アフィリエイト広告を利用しています

2018年03月01日

数学: Freyd の随伴関手定理

作業療法の往き帰りの電車の中で Freyd の随伴関手定理の証明の解読をする.
本に載っている証明が方針と概略のみを示したものなので, これをきちんと完全な証明にする作業である.



定理 (Freyd). $\hspace{0.5em}$ $\mathscr{D}$ を全ての極限が存在する圏とする. このとき, 関手 $R : \mathscr{D} \to \mathscr{C}$ が左随伴関手を持つための必要十分条件は, $R$ が全ての極限を保存し, かつ解集合条件を満たすことである.



ここで, 解集合条件 (solution set condition) は次のように述べられる.



定義 (解集合条件). $\hspace{0.5em}$ 関手 $R : \mathscr{D} \to \mathscr{C}$ と $\mathscr{C}$ の対象 $A$ に対して, $\mathscr{D}$ の対象 $B$ と $\mathscr{C}$ の射 $y : A \to RB$ の組 $(y, B)$ からなる集合 $\mathscr{S}$ が存在して, $\mathscr{C}$ の任意の射 $d : A \to RD$ について, ある $(y, B) \in \mathscr{S}$ と $\mathscr{D}$ の射 $f : B \to D$ で
\begin{equation}
\newcommand{\Ar}[1]{\mathrm{Ar}(#1)}
\newcommand{\ar}{\mathrm{ar}}
\newcommand{\arop}{\Opp{\mathrm{ar}}}
\newcommand{\Hom}{\mathrm{Hom}}
\newcommand{\Id}[1]{\mathrm{id}_{#1}}
\newcommand{\Mr}[1]{\mathrm{#1}}
\newcommand{\Ms}[1]{\mathscr{#1}}
\newcommand{\Ob}[1]{\mathrm{Ob}(#1)}
\newcommand{\Opp}[1]{{#1}^{\mathrm{op}}}
\newcommand{\Pos}{\mathbf{Pos}}
\newcommand{\q}{\hspace{1em}}
\newcommand{\qq}{\hspace{0.5em}}
\newcommand{Rest}[2]{{#1}|{#2}}
\newcommand{\Src}{d^{0,\mathrm{op}}}
\newcommand{\Tgt}{d^{1,\mathrm{op}}}
d = Rf \circ y \q (= \Hom_{\Ms{C}}(A, Rf)(y) = [\Hom_{\Ms{C}}(A, R(-))(f)](y))
\end{equation}
が成り立つ, すなわち図式
\begin{equation}
\begin{xy}
\xymatrix@=48pt {
A \ar[r]^{y} \ar[rd]_{d} & RB \ar[d]^{Rf} \\
~ & RD
}
\end{xy}
\end{equation}
が可換図式になるようなものがとれるとき, $\mathscr{S}$ を $R$ と $A$ に対する 解集合 (solution set)と呼ぶ. $\mathscr{C}$ の各対象 $A$ について $R$ と $A$ の解集合が存在するとき, $R$ は 解集合条件 (solution set condition) を満たすと言う.



意味が取りにくい定義だが, $R$ が各 $A \in \Ob{\Ms{C}}$ と任意の $d : A \to RD$ に対して, 関手 $\Hom_{\Ms{C}}(A, R(-))$ に対する普遍射のような射 $y : A \to RB$ が少なくとも 1 つ存在することを言っている. このような $y$ を $R$ と $A$ に対する 弱普遍射 (weak universal arrow) と呼ぶ (普遍射の存在条件は満たすが一意性条件は満たすとは限らない).

上記定理の証明の流れは次の通り. $\Ms{S}$ を $R$ と $A \in \Ob{\Ms{C}}$ に対する解集合とする. $R$ が $\Ms{D}$ の極限を保存することより, $A$ に対して $\Ms{D}$ の対象 $WA$ を
\begin{equation}
WA = R\left(\prod_{(y, B) \in \Ms{S}} B \right) = \prod_{(y, B) \in \Ms{S}} RB
\end{equation}
と定義する. この $WA$ は解集合条件により $R$ の左随伴関手のような性質を持ち, 弱普遍射 $\zeta A : A \to RWA$ が導かれる ($(\zeta A, WA) \in \Ms{S}$).

ここから解集合条件を何度か使って左随伴関手 $LA$ (やや技巧的な方法により $WA$ の部分対象として定義する) と普遍射 $\eta A : A \to RLA$ を構成していく.

とりあえず, $LA$ を構成するところまでは何とかわかった.

自分の場合, いつものことで理解するのに時間はかかるが, 少しづつわかってくるのが面白い.
posted by 底彦 at 23:30 | Comment(0) | TrackBack(0) | 数学

作業療法: 絵が完成する

7 時半起床.

弁当を作って作業療法に出かける.

病院のアトリエは人が多くて初対面の人もいた. 天気が良く, 春を感じさせる気候だったのもあるかも知れない.

今日は細かいところに色を塗ったり陰影を付けたり修正したりした.
2 時間集中して完成する.
完成まで 3 か月弱かかったが, 細い絵筆で細い線を描くやり方がわかったような気がする. 絵筆にほとんど水を含ませず絵の具も毛の一本くらいにしか付けないようにすればいいみたいだ.
嬉しい.

次回から新しい絵を描く.
posted by 底彦 at 23:30 | Comment(0) | TrackBack(0) |
ファン
検索
<< 2018年03月 >>
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
最新記事
最新コメント
眼科の定期検査 〜 散歩 by コトタマ (02/15)
眼科の定期検査 by 三文字寄れば文殊のヒフミヨ (09/21)
本を読んで過ごす by 底彦 (12/13)
本を読んで過ごす by ねこ (12/12)
数学の計算をする by 底彦 (12/04)
タグクラウド
カテゴリアーカイブ
仕事(59)
社会復帰(22)
(40)
コンピューター(197)
(1338)
借金(8)
勉強(7)
(12)
数学(97)
運動(8)
日常生活(1316)
(198)
健康(33)
読書(19)
プロフィール

ブログランキング・にほんブログ村へ
にほんブログ村
にほんブログ村 メンタルヘルスブログ うつ病(鬱病)へ
にほんブログ村
にほんブログ村 科学ブログ 数学へ
にほんブログ村
にほんブログ村 IT技術ブログ プログラム・プログラマーへ
にほんブログ村