリカでも見る事が出来ます。


日本でも国立科学博物館を初めとして、


全国の数十か所で見る事が出来ます。


振り子の運動は地球の時点とは独自に


繰り返される慣性に縛られた運動であるので


地球の運動が進むにつれて、東西南北とずれるのです。


そのずれは24時間後に元の位置に戻ります。


地球の自転方向と逆に少しずつずれていって


24時間後に元の位置に戻るのです。


対象とする振り子を北極か南極に設置すると


一番分かり易いです。赤道上では分かりにくいです。


そういった誰にでもわかる優れた実験を駆使して


地球の自転を実験的に明らかにしました。


1851年のパンテオンでの公開実験で


最終的に仮説を実証してみせます。


 

実験構築を行ったフーコー


フランス生まれのフーコーはパリで


印刷業を営んでいた父のもとに生まれます。


幼い頃から科学工作が好きでした。


子供時代は病弱で医学を志していましたが血液恐怖症


だったりした為、お医者様になるのは断念したそうです。


10代になり、写真技術の改良をしていたフーコーは


物理学者アルマン・フィゾーと知り合いになり交流を深めます。


フィゾーとは良い関係を持ち続け


初めの時期は協同研究をしていました。


 

1847年頃からフィゾーとフーコーはそれぞれ独自に


研究を進めます。歯車を使いフィゾーが光速度を求め、


回転している鏡を使いフーコーは


媒質中の光速度の差異を求めました。


私が何より興味深いのはフーコーやフィゾーの


頭の中にある理論的な考察が


閃きによって実験に昇華するプロセスです。


大抵の考えは実験で確認するまで


分からないことが沢山出てきます。


特定の理論はあくまでモデルの


一つなので、より厳密に考えていったら、


その時に知られてるモデルが適用できない場合


もありうるのです。必要に応じて


適用モデルの修正が必要です。


等時性の理論をフーコーは優れた実験で


わかり易く示したと言えます。


それはとても秀逸な実験でした。




 



TechAcademy [テックアカデミー]
【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。


nowkouji226@gmail.com


2020/08/29_初版投稿
2023/06/15_改定投稿


(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
力学関係のご紹介


[このサイトはAmazonアソシエイトに参加しています]


【2021年8月時点での対応英訳】



Foucault's famous experiment


The name Foucault is famous for its device called "Foucault Pendulum". The movement of the pendulum reflects the movement of the earth. You can see it at science museums in various countries. You can see it in China, South Korea, and the United States.


You can see it in dozens of places nationwide, including the National Museum of Nature and Science in Japan. Because the movement of the pendulum is a movement bound by inertia that repeats independently from the time of the earth.


As the movement of the earth progresses, it shifts from north, south, east, and west. The deviation will return to its original position after 24 hours. Gradually deviate from the direction of rotation of the earth


It will return to its original position after 24 hours. It is easiest to understand if the target pendulum is installed in the North Pole or the South Pole. It is difficult to understand on the equator. We have experimentally clarified the rotation of the earth by making full use of such excellent experiments that anyone can understand. We will finally prove the hypothesis in a public experiment at Pantheon in 1851.



experimental construction of Foucault


Foucault was born to his father, who was in the printing business in Paris, France. He has been fond of scientific crafts since he was a child. He was sick and aspired to medicine when he was a kid, but he gave up on becoming a doctor because he had blood phobia.


As a teenager, Foucault, who was improving his photographic skills, became acquainted with physicist Hippolyte Fizeau and deepened his interaction. He continued to have a good relationship with Fizeau and was doing collaborative research in the early days.


From around 1847, Fizeau and Foucault will carry out their own research. Using gears, Fizeau calculated the speed of light, and using a rotating mirror, Foucault calculated the difference in the speed of light in the medium.


What is most interesting to me is the process by which the theoretical considerations in Foucault and Fizeau's mind are sublimated into experiments by inspiration.


There are many things that most ideas cannot be understood until they are confirmed by experiments. A specific theory is just one of the models, so if you think more strictly,


It is possible that the model known at that time is not applicable. The application model needs to be modified if necessary. Foucault can be said to have demonstrated his theoretical principles in an easy-to-understand manner through excellent experiments. It was a very good experiment.



2023年06月14日

ジョージ・ストークス
6/14改訂【流体力学・光学・数学それぞれで大きな業績】

こんにちはコウジです!
「ストークス」の原稿を改定します。
今回の主たる改定はタイトルの再考です。
初見の人が検索結果を見て記事内容が分かり易いように。


SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。
【以下改訂した原稿です】



【スポンサーリンク】
【1819年8月13日 ~ 1903年2月1日】



ストークスの名を正確に記すと、


Sir George Gabriel Stokes, 1st Baronet。


SIRの称号を得ていてケンブリッジでは


ルーカス職を務めています。 特に


流体力学や光学、数学でストークスは


顕著な仕事を残しました。



具体的なストークスの業績



業績として、ストークスと言われて思い出すのは流体力学だという人は多いのではないでしょうか。特にNS(ナルビエ・ストークス)の式(表式)と呼ばれる表現式が有名です。実際に表式に慣れてくれば、その式がニュートンの第二法則と対応していることが実感できてきます。ただ、「回転」、「発散」といったベクトル力学特有の表現が実感し辛い部分ではあります。


ただ、慎重に議論をなぞっていくと流体の粘性だとか、それが非圧縮性の流れであるとか言った「言い回し」が段々と理解出来てきて、全体像がつかめた気分になってくるから不思議なものです。


実際には、流体に対して多数のセンサーを配して実験がされることは余り無くて、厳密な適用はされにくいのですが、定性的な理解には大いに役だちますし数値解析でシミュレーションしていくことも出来る価値ある表式なのです。



ストークスの人脈



最後に、ストークスに関連した繋がりをご紹介します。現在、有名となっている「ストークスの定理」はもともとウィリアム・トムソン(ケルビン卿)がストークスに伝えたと言われています。そして、ストークスはその定理の有用性を認め、ケンブリッジ大学での数学の優等試験(トライポス)での諮問の中でその式を使いました。


絶対零度の単位で名を残すケルビン卿とストークスがつながるのです。そして、その試験を受けていたのは後の電磁気学の権威者となるマクスウェルだったのです。もちろん、マクスウェルは優秀な成績でこの試験に合格したと言われています。


絶対零度の人・ストークス・電磁気学の人・・・とつながるのです。物理の中では全然別の分野だったと思われた3人が関連していたのですが、こんな話からも当時のイギリスでは議論が盛んだったことも伺われますし、物理の世界は繋がっているのだなぁ、と実感できる筈です。




【スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。


nowkouji226@gmail.com


2021/10/03_初稿投稿
2023/06/14_原稿改定


纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係
ケンブリッジ関連
電磁気学関係


【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)



Accurately write the name of Stokes


He holds the title of Sir George Gabriel Stokes, 1st Baronet, SIR and holds the Lucas position in Cambridge. Stokes left a remarkable job, especially in fluid mechanics, optics, and mathematics. Specific Stokes achievements


 

As a result, many people think that what is called Stokes is fluid mechanics. In particular, the expression formula called NS (Narvier Stokes) formula (table formula) is famous. As you become more accustomed to the formula, you will realize that it corresponds to Newton's second law. However, the expressions peculiar to vector mechanics such as "rotation" and "divergence" are hard to realize.


However, if you trace the discussion carefully, you will gradually understand the "phrase" that the viscosity of the fluid and that it is an incompressible flow, and you will feel that you have grasped the whole picture. It's strange. In reality, it is rare to experiment with a large number of sensors placed on a fluid, and it is difficult to apply it exactly, but it is very useful for qualitative understanding and simulated by numerical analysis. It is a valuable expression that can be taken.



Stokes connections


Finally, I would like to introduce the connections related to Stokes. It is said that William Thomson (Sir Kelvin) originally introduced the now-famous "Stokes theorem" to Stokes. Stokes then acknowledged the usefulness of the theorem and used it in his consultation at the University of Cambridge's Mathematics Honors Exam (Tripos).


Sir Kelvin and Stokes, who leave their names in units of absolute zero, are connected. And it was Maxwell, who later became an authority on electromagnetism, who was taking the test. Of course, Maxwell is said to have passed this exam with excellent grades. It connects with people at absolute zero, Stokes, people with electromagnetics, and so on.


Three people who seemed to be in completely different fields in physics were related, but from such a story, it can be said that there was a lot of discussion in England at that time, and the world of physics was connected. You should be able to realize that you are there.